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Abstract

Although tube current modulation (TCM) is routinely implemented in modern computed 

tomography (CT) scans, no existing CT simulator is capable of generating realistic images with 

TCM. The goal of this study was to develop such a framework to (1) facilitate patient-specific 

optimization of TCM parameters and (2) enable future virtual imaging trials (VITs) with more 

clinically realistic image quality and x-ray flux distributions. The framework was created by 

developing a TCM module and integrating it with an existing CT simulator (DukeSim). The 

developed module utilizes scanner-calibrated TCM parameters and two localizer radiographs to 

compute the mAs for each simulated CT projection. This simulation pipeline was validated in 

two parts. First, DukeSim was validated in the context of a commercial scanner with TCM 

(SOMATOM Force, Siemens Healthineers) by imaging a physical CT phantom (Mercury, Sun 

Nuclear) and its computational analogue. Second, the TCM module was validated by imaging 

a computational anthropomorphic phantom (ATOM, CIRS) using DukeSim with real and module

generated TCM profiles. The validation demonstrated DukeSim’s realism in terms of noise 

magnitude, noise texture, spatial resolution, and image contrast (with average differences of 

0.38%, 6.31%, 0.43%, and −9 HU, respectively). It also demonstrated the TCM module’s realism 

in terms of projection-level mAs and resulting noise magnitude (2.86% and −2.60%, respectively). 

Finally, the framework was applied to a pilot VIT simulating images of three computational 

anthropomorphic phantoms (XCAT, with body mass indices (BMIs) of 24.3, 28.2, and 33.0) 

under five different TCM settings. The optimal TCM for each phantom was characterized based 

on various criteria, such as minimizing mAs or maximizing image quality. ‘Very Weak’ TCM 

minimized noise for the 24.3 BMI phantom, while ‘Very Strong’ TCM minimized noise for the 
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33.0 BMI phantom. This illustrates the utility of the developed framework for future optimization 

studies of TCM parameters and, more broadly, large-scale VITs with scanner-specific TCM.
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computed tomography (CT); tube current modulation (TCM); DukeSim; simulation; virtual 
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1. Introduction

Modern computed tomography (CT) scanners routinely utilize tube current modulation 

(TCM) to improve image quality while minimizing radiation dose to patients. With TCM, 

x-ray flux is more proficiently distributed across the patient as the tube current is adjusted 

according to the varying attenuations and radiosensitivities of each anatomical region. This 

produces a more uniform noise level across projection images, thus reducing artifacts in 

reconstructed images without necessitating increased radiation exposure. For this reason, 

TCM is a common element in clinical CT imaging protocols.

This general concept of TCM is straightforward, but specific approaches and 

implementations vary across manufacturers, such as GE’s AutomA, Philips’s Dose-Right 

Dose Modulation, Toshiba’s Real E.C., and Siemens’s CARE Dose 4D (Kalra et al 2004). 

Within each of these methods, there are additional manufacturer-specific protocol options 

and settings to choose, such as noise index, image quality reference, and modulation strength 

(McCollough et al 2006, Li et al 2014), with inherent adaptation to the patient’s body 

habitus, the anatomy of interest, and the diagnostic task. Given this multiplicity of variables, 

TCM should ideally be tailored for each patient in order to achieve its optimal use. This 

requires robust evaluation of TCM in clinical settings, ideally by imaging of a population 

of diverse patients repeatedly at multiple TCM settings. Such a study is not practical using 

real patients. Not only would this be expensive and time-consuming, it would place human 

patients at unacceptable risk due to repeated radiation exposure.

Virtual imaging trials (VITs), which involve the use of computational phantoms and imaging 

simulators, offer a promising alternative to traditional imaging trials (Abadi et al 2020). 

By using computational models of humans (virtual patients) and imaging systems (virtual 

scanners) to model the image acquisition process, VITs bypass the ethical and financial costs 

of real clinical trials. Moreover, VITs possess unique advantages over traditional trials. With 

a computational patient, the exact anatomical and material properties are known prior to 

imaging, enabling more accurate assessment of diagnostic predictions. Using a simulated 

scanner, images may be generated repeatedly under various settings, with or without noise, 

facilitating computation of noise profiles and estimation of ensemble noise. The utility of a 

VIT platform, however, hinges on its clinical realism, including accurate modeling of TCM.

The objective of this study was to develop a validated, scanner-specific framework to 

simulate CT images with TCM. We aimed to do so by creating a TCM module and 

integrating it with DukeSim, an established hybrid simulator developed for rapid x-ray 

imaging of the 4D extended cardiac-torso (XCAT) phantoms (Abadi et al 2019a, 2019b, 
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Sharma et al 2019, Sharma et al 2021). DukeSim accounts for several scanner-specific 

elements, including scanner geometry, poly-energetic source spectrum, bowtie filtration, 

anti-scatter grid, flying focal spot, and energy-dependent detector response. The TCM model 

was integrated with DukeSim in a modular fashion, facilitating flexible integration of the 

TCM module with different simulation platforms and easy updates to the employed TCM 

methodology in step with advances in CT imaging.

2. Method

DukeSim generates realistic, scanner-specific CT images from two main inputs: (1) a high

resolution computational phantom and (2) a parameter file defining the scanner-specific 

geometry and the exam protocol. This work expanded upon this existing framework 

by incorporating a TCM module, summarized in figure 1. The following subsections 

describe the TCM model’s development, manufacturer-specific calibration, validation, and 

application in a pilot VIT.

2.1. Model development

TCM operates based on the general principle of adjusting tube current to accommodate 

varied x-ray attenuation across projections, but the precise details of manufacturer-specific 

implementations are often proprietary. Realistic models may be estimated by calibrating a 

general model to data acquired from real acquisitions. For this implementation, we primarily 

focused on Siemens’s method, CARE Dose 4D (CD4D) (Flohr 2011). With CD4D, the 

user first selects a TCM strength and protocol based on the anatomy of interest, and the 

software computes a TCM profile based on the patient’s estimated attenuation. During 

the exam, additional attenuation measurements are made, and the TCM profile is refined 

‘on-line.’ Based on this understanding of CD4D, we aimed to precisely model its known 

methodological elements and to estimate its unknown proprietary elements, with the goal of 

producing realistic TCM profiles in DukeSim.

2.1.1. Generic attenuation-based TCM—The human body is inhomogeneous and 

asymmetric, so if a CT scan uses a constant tube current, the number of photons detected for 

each projection image will vary considerably. Since quantum noise is known to be inversely 

proportional to the square root of the number of photons hitting the detector, the noise level 

across projections is expected to be nonuniform. This nonuniformity can cause reconstructed 

images to suffer from photon starvation and larger noise amplitudes in certain directions 

(Kalender et al 1999). One goal of TCM is to minimize these directional noisy artifacts 

without increasing the total patient dose.

For an air scan, the number of photons hitting the detector is a function of the effective mAs,

mAs = mA*Trot
pitcℎ , (1)

where mA is the tube current in milliamperes, Trot is the gantry rotation time in seconds, 

and pitch is the ratio of table feed per rotation to beam collimation. With the addition of a 
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patient, the number of photons reaching the detector is further reduced by the attenuation for 

each projection. Thus, an attenuation-based mAs modulation may be introduced as

mAs(p) = mAsref
A(p)
Aref 

α
, (2)

where mAs (p) is the TCM profile as a function of projection p, mAsref is the reference 

mAs, A (p) is the characteristic attenuation as a function of projection p, Aref is the reference 

attenuation, and α is the modulation strength parameter between 0 and 1.

Past studies have verified this model for multiple manufacturers by demonstrating that the 

logarithm of the tube current is linearly proportional to phantom diameter (Flohr 2011, Li et 
al 2014). Furthermore, different α values may be tailored to different purposes. For example, 

α = 1 is meant to achieve a constant noise level, while α = 0.5 minimizes noise in the central 

pixel of each projection when imaging an elliptical, uniform-material phantom (Gies et al 
1999). However, both of these are highly idealized scenarios. Aiming for constant noise in 

all clinical situations will result in unnecessary radiation dose for large patients, and human 

patients are neither elliptical nor homogeneous (Flohr 2011, Favazza et al 2015). For this 

reason, a manufacturer may choose to provide multiple α options for different protocols. 

This is the case with CD4D, which offers five TCM strength options.

2.1.2. Manufacturer-specific TCM—With CD4D, the constants Aref and α depend on 

the protocol selected by the user. Prior to each scan, the user chooses an anatomy of interest, 

adult or pediatric, and one of five strengths (very weak, weak, average, strong, and very 

strong). Aref depends on the anatomy chosen, while α is unique to each TCM strength 

and differs between adult and pediatric patients. The quantity α is further split into two 

values for slim and obese patients, αslim and αobese (Favazza et al 2015, McMillan et al 
2017), which are implemented for attenuations A (p) < Aref and A (p) > Aref, respectively. 

There are some protocol exceptions which utilize a unique (αslim, αobese) pair for each 

TCM strength, for example the neck protocol. For this study, we focused on the thorax and 

abdomen protocols.

Additionally, TCM is commonly comprised of two components: longitudinal TCM (along 

the craniocaudal, z-axis of the patient) and angular TCM (within a single rotation of the 

x-ray tube, in the x–y plane) (Kalra et al 2004). Certain CD4D protocols, such as the 

head protocol, exclusively employ longitudinal modulation (Jian and Ma Hao 2007). Other 

protocols utilize both longitudinal and angular modulations, especially in areas with high 

degrees of rotational asymmetry (such as thorax and abdomen protocols).

2.2. Simulation implementation

We calibrated DukeSim’s αslim and αobese to the five TCM strengths available with CD4D. 

In doing so, it was necessary to develop a method for estimating the patient attenuation 

profile, A (p). For all protocols, CD4D typically estimates A (p) from a single localizer 

radiograph, either anterior–posterior (AP) or lateral (Lee et al 2008). With longitudinal 

TCM, this is straightforward to emulate. Each patient cross-section is approximated as a 

circle, and the water-equivalent diameter is computed for each row (Zhang et al 2020). 
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However, for protocols which incorporate angular TCM, CD4D utilizes an algorithm to 

compute the attenuation in the perpendicular view (Rego et al). The details of this method 

are proprietary, so we instead developed our module to utilize two simulated localizer 

radiographs and directly measure the attenuation profile of both.

2.2.1. TCM module—The developed TCM module utilizes a user-defined parameter file 

with scanner geometry and two localizer radiographs to generate a projection-level mAs 

profile. The two localizers may be simulated with DukeSim prior to running the module.

To simulate any CT acquisition, DukeSim’s geometry and physics are first set according to 

the scanner parameter file. When simulating a localizer radiograph, the tube current-time 

product is changed to 35 mAs and the beam collimation and distance of gantry travel per 

rotation are reduced to the size of a single pixel row (Hoye et al 2019). With these settings, 

a single localizer sinogram μL is acquired. This method is repeated at the AP view and 

the lateral view to generate the two localizers needed for the TCM module. Then, the 

water-equivalent length vectors Lw,AP (z) and Lw,LAT (z) are calculated as

Lw(z) = max(μL(z:z + dz))
μw

, (3)

where μw is the linear attenuation coefficient of water, z is the location of the central row 

of each projection, dz is a function of the beam collimation implemented to account for the 

multiple detector rows, and μL (z: z + dz) is the submatrix including rows in the range z to z 
+ dz and all detector channels (as illustrated in figure 2(a)).

The angular attenuation profile is approximated using the method described by Kalendar 

et al oscillating sinusoidally between the maximum and minimum expected attenuations 

for each rotation (Gies et al 1999). These typically occur at the lateral and AP views 

respectively, so Lw,AP (z) and Lw,LAT (z) are used to generate this projection-level water

equivalent length profile Lw (p) as

Lw(p) = Lw, AP(z) + Lw, LAT(z) − Lw, AP(z)
2 1 + cos 4πz

dzrot
+ 2ϕ , (4)

where dzrot is the distance of gantry travel per rotation and ϕ is the initial tube angle, such 

that ϕ = 0 corresponds to the lateral view (as illustrated in figure 2(b)).

Finally, a reference attenuation and (αslim, αobese) pair are selected to correspond to the 

desired strength setting. Equation (2) is utilized to calculate the mAs as a function of Lw for 

each projection p,

mAs(p) = mAsref eαμw Lw(p) − Lref , (5)

where Lref is the reference length equivalent to ln(Aref)/μw. The Lw (p) is input to equation 

(5), producing a projection-level TCM profile mAs (p) which includes both longitudinal and 

angular TCM components. Maximum and minimum mAs limits are imposed in accordance 
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with the manufacturer’s known tube power limits. This final TCM profile is used as input to 

the CT simulator.

2.2.2. CT simulator—To simulate the image acquisition process, DukeSim uses a GPU

accelerated hybrid of ray-tracing and Monte Carlo (MC) techniques as described by Abadi 

et al (2019a). In summary, for each projection, the primary signal is calculated by solving 

for attenuation at each detector pixel from the Beer–Lambert law. To model the finite 

sizes of the source and detector pixels, each is sub-sampled 5 times and the result at each 

pixel averaged across the 25 combinations. The scatter signal is estimated from the MC 

simulation, normalized to be per 1 mAs, and added to the raw primary signal. The mAs 

value for the projection is assigned based on the TCM profile generated prior to each scan 

(as described in section 2.2.1) and used to determine the final magnitude and noise of the 

total signal. Finally, a 4th-degree polynomial water correction is applied to the raw sinogram 

to calibrate HU values and alleviate effects due to beam hardening, and a scanner-specific 

signal-dependent filter, provided by the manufacturer, is applied to reduce noise magnitude 

in regions of low signal.

2.3. Simulated TCM calibration

To determine the five (αslim, αobese) pairs for DukeSim when simulating CD4D, calibration 

data were acquired by imaging a variable-sized physical phantom (Mercury, Sun Nuclear) 

on a representative scanner (SOMATOM Force, Siemens Healthineers) at multiple strength 

settings. The phantom consisted of five cylindrical polyethylene sections of increasing 

diameter (12.0, 18.5, 23.0, 30.0, and 37.0 cm). Each section included a sub-region with five 

material inserts (water, bone, polystyrene, iodine, and air) to facilitate evaluation of contrast.

The phantom was scanned at 120 kV using a standard ‘body’ bowtie filter, diagonal flying 

focal spot, helical pitch factor of 0.6, rotation time of 0.5 s, and the ‘abdomen’ protocol. 

Fifteen scans were completed in total, using all five available TCM strength options and 

three different reference mAs values of 50, 100, and 200. The dataset included a localizer 

radiograph with a private DICOM header containing water-equivalent length estimates at 

both the AP and lateral views as a function of longitudinal location z, or Lw,AP (z) and 

Lw,LAT (z), respectively (McMillan et al 2014, McMillan et al 2017). This was used as input 

to equation (4) to generate the angular water-equivalent length profile Lw (p).

For each of the fifteen scans, a full TCM profile mAs (p) was obtained by extracting the 

mAs value from the header of each raw projection image. Each profile was divided by 

its reference mAs, producing five normalized datasets corresponding to the available TCM 

strengths. The five (αslim, αobese) pairs were found by fitting these data points Lw (p), 

mAs (p) to equation (5) and minimizing the root mean square error (RMSE) in units of 

normalized mAs. The slim data Lw (z) < Lref were used for αslim, and the remaining data 

with Lw (z) > Lref were used for αobese. Extreme data points (i.e. those limited by the 

minimum and maximum x-ray tube power limits) were excluded from the data fitting, since 

these points do not reflect the expected output of equation (5) and are instead found by 

imposing limits to the mAs range.
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2.4. Simulation validation

A validation study was completed in two steps to demonstrate the realism of images 

simulated with DukeSim at multiple TCM settings. First, the simulator was evaluated by 

comparing real images to simulated images generated with the same projection-level mAs 

profile. Second, the TCM module was evaluated by comparing simulated images with 

real mAs profiles to simulated images with DukeSim mAs profiles. The image acquisition 

settings are detailed below in table 1.

2.4.1. Simulator evaluation—methods—A computational version of the Mercury 

phantom was scanned with DukeSim set to model the geometry and physics of the 

SOMATOM Force (Siemens Healthineers). Protocol settings matched those of the earlier 

data acquisition (120 kV spectrum, helical pitch of 0.6, diagonal flying focal spot, rotation 

time of 0.5 s). The fifteen real TCM profiles were registered to the computational Mercury 

phantom and used as input to DukeSim. Both real and simulated projection images were 

reconstructed using an offline reconstruction prototype (ReconCT 15.0.35098.0, Siemens 

Healthineers) with a weighted filtered backprojection algorithm (WFBP, kernel of Br40d), 

matrix size of 512, 400 mm field of view, and 0.6 mm slice thickness.

Noise metrics were measured in the reconstructed images by placing eight square regions of 

interest (ROIs) in the homogeneous polyethylene region of each cylinder. Each ROI had side 

length of 25 mm and was located 40 mm away from the phantom center. Noise magnitude 

was computed as the average standard deviation of HU values, and noise power spectrum 

(NPS) was computed using the method described by Solomon et al (2015). The in-plane 

modulation transfer function (MTF) was measured for the high-contrast material inserts (air 

and bone). Contrast was measured as mean CT number for all five material inserts (air, 

iodine, polystyrene, bone, water). All metrics were averaged across 15 consecutive slices.

2.4.2. TCM module evaluation—methods—A physical adult male ATOM phantom 

(Computerized Imaging Reference Systems, CIRS) was imaged on a SOMATOM Force 

scanner (Siemens Healthineers) (ATOM® Dosimetry Phantoms 2013). Unlike the Mercury 

phantom, the ATOM phantom is anthropomorphic and thus the TCM profile must account 

for attenuation inhomogeneities typical of a real patient. The phantom was imaged at 120 kV 

using a ‘body’ bowtie filter, diagonal flying focal spot, helical pitch factor of 0.6, rotation 

time of 0.5 s, and ‘abdomen’ protocol. One scan was conducted with 100 mAsref and 

‘Average’ strength. The TCM profile mAsreal (p) was found by extracting the mAs from the 

header for each raw projection image.

A module-generated TCM profile mAsDukeSim (p) was calculated using the water-equivalent 

length vectors Lw,AP (z) and Lw,LAT (z) extracted from the DICOM header of the localizer. 

The projection-level attenuation profile Lw (p) was computed from equation (4), and a final 

TCM profile mAsDukeSim (p) was calculated from equation (5).

To quantify the effect of differences between the real TCM profile and simulated TCM 

profile, DukeSim was used to simulate images of a computational version of the adult 

male ATOM phantom using the two mAs vectors. The geometry and physics were set to 

model the SOMATOM Force scanner at the same acquisition settings listed above, with and 
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without simulated noise. Images were reconstructed in ReconCT with a WFBP algorithm 

(kernel of Br40d), 1024 matrix size, 500 mm field of view, and 0.6 mm slice thickness. 

A noise profile was computed for each dataset by subtracting the noiseless reconstructed 

images from the noisy reconstructed images and taking the absolute value. Noise magnitude 

was measured in each reconstructed slice as the mean value of the corresponding noise 

profile slice. The mAs for each slice was defined as the average of the mAs used for the 

projection images in that reconstruction.

2.4.3. Pilot VIT—methods—To illustrate the utility of this framework, a pilot VIT was 

conducted to quantify image quality as a function of TCM strength for patients of different 

sizes.

DukeSim was used to simulate images of three adult male XCAT phantoms at all five 

modeled TCM strengths, with and without noise. The three phantoms included textured 

lungs and bones and had body mass indices (BMIs) of 24.3, 28.2, and 33.0 (25th, 50th, 

and 75th percentile of the US adult population, respectively). The geometry and physics of 

DukeSim were set to model the SOMATOM Force scanner at 120 kV using ‘body’ bowtie 

filter, helical pitch factor of 1.0, rotation time of 0.5 s, and diagonal flying focal spot. For 

TCM, the ‘thorax’ protocol was used (reference length of 31.4 cm) with mAsref of 100.

The simulated projection images were reconstructed using ReconCT with a weighted filtered 

backprojection algorithm (kernel of Br40d), matrix size of 1024, 500 mm field of view, and 

slice thickness of 0.6 mm. Noise magnitude was measured in each reconstructed slice, and 

average noise magnitude and average mAs delivered were calculated in lungs and bones. 

Noise metrics were found using the method described in section 2.4.2, and the average mAs 

delivered was found by registering the CT images to the original XCAT phantoms, then 

computing the mean mAs of the CT slices weighted by the number of organ voxels in each 

slice.

3. Results

3.1. TCM Calibration

Figure 3 shows the calibration data and curve fit results for the five TCM strengths. The 

(αslim, αobese) pairs and RMSEs are listed in table 2. The RMSE ranged from 4.2% to 6.6% 

for the slim data and 8.4% to 17.5% for the obese data, showing reasonable agreement 

between DukeSim’s model and CD4D data. As Lw increased, noise in mAs also increased, 

contributing to the greater RMSE for obese data.

3.2. Validation

3.2.1. Simulator evaluation—results—In figure 4, the first row (a)–(e) shows real 

and simulated noise magnitude (NM) for data with Average TCM and three mAsref. As 

expected, noise magnitude decreased with mAs (for a given size), and increased with size 

(for a given mAs) in both real and simulated images. In the large-diameter regions of the 

phantom when imaged with low mAs, noise did not follow the traditional relationship NM 
∝ mAs−0.5. This is due to the adaptive filter applied to low-signal data to improve image 

quality when scanning highly-attenuating objects at low doses (Kachelrieß et al 2001). The 
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second row (f)–(i) shows relative error for all five TCM strengths and three mAsref. The 

relative error was within ±9% for each dataset and on average 0.38%, demonstrating realistic 

simulated noise magnitude.

Figure 5 shows the 2D NPS measured in the middle (23 cm diameter) section of the Mercury 

phantom for the real and DukeSim images with 100 mAsref. The average frequency (favg) 

and peak frequency (fpeak) of each NPS curve are listed in table 3. NPS did not noticeably 

vary with TCM strength, likely in part due to the high rotational symmetry of the Mercury 

phantom. The mean favg across TCM strengths was 0.286 mm−1 for real images and 0.311 

mm−1 for simulated images (relative error of 8.05%). Likewise, mean fpeak values were 

0.239 mm−1 and 0.258 mm−1 respectively (relative error of 6.31%). This demonstrates 

reasonable agreement in texture between real and simulated images.

Figure 6 shows the in-plane MTF measured for the Air and Bone material inserts. For Air, 

the average frequency at 50% of the maximum (f50) was 0.370 mm−1 in real images and 

0.369 mm−1 in simulated images. For bone, these values were 0.362 mm−1 and 0.361 mm−1, 

respectively. The relative error in f50 was 0.43% for both materials, showing very similar 

spatial resolution between real and simulated images.

Figure 7 compares the average CT numbers of the five material inserts in real and simulated 

images (difference of 2.9, −34.0, −8.9, −149.3, and −18.2 HU for air, iodine, polystyrene, 

bone, and water respectively), showing strong agreement in contrast.

3.2.2. TCM module evaluation—results—Figure 8 shows the two TCM profiles 

generated for the ATOM phantom, mAsDukeSim (p) and mAsreal (p). The accuracy of the 

simulated TCM profile may be seen visually and quantitatively, with an average relative 

error of 2.86%. The resulting noise profiles are also very close in magnitude, with an 

average relative error of −2.60%. Note that the mAsref for these acquisitions was 100, and 

the average water-equivalent size of the ATOM phantom in the region imaged was 27.5 

cm, sufficient to avoid the low-dose imaging regime. The sensitivity of the noise magnitude 

to changes in TCM profile was quantified by plotting noise difference (DukeSim—real) as 

a function of mAs difference. For an error of +5 mAs, the noise magnitude changes by 

approximately −1 HU. This illustrates the accuracy of DukeSim’s TCM in terms of both 

input mAs and resulting noise magnitude.

3.2.3. Pilot VIT—results—Figure 9 displays the five TCM profiles generated for each 

of the three XCAT phantoms. The average mAs of each profile increases with phantom size, 

and the amplitude of angular oscillations increases with TCM strength. Some oscillation 

peaks have been clipped due to the imposed maximum tube power limit. This is especially 

apparent for the largest phantom (BMI 33.0), resulting in a convergence of the TCM profiles 

in some rotations.

Figure 10 shows the noise magnitude in each reconstructed slice of the fifteen simulated 

datasets. For the smallest phantom (BMI 24.3), greater TCM strengths resulted in higher 

noise magnitude. For the medium-sized phantom (BMI 28.2), the noise profiles were 
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relatively similar regardless of TCM strength. For the largest phantom (BMI 33.0), ‘Very 

Strong’ TCM resulted in the greatest reduction in noise magnitude.

Figure 11 complements the data plotted in figure 10 by showing one noiseless image and 

two corresponding noise profiles for each phantom. The TCM strength which minimizes 

noise may be visually identified for each phantom. As expected, ‘Very Strong’ TCM results 

in a higher-intensity noise profile than ‘Very Weak’ TCM for the smallest phantom, whereas 

the two noise profiles are similar for the medium-sized phantom, and the trend is opposite 

for the largest phantom. Additionally, note that noise magnitude clearly increases with 

phantom BMI for ‘Very Weak’ TCM but is more constant across phantoms for ‘Very Strong’ 

TCM.

Figure 12 shows organ-specific trends in noise magnitude as a function of the average mAs 

delivered. In general, the mAs delivered to the bones was higher than that of the lungs, and 

trends in noise magnitude were similar for both organs. This is expected, due to the higher 

attenuation of bone. The optimal TCM strength, considering both mAs and noise magnitude, 

was distinct for each phantom. For the smallest phantom, noise magnitude was minimal for 

‘Very Weak’ TCM, while mAs delivered was minimal for ‘Average’ TCM. Interestingly, 

in the bones, the ‘Strong’ and ‘Weak’ TCM both utilized similar mAs, but ‘Weak’ TCM 

resulted in lower noise magnitude. For the medium phantom, average mAs delivered ranged 

from 105 to 140 mAs, but noise magnitude was similar at all TCM strengths. For the largest 

phantom, noise magnitude monotonically decreased with TCM strength, indicating the best 

image quality was achieved with ‘Very Strong’ TCM and the lowest mAs delivered was with 

‘Very Weak’ TCM.

4. Discussion

VITs show great potential for patient-specific optimization of imaging designs, techniques, 

and protocols, but only when they are able to realistically simulate clinical imaging 

scenarios. Prior to this work, no existing VIT framework was capable of simulating CT 

images with manufacturer-specific TCM. This study developed such a framework. This has 

the twofold benefit of (1) facilitating future patient-specific optimizations of TCM settings 

and (2) enabling future VITs with accurate TCM functionality, enhancing the clinical 

realism of simulated images and dose estimations.

In this study, we modeled one major CT manufacturer’s TCM approach. The exact TCM 

methodology of most vendors is proprietary, so we demonstrate a simple method for 

calibrating a generic model to manufacturer-specific TCM parameters using a phantom 

with regions of distinct attenuations. This may be used to calibrate DukeSim to the TCM 

methods of other manufacturers, when known to follow the relationship of equation (2). 

These methods will be incorporated in future studies.

Using the modeled TCM approach (Siemens, CARE Dose 4D), we demonstrated strong 

agreement between real and simulated images at multiple TCM strengths in terms of noise 

magnitude, noise texture, contrast, and resolution. For such evaluations, it is critical to use a 

computational phantom which is faithful to the geometric and physical properties of the real 
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object imaged. It is not possible to have such detailed knowledge of patients, so we utilized 

a cylindrical physical phantom with various diameters, the Mercury Phantom. This allowed 

us to assess image quality in well-defined, homogeneous regions and to calibrate our TCM 

module to simple mAs profiles spanning multiple distinct attenuations. In the context of 

TCM, the same algorithm is used when generating TCM profiles for simplistic phantoms 

and for real patients, so we expect our calibration will produce accurate TCM profiles for 

most cases. We demonstrated this using the anthropomorphic ATOM phantom. Our TCM 

model produced a highly accurate projection-level mAs profile (±7.6 mAs), and any error 

in this simulated profile resulted in only small variations in noise magnitude (±0.8 HU) and 

CTDIvol (+0.20).

This simulation framework has great potential for further optimizations of TCM settings. 

Some past studies of TCM have focused on reductions in patient dose with constant image 

quality (Li et al 2014, Tian et al 2015, McMillan et al 2017), as it is well understood 

that TCM has a significant impact on x-ray flux distribution and thus dose computation. 

However, there is limited prior art with regard to variations in image quality, and past 

attempts at such studies have been limited by simplified physical phantoms, generic 

simulations, or restricted patient data (Gies et al 1999, Kalender et al 1999, Solomon et 
al 2013, Gang et al 2017). Ideally, image quality assessments would be conducted through 

repeat acquisitions of patients at different TCM settings, but this is not possible in real 

clinical imaging trials. We showed the potential for improved future analyses using our VIT 

framework with accurate TCM, scanner-specific geometry and physics, and a large library of 

detailed computational patients.

The prospect of VIT platforms and optimization of TCM relies on the detail and accuracy 

of anthropomorphic computational phantoms and simulation tools (Abadi et al 2020). In 

recent years, these have been greatly advanced. On the computational phantom side, the 

XCAT phantoms have grown into a vast library of male and female patients spanning 1st to 

99th percentile BMIs of adults and children in the United States (Segars et al 2010). The 

XCAT phantoms were recently enhanced to include intra-organ heterogeneities in the lungs, 

bones, and liver, as well as disease pathologies such as COPD and COVID-19 (Abadi et 
al 2018, Abadi et al 2019c, Sauer et al 2019, Abadi et al 2021a, 2021b). On the virtual 

scanner side, simulation platforms have been developed using a variety of methods. MC 

techniques are often utilized for their accuracy in modeling x-ray interaction physics and 

estimating delivered radiation dose (Jiang and Paganetti 2004, Li et al 2011, Ding et al 
2015). Since pure MC simulations are naturally slow, more recent platforms also utilize 

GPU-acceleration, ray-tracing, or hybrid (combined ray-tracing and MC) techniques to 

facilitate assessments of image quality and to use larger patient sample sizes (De Man et al 
2007, Badal and Badano 2009, Fung et al 2011, Abadi et al 2019a). In this study, we utilized 

DukeSim, an established hybrid simulation platform (Abadi et al 2019a, 2019b, Sharma et al 
2019, Sharma et al 2021).

In our pilot VIT, we illustrated the patient-specific dependence on image quality as a 

function of TCM strength for phantoms of varying BMIs. To our knowledge, this is the 

first instance quantifying this relationship using realistic computational patients. Moreover, 

we showed example factors to consider in optimization of TCM protocols (noise variations 
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across reconstructed slices, noise magnitude in different organs, average mAs delivered to 

different organs) and how these may be weighed differently depending on patient anatomy 

and scan purpose. For example, if considering noise magnitude alone, ‘Very Weak’ TCM 

is optimal for the 25th percentile BMI patient, while ‘Very Strong’ TCM is optimal for the 

75th percentile BMI patient. If considering a particular organ, such as the lungs specifically, 

‘Average’ TCM may instead be considered optimal for the 25th percentile BMI patient, 

since it minimized the mAs delivered with little cost to noise magnitude. This tradeoff is not 

apparent in all phantoms, further motivating future optimization studies of TCM parameters 

and showing the ability of this framework to achieve such patient-specific protocols.

This study had some limitations. First, we modeled only an attenuation-based TCM 

approach. Although outside the scope of this work, more advanced TCM methodologies 

are increasingly utilized. For example, certain methods utilize dynamic bowtie filters or 

account for the radiation sensitivity of different organs (Liu et al 2014, Fu et al 2017a, 

2017b, Huck et al 2021). Simulation of these will require development of new generic 

models and calibration methods. Because this framework is modular in nature, the developed 

TCM module may be easily updated for future simulation studies. Second, our validation 

of the SOMATOM Force was completed utilizing an established image quality phantom, 

advantageous for its regions of distinct attenuations and simple geometry. However, real 

patients do not have circular cross-sections nor homogeneous composition. Unfortunately, 

it is not yet possible to complete validation using patient images, due to the absence 

of a known ground truth. Once developed, detailed physical XCAT phantoms with well

defined computational analogues should be used for further validations. Third, for this 

same reason, our TCM module was validated using only DukeSim-generated images and a 

computational ATOM phantom. Our aim was simply to approximate the sensitivity of image 

noise to changes in TCM profile, for which it is necessary to know a phantom’s ground 

truth and to simulate noiseless images. Our computational ATOM phantom has acceptable 

accuracy for these purposes. Future analyses should also validate simulated TCM using 

physical anthropomorphic phantoms with known ground truth. Finally, we validated our 

simulation framework for typical clinical imaging scenarios, but we found our simulated 

noise magnitude was less accurate in the low-dose regime. This is because the SOMATOM 

Force employs adaptive filtration to improve image quality for low-signal projection images. 

While we have implemented a signal-dependent filter in our simulation framework, our 

results are still most accurate at more clinically relevant dose levels. This finding motivates 

a future study modeling a more advanced version of this pre-processing filter in low-signal 

projections, in order to run accurate VITs at all dose levels.

5. Conclusions

This work demonstrates the first scanner-specific VIT framework which generates realistic 

CT images with TCM. We validated DukeSim set to model the SOMATOM Force scanner 

with CARE Dose 4D at all five available TCM strengths. In the future, more advanced 

TCM methodologies will be modeled and other manufacturers’ implementations will be 

calibrated. With DukeSim, we are now able to conduct patient-specific optimizations of 

TCM strengths, as well as more robust VITs which simulate clinical imaging protocols using 

TCM.
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Figure 1. 
Flowchart summarizing DukeSim’s simulation framework. TCM-specific elements are 

shown in orange.
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Figure 2. 
Schematic diagram illustrating the process of converting two localizer radiographs into one 

projection-level water-equivalent length profile. (a) An example localizer μLAP is shown 

with one submatrix μL(z: z + dz) boxed in red and its maximum intensity max (μL(z: z + 

dz)) circled in white. (b) The vectors Lw,LAT (z) and Lw,AP (z) are used to compute Lw (p) 

for a predefined dzrot and an initial tube angle ϕ = 0.
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Figure 3. 
Normalized mAs as a function of water-equivalent length for all five TCM strengths. 

DukeSim calibration curves are plotted with RMSE as error bars. A vertical gray line is 

shown at the reference length, 33.9 cm.
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Figure 4. 
(a)–(e) Noise magnitude comparison for one TCM strength (Average) at three reference 

mAs (50, 100, and 200) in the five Mercury phantom diameters. The mAs of each slice was 

calculated as the average mAs of projections used in its reconstruction. (f)–(j) Heat map of 

the relative error in noise magnitude for all five TCM strengths and three reference mAs. 

Notably, error is typically small (±3%) but increases slightly in the low-dose regime (higher 

attenuating diameter and lower reference mAs).
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Figure 5. 
Normalized noise power spectrum (NPS) in the 23 cm diameter cylinder of the Mercury 

phantom, measured in real (red) and simulated (blue) images for each TCM strength with 

reference mAs of 100.
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Figure 6. 
Modulation transfer function (MTF) of air (a)–(e) and bone (f)–(j) material inserts in the 30 

cm diameter section of the Mercury phantom, measured in real (red) and simulated (blue) 

images at five TCM strengths.
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Figure 7. 
Mean CT number for the five material inserts in the 23 cm diameter section of the Mercury 

phantom, for real and simulated data at 100 mAsref averaged across multiple TCM strengths 

(absolute error is 2.9, −34.0, −8.9, −149.3, and −18.2 HU for each material, left to right). 

Error bars are standard deviation.
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Figure 8. 
(a) Comparison of real TCM vector and DukeSim-generated TCM vector for ATOM 

phantom scan with reference mAs of 100, ‘average’ strength, and ‘abdomen’ protocol 

(RMSE 7.59 mAs, average relative error 2.86%). (Background) localizer radiograph of the 

ATOM phantom. (b) Noise magnitude in each reconstructed slice of the ATOM phantom 

images, simulated with real and DukeSim-generated TCM profiles. The RMSE is 0.78 HU, 

and the average relative error is −2.60%. (c) Difference in noise magnitude as a function 

of TCM difference. A linear fit is shown in red for approximation of the noise magnitude’s 

sensitivity (RMSE 0.18 HU).
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Figure 9. 
The five TCM profiles generated for each XCAT phantom. The BMI is in 25th, 50th, and 

75th percentile of adult males in the United States for (a)–(c) respectively. The profiles are 

plotted over the corresponding phantom’s AP localizer radiograph.
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Figure 10. 
Noise magnitude measured in each reconstructed image for the three XCAT phantoms 

(smallest to largest BMI, left to right).
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Figure 11. 
(a)–(c) Noiseless reconstructed images for the three phantoms (BMIs 24.3, 28.2, and 33.0 

from left to right) at window width of 400 HU and a window level of 50 HU. (d)–(f) 

Corresponding noise profiles for the ‘Very Weak’ TCM simulations. (g)–(i) Corresponding 

noise profiles for the ‘Very Strong’ TCM simulations. Noise profiles are shown with 

intensities ranging from 10 to 50 HU. All images are for the central reconstructed slice 

(z location of 143.1 mm).
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Figure 12. 
Noise magnitude measured in lungs and bones as a function of the average mAs used to 

acquire projection images with each respective organ, for the three XCAT phantoms.
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Table 1.

Summary of the scan configurations used for the image acquisitions described below.

TCM calibration/simulator 
evaluation

TCM module evaluation Pilot VIT

Scanner Force, DukeSim DukeSim DukeSim

Phantom Mercury ATOM (adult, male) XCAT (BMIs of 24.3, 28.2, and 33.0)

Source of TCM 
profiles

CD4D CD4D, DukeSim DukeSim

mAsref 50, 100, 200 100 100

Average CTDIvol 

(mGy per mAs)
2.36, 4.52, 8.92 (for each mAsref) 3.77, 3.98 (for each TCM profile) 7.27, 10.01, 14.02 (for each phantom)

TCM strength Very weak, weak, average, strong, very 
strong

Average Very weak, weak, average, strong, very 
strong

Lref (cm) 33.9 33.9 31.4

Helical pitch 0.6 0.6 1.0
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Table 2.

TCM curve fitting results. Each pair of parameters was found by minimizing RMSE (units of normalized 

mAs) for slim and obese data.

TCM strength α slim α obese RMSEslim RMSEobese

Very weak 0.236 0.202 0.066 0.084

Weak 0.393 0.241 0.057 0.084

Average 0.606 0.360 0.042 0.090

Strong 0.759 0.497 0.044 0.124

Very strong 0.913 0.674 0.051 0.175
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Table 3.

Average and peak frequency values of real and simulated NPS (figure 5) at multiple TCM strengths.

TCM strength Dataset favg (mm−1) fpeak (mm−1)

Very weak Real 0.287 0.189

DukeSim 0.310 0.283

Weak Real 0.287 0.252

DukeSim 0.311 0.252

Average Real 0.287 0.283

DukeSim 0.313 0.283

Strong Real 0.288 0.252

DukeSim 0.310 0.220

Very strong Real 0.280 0.220

DukeSim 0.310 0.252
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