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CONSPECTUS:

Any chemist studying the interaction of molecules with lipid assemblies will eventually be 

confronted by the topic of membrane bilayer heterogeneity and may ultimately encounter the 

heterogeneity of natural membranes. In artificial bilayers, heterogeneity is defined by phase 

segregation that can be in the nano- and micrometer range. In biological bilayers, heterogeneity 

is considered in the context of small (10–200 nm) sterol and sphingolipid-enriched heterogeneous 

and highly dynamic domains. Several techniques can be used to assess membrane heterogeneity 

in living systems. Our approach is to use a fluorescent reporter molecule immersed in the 

bilayer, which, by changes in its spectroscopic properties, senses physical-chemistry aspects 

of the membrane. This dye in combination with microscopy and fluctuation techniques can 

give information about membrane heterogeneity at different temporal and spatial levels: going 

from average fluidity to number and diffusion coefficient of nanodomains. LAURDAN (6

dodecanoyl-2-(dimethylamino) naphthalene), is a fluorescent probe designed and synthesized 

in 1979 by Gregorio Weber with the purpose to study the phenomenon of dipolar relaxation. 

The spectral displacement observed when LAURDAN is either in fluid or gel phase permitted 

the use of the technique in the field of membrane dynamics. The quantitation of the spectral 
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displacement was first addressed by the generalized polarization (GP) function in the cuvette, 

a ratio of the difference in intensity at two wavelengths divided by their sum. In 1997, GP 

measurements were done for the first time in the microscope, adding to the technique the spatial 

resolution and allowing the visualization of lipid segregation both in liposomes and cells. A new 

prospective to the membrane heterogeneity was obtained when LAURDAN fluorescent lifetime 

measurements were done in the microscope. Two channel lifetime imaging provides information 

on membrane polarity and dipole relaxation (the two parameters responsible for the spectral 

shift of LAURDAN), and the application of phasor analysis allows pixel by pixel understanding 

of these two parameters in the membrane. To increase temporal resolution, LAURDAN GP 

was combined with fluctuation correlation spectroscopy (FCS) and the motility of nanometric 

highly packed structures in biological membranes was registered. Lately the application of phasor 

analysis to spectral images from membranes labeled with LAURDAN allows us to study the 

full spectra pixel by pixel in an image. All these methodologies, using LAURDAN, offer the 

possibility to address different properties of membranes depending on the question being asked. In 

this Account, we will focus on the principles, advantages, and limitations of different approaches 

to orient the reader to select the most appropriate technique for their research.

Graphical Abstract

INTRODUCTION

Biological membranes are inherently heterogeneous due to the asymmetry of composition 

of the two monolayers.5-7 In addition to differences in the protein content, the actual 
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lipid composition of the monolayers also differs. The thermodynamic barriers to lipids 

transferring between bilayers are significant and such translocation is usually only 

accomplished by enzymes known as flippases. In addition to this bilayer asymmetry, 

heterogeneity also exists in the lateral organization of membranes and is susceptible to 

thermodynamic variables such as temperature, pressure and chemical potential. The lateral 

organization of phospholipids is defined in the context of a supramolecular organization, 

for example, in terms of solid order (gel, Lβ), liquid disorder (liquid crystalline, ld or 

Lα) or liquid order (lo). Lipid phase segregation in the nano to micrometer range is 

fundamentally important for synthetic membranes. In biological membranes, the situation 

is more complicated due to the compositional heterogeneity and physical characteristics. 

Lateral organization of membranes in living cells is manifested by small (10–200 nm) sterol 

and sphingolipid-enriched heterogeneous and highly dynamic domains, as discussed by 

Pike.8,9

Several techniques can be used to assess membrane heterogeneity in living systems.1,10-12 

Our approach was to use a fluorescent reporter molecule immersed in the bilayer. 

The changes in the spectroscopic properties of this probe provide information on 

membrane physical properties without perturbing the system under study. Since Gregorio 

Weber synthesized this molecule in 1979,13 LAURDAN (6-dodecanoyl-2-(dimethylamino) 

naphthalene), used in combination with several biophysical methods, has provided 

information on membrane heterogeneity at different scales. These diverse approaches will be 

described in the following sections.

LAURDAN, THE FLUORESCENT EXPLORER FOR MEMBRANE 

HETEROGENEITY

LAURDAN belongs to the family of probes having a naphthalene moiety modified on the 

2,6 ring positions (Figure 1A), with electron donor (amino) and acceptor (carbonyl) groups, 

which can stabilize charge transfer and engender large excited state dipole moments.13 

These excited state dipoles respond dramatically to the polarity of their surroundings, as 

shown in Figure 1B, which illustrates the change in the emission spectra of LAURDAN 

in solvents of varying dielectric constants. Although Weber never used LAURDAN himself 

in any published studies, when he synthesized it he clearly had in mind its potential for 

membrane studies, such as he had carried out earlier.14

The rationale behind the synthesis of the LAURDAN family was their sensitivity to 

two different physicochemical properties characterizing their environment: the dielectric 

environment associated with the solvent surrounding the probes (Figure 1C) and the 

relaxation of solvent molecules (carrying dipoles) around the fluorophore dipole during 

the excited state. Furthermore, the selection of the alkyl chain size allows for modulating 

the lipophilic/hydrophilic balance of the molecule and, therefore, permits the probe to be 

preferentially located in specific regions of microheterogeneous systems, such as cells. 

LAURDAN has been proven to be especially useful in studies on lipid systems in general 

and on biological membranes in particular.
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At the membrane, the naphthalene moiety of LAURDAN localizes at the bilayer interphase 

below the carbonyl group of the phospholipid, while the lauric acid tail embeds in the 

bilayer (Figure 2A). At this location LAURDAN can sense the presence of water molecules 

having rotational times which are in the range of LAURDAN’s lifetime (nanoseconds).15

Both the number of confined water molecules and their relaxation rates are modified by 

the physical properties of the membrane. As the membrane becomes less organized (more 

fluid), more mobile water molecules can be found near the LAURDAN ring, experiencing 

dipolar relaxation (DR) around the excited LAURDAN, which causes a shift in the emission 

spectrum to lower energy (Figure 2B).

At this point, we would like to define some terminology for the readers: membrane polarity 

sensed by LAURDAN relates to the number of water molecules present in the bilayer, while 

dipolar relaxation (DR) relates to reorientation of their dipoles by rotation, in response to 

the change in LAURDAN’s dipole moment upon excitation. Both terms depend on the 

lipid order. Polarity is a discrete parameter while DR is continuous (time dependent). The 

term “fluidity” is a qualitative general term used to describe the viscosity in the membrane 

(capability of the lipids to flow or rotate), and is determined by the water content, the 

water relaxation and the lipid order of the bilayer. We will see in the following sections 

that depending on the technique used, information on polarity and DR can be obtained 

independently (FLIM) or mixed (GP and spectral phasor). In the latest case, the information 

obtained is related with the general term “fluidity”.

THE GP APPROACH TO MEASURE MEMBRANE HETEROGENEITY

The spectral displacement shown by LAURDAN in synthetic membranes was first studied 

in 1986 following the time evolution of its emission spectrum.16 Quantification of 

LAURDAN’s spectral displacement in cuvette studies was addressed by the generalized 

polarization (GP) function, defined in 1990 by Parassasi et al.17 The GP function is defined 

as

GP = IB − IR
IB + IR

(1)

where IB and IR are the emission intensities observed at wavelengths on the blue and red 

sides of the spectrum, respectively (for example, near 440 nm (blue) and 490 nm (red)).

In 1997, imaging GP on cells was done for the first time using two-photon excitation to 

minimize photobleaching.18 Using two bandpass filters (Ch1 (blue) and Ch2 (red)) the GP 

function at each pixel in the image was calculated (Figure 2C). This method considers a 

model with two extreme molecular environments (gel at 440 nm and liquid at 490 nm) and 

the determination of different environments will be restricted to these two values and the 

linear properties of the GP function.

Using this approach lipid domain segregation in giant unilamellar vesicles (GUVs) made of 

pure lipid mixtures were visualized,19-24 a phenomenon that was predicted but which could 

not be seen in cuvette measurements. For example, Figure 2C shows GUVs made of the 
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raft mixture DOPC/DPPC/CHOL 1:1:1 presenting a coexistence of liquid ordered (orange) 

and liquid disordered (yellow) phases at 15.7 °C. In live cells (Figure 2D), LAURDAN GP 

imaging shows differences in the fluidity of plasma and internal membranes. To study the 

internal membranes, for instance, the nuclear membrane, a second fluorescent marker must 

be used to identify the organelle and use it as a template to isolate the corresponding pixels 

in the GP image.25 To study the plasma membrane, the corresponding pixels may be isolated 

(Figure 2Db) and the pixel distribution histogram (GP histogram) is obtained. The width 

of the GP histogram corresponding to the membrane demonstrates that the membrane is 

rather heterogeneous in nature (i.e., a range of GP values are found in the membrane) but 

the resolution of the GP images is not sufficient to see the structural membrane segregation 

observed in GUVs. GP imaging and the average GP value (the center of the histogram 

of GP values) provide information about changes in membrane fluidity. This technique is 

easy to implement, and the analysis can be done using software such as SimFCS26 and 

available ImageJ routines.27 The GP method allows for rapid data acquisition and analysis 

of several cells, providing good statistics for biological studies with cells in culture.28-30 

The use of GP histograms to account for heterogeneity in terms of raft domains was 

done using the “coverage analysis”.31 In this approach (Figure 2D), the GP histogram is 

resolved into two Gaussians and the two areas with their respective average GP values are 

interpreted as the lo/ld phases. Considering that lo/ld are defined in pure lipid systems in 

equilibrium, a situation not applicable to biological membranes, we interpret this analysis 

as subpopulations of domains with different fluidities (high and low GP populations). The 

coverage approach can be a good complementary analysis to follow changes in fluidity 

domain distributions, due to changes in membrane composition30 or cell interactions.32 

Although there are data from GP experiments in the literature obtained on fixed samples, 

the validity of this approach is limited due to the extreme sensitivity of LAURDAN to the 

membrane physical state and water activity.33

LAURDAN GP AND FLUORESCENCE CORRELATION SPECTROSCOPY: 

ADDITION OF TIME RESOLUTION

LAURDAN and GP imaging can differentiate areas having different fluidities, but the 

spatial resolution is still determined by the optics of the confocal microscope (~300 nm, 

diameter of the point spread function, PSF). To detect nanometric and mobile domains 

in live cell membranes, spatial and temporal resolution must be increased. Our approach 

was to combine the LAURDAN GP technique and the temporal resolution of fluorescence 

correlation spectroscopy (FCS).35,36 Our aim was to detect fluctuations in LAURDAN’s GP, 

which can be related to the mobility of highly packed membrane structures, smaller than the 

PSF in the membrane of live cells.1

FCS37-39 is based on analysis of fluctuations within the PSF volume generated in a 

conventional confocal microscope or by using two-photon excitation.40 The fluorescence 

fluctuations generated by molecules diffusing in and out of the PSF is used to obtain 

information related to the diffusion of the molecules. Autocorrelation analysis41 yields the 

diffusion coefficient (Dcoef) and the concentration of particles in the observation volume, 
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and photon counting histogram analysis42,43 provides the number of fluorophores in the 

observation volume and their intrinsic molecular brightness.44

In the point-FCS approach, the PSF is kept immobile and the information obtained is 

restricted to the volume being illuminated/observed. This configuration, however, may be 

problematic when used with live cells, since cell movement and photobleaching can occur. 

In order to avoid such problems, we used circular scanning-FCS (csFCS). In the csFCS 

method,45 the intensity fluctuations are acquired along a 2D-orbit and they are used to 

create a map or “carpet” (x/y vs time). The csFCS method is useful when the laser 

beam illuminates a precise region such as a biological membrane.45 GP-FCS is done by 

performing circular scanning FCS, using two channels in the detection (Ch1 and Ch2) 

having the traditional GP filters (Figure 3A). The intensity traces from Ch1 and Ch2 are 

used to calculate a GP trace (Figure 3B) and a location versus time map (Figure 3C). In 

this representation, the autocorrelation function is applied to the pixels corresponding to the 

membrane and the diffusion and number of objects passing through the PSF is determined. 

Finally, the experimental autocorrelation function is fitted using the mathematical expression 

for csFCS for diffusion1,35 and the Dcoef together with the number of particles for the 

structures producing the fluctuation are determined (Figure 3D).36,38,46

Two parameters were determined for GP fluctuations in the membranes of erythrocytes 

and CHO cells1 and presented in an xy plot (Figure 3E). Our interpretation of this data 

was based on the question of how big the fluctuating structures should be to accommodate 

the experimental N value (number of particles) inside the PSF of 300 nm, assuming the 

structures as well as the PSF are circular. These fluctuations could be explained by the 

existence of tightly packed microdomains moving in a more fluid background with sizes 

ranging from 20 to 300 nm.1 Several features of these structures were common to the two 

cell types studied: (i) domains of different sizes coexisted in the same cell; (ii) the map of 

Dcoef vs number of structures in both cells types was similar; (iii) incubation of the cells 

with cholesterol acceptor (rHDL) produced the coalescence of small domains into larger 

ones. All these observations support theories stating that assembling/reassembling of these 

structures occurs in live cell membranes and may play a role in biological processes. This 

technique is a very delicate method used to study lipid domains in vivo and addresses 

the dynamics in terms of mobility and supramolecular organization; it requires a robust 

implementation of both data acquisition and data analysis.

FLUORESCENCE LIFETIME IMAGING AND PHASOR ANALYSIS: MORE 

DETAILS ON THE MEMBRANE PROPERTIES (BEYOND THE GP)

Excited state lifetimes have traditionally been measured by either “time-domain” or 

“frequency domain” methods30 (Figure 4A and B). The phasor plot, which can be 

implemented using either time or frequency domain data, was first introduced by Jameson et 

al. as a geometrical representation to illustrate the existence of any single exponential decay 

independently of the lifetime or light modulation frequency.47 The difficulty of traditional 

analyses of lifetimes increases with the number of decay components and the complexity 

Gunther et al. Page 6

Acc Chem Res. Author manuscript; available in PMC 2021 October 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of the analysis is further amplified when one seeks to analyze a lifetime image from a 

biological system, which may be highly heterogeneous.

The use of phasors in fluorescence was relatively dormant until the early part of the twenty

first century when phasors began to be applied to fluorescence lifetime imaging microscopy 

(FLIM). The first to suggest “phasor-type plots” for use in FLIM were Clayton et al.,48 

whose point was to resolve two lifetime components in a FLIM image. Other laboratories 

also made use of “phasor-type plots”, naming them AB plots49 or polar plots,50 but the 

first use of the modern phasor-FLIM approach for cell work was from the Laboratory for 

Fluorescence Dynamics.51,52

For phasor analysis, experimental data (acquired by either frequency or time domain) are 

transformed into coordinates “x” (G component) and “y” (S component) of the phasor plot. 

The equations for this transformation were first presented by Weber.53 In the frequency 

domain, the phasor plot transformation can be done using the following notations.

G = M cos ϕ (2)

S = M sin ϕ (3)

For time domain data the following transformations are used:

G = ∫
0

T
I(t) cos(nωt) dt ∕ ∫

0

T
I(t) dt (4)

S = ∫
0

T
I(t) sin(nωt) dt ∕ ∫

0

T
I(t) dt (5)

where n and ω correspond to the harmonic number and the angular modulation frequency of 

the excitation, respectively. With a pulsed excitation source, ω is equal to 2π/T, where T is 

the period of the pulses.

Using eqs 2, 3 or 4, 5, the fluorescence decay at each pixel of a FLIM image is phasor 

transformed (Figure 4C) and placed in a phasor plot (Figure 4D). In this type of plot, the 

perimeter of the semicircle is known as the “universal circle” and all single exponential 

lifetimes must fall somewhere on this semicircle. As the lifetime increases, the position on 

the “universal circle” moves anticlockwise from τ = 0 at (1,0) to τ ~ ∞ at (0,0). The position 

of the phasor on the universal circle depends on the modulation frequency of the excitation 

light. Perhaps the most relevant properties of the phasor transformation are the principles 

of linear combination and reciprocity. The linear combination refers to the possibility to 

geometrically resolve the proportions of two fluorescence species (in the simplest case) by 

the lever rule of vector additions.54 By noting the position of each of the two components 

or by obtaining higher harmonics and resolving the equations, it is possible to elucidate the 

fraction of both components, Figure 4D. The reciprocity principle is due to the connection 

between the real and imaginary space, in which it is possible to locate regions of interest 
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(using the cursor) in the phasor plot and highlighting those pixels in the image, and vice 

versa. This is exemplified in Figure 4C.

This graphical representation of the FLIM images is a useful framework to interpret and 

analyze any possible fluorescence decay without previous assumptions, fittings or models, 

and is a powerful tool to visualize the enormous amount of data obtained in FLIM. The 

phasor plot approach to FLIM has been used in numerous different applications such as 

studies of ions in cells,55,56 proteins conformation in vitro57 or quantitative biology58 and a 

detailed discussion of the method and modern software was recently published.59

Application of the FLIM phasor approach to LAURDAN fluorescence in membranes of 

live cells was introduced by Golfetto, Hinde, and Gratton in 2013.60 As stated earlier, the 

fluorescent properties of LAURDAN may change due to the polarity of the environment 

and also due to dipolar relaxation of water molecules around the LAURDAN dipole 

during the emission lifetime.61-64 Independent phasor analysis of two simultaneous FLIM 

images, obtained through different bandpass filters, allows the evaluation of these two 

properties separately. The blue channel is used to evaluate the polarity, and the green 

channel to observe dipolar relaxation (DR).60,62,65,66 By monitoring the decay through the 

two bandpass filters (the GP filters), we can isolate LAURDAN information from different 

environments: the blue channel refers to LAURDAN where no relaxation occurs and the 

green channel where DR take place.

Figure 5 shows an example of this methodology to study the effect of H2O2 in NIH-3T3 

cells.3 The phasor plot for the blue and green channels (left panel) shows a cluster of phasors 

originating from the plasma membrane of control and treated NIH-3T3 cells. Treated cells 

showed decreased polarity and higher dipolar relaxation as compared with the control. By 

analyzing the fractional histograms for the blue and green channels one may quantify the 

results (right panel). In this analysis, we used a three components approach developed to 

obtain information independently from each of the dimensions (polarity and DR). FLIM 

phasors may provide valuable information on membrane heterogeneity at the molecular 

level. FLIM is available in some commercial microscopes but like all precise techniques, it 

needs a robust implementation of data acquisition and analysis.

THE SPECTRAL PHASOR SPACE FOR LAURDAN ANALYSIS2,67,68

With the advent of hyperspectral imaging, new avenues opened for analysis of the spectra 

of solvatochromic probes like LAURDAN. A spectral image is composed of a series of 

images obtained simultaneously at different wavelength ranges in the emission spectra. The 

resultant spectral image contains the full spectrum in each pixel. Spectral phasor analysis is 

the transformation of the spectral image, pixel-by-pixel, into Fourier space, by calculating 

the real and imaginary components called G and S according to the following equations

x coordinate = G(λ) =
∫λmin

λmaxI(λ) cos 2πn(λ − λi)
λmax − λmin

dλ

∫λmin
λmaxI(λ) dλ

(6)
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y coordinate = S(λ) =
∫λmin

λmaxI(λ) sin 2πn(λ − λi)
λmax − λmin

dλ

∫λmin
λmaxI(λ) dλ

(7)

I(λ) represents the intensity at every wavelength, n is the harmonic number, and λi is 

the initial wavelength. After this transformation, the (G, S) pair is plotted in a polar plot, 

the spectral phasor67 (Figure 6A). Phasor analysis applied to spectra shares analysis tools 

with phasor analysis applied to lifetimes: linear combinations, additivity, reciprocity, etc. 

However, a very important difference from the lifetime phasor plot is that the universal 

circle in the spectral phasor plot does not have any physical meaning. In the spectral phasor, 

the four quarters and the circle with 1 unit radii enclose all the possible positions for the 

phasors. It is important to mention that to compare different spectra, using spectral phasor 

analysis, the same wavelength range must be used.

Spectral phasor analysis applied to LAURDAN has a very important difference compared 

to LAURDAN GP analysis. The GP analysis considers a linear GP range to describe the 

heterogeneities of a system and any component outside of this linear GP range will not 

be considered. The spectral phasor analysis overcomes this issue by transforming the full 

spectrum into polar coordinates. The method is model-free and allows for the analysis of 

different spectral signals and the relationship among them, for instance LAURDAN and 

autofluorescence.

Figure 6B-D shows the use of this methodology in three selected examples of increasing 

complexity. The first (Figure 6B) shows a tridimensional spectral phasor analysis of a 

GUV composed of dioleoylphospatidylcholine, DOPC; sphingomyelin, SM; and cholesterol; 

1:1:1 molar, labeled with LAURDAN. Visual examination of the corresponding phasor plot 

shows a phasor cluster aligned between the straight line defined by the reference phasors 

corresponding to lo (liquid ordered) and ld (liquid disordered) pure phases. This observation 

indicates the presence of two molecular environments (the lo and ld) in the GUV and regions 

where the two components are mixed with different fractions. In a 3D view, it is possible to 

identify micrometer size liquid order domains in the GUV surrounded by a liquid disorder 

membrane.69

In natural membranes, the scenario is more complex. First, the concept of lo/ld can be used 

as a reference point for the phasor location; however, the complexity of cellular membrane is 

far from the conditions where lo/ld are defined in pure lipids. Second, the spatial resolution 

of the spectral phasor analysis (which depends on the confocal microscope) does not 

allow us to observe the nanometric lipid domains postulated for natural membranes (below 

the PSF). However, phasors from areas in the membrane where nanodomains and fluid 

regions coexist will locate, in the phasor plot, between the linear combination of “pure” 

nanodomains and fluid regions and that location in the plot is related to the fractional 

contribution of each component. The example in Figure 6C shows the spectral image 

analyzed for NIH-3T3 cells labeled with LAURDAN. Visual inspection of the data, without 

assuming a model, shows a cluster of phasors organized along a line, which indicates the 
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linear combination between two surrounding environments for LAURDAN (red and blue 

cursors). Phasor points in the middle of this distribution correspond to pixels with different 

fractions of order and fluid (green cursor) components. By using the cursor selection tool, it 

is possible to identify regions with different physical characteristics, for instance blue pixels 

are associated with ordered regions in the plasma membrane. Quantification of the number 

of pixels having different order allow to follow the dynamics of the lipid domain under 

certain stimulus.29

Finally, one very powerful application of the spectral phasor analysis is the three-component 

analysis, designed to study membrane dynamics and membrane proteins simultaneously. As 

an example, Figure 6D shows the analysis of LAURDAN in Hek-293 cells expressing the 

human full-length mutant huntingtin protein (mHTT) with 97 polyQ genetically encoded 

with mRuby (97polyQ-mRuby).70 In this case, three references were used: two for fluidity, 

lo–ld trajectory for LAURDAN (first and second component), and one for mRuby protein 

fluorescence (third component). Using the three-component analysis,71 the fraction of each 

component can be obtained separately even if two signals are present in a single pixel. In 

the phasor plot corresponding to the membrane of cells expressing the 97polyQ protein, one 

can observe a shift in the LAURDAN fluorescence toward the ld component, indicating a 

relation between the more fluid areas in the membrane and the protein. This experimental 

design can be applied to relate specific membrane molecular markers with membrane 

fluidity domains (Figure 6D).

The advantages of spectral phasors to study live cells rely on the versatility of the method 

which allows the design of unique analyses depending on the complexity of the system.67,72 

From the technical point of view, several commercial instruments allow for acquisition 

of spectral images, and there are different options for software analysis (SimFCS26) and 

ImageJ routines.27,73

FINAL REMARKS

Having known Gregorio Weber, we are sure that when he synthesized LAURDAN, he 

visualized its potential for membrane studies. This Account describes advances in the 

interpretation and use of LAURDAN for detecting membrane fluidity or, more properly, 

water dipolar relaxation rates around the excited LAURDAN dipole. Using the phasor 

method, we can build continuous parameters (indices) in a more complete form than offered 

by the two-state model implicit with the GP concept, which is critical for understanding 

complex microenvironments such as cells experiencing different conditions or in animals.
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Figure 1. 
(A) Chemical structure of LAURDAN and PRODAN. (B) Emission spectra of LAURDAN 

in different solvents with increasing polarities (from left to right: hexane, benzene, 

chloroform, acetonitrile, and ethanol). (C) Perrin–Jabłoński diagram for 6-alkyl-2-dimethyl 

amino naphthalene, showing the ground state and the first singlet excited state. Excitation 

results in an increase in charge separation and hence an increase in the magnitude of the 

fluorophore’s dipole moment, which then induces relaxation of the solvent dipoles.
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Figure 2. 
LAURDAN generalized polarization. (A) LAURDAN location at the membrane interphase. 

(B) LAURDAN spectra in gel (~440 nm) and liquid (~490 nm) phases. Red arrows represent 

LAURDAN in the membrane, and blue spheres represent the water molecules. (C) GP 

image obtained using two channels observed through bandpass filters (Ch1 and Ch2). 

DOPC/DPPC/CHOL 1:1:1 GUV showing coexistence of liquid ordered (orange) and liquid 

disordered (yellow) phase separation at 15.7°C. (D) GP analysis of HeLa cells incubated 

with LAURDAN at 37°C: (a) GP image for a HeLa cell, (b) pixels corresponding to the 

plasma membrane, and (c) GP histogram of the pixels from the membrane. (d) GP average 

analysis used to follow cholesterol removal.34 The GP center is used to compare control and 

treated cells. (e, f) Same data analyzed by GP coverage. The GP histogram is resolved into 

the two best Gaussians; center and area are used to create the coverage plot (f).
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Figure 3. 
LAURDAN GP and scanning FCS. (A) Scanning FCS in rabbit red blood cells stained with 

LAURDAN at 37 °C with laser scanning in a circular pattern. (B) Two channels (440 and 

490 nm) were acquired to obtain the GP trace. (C) GP trace data were transformed in an 

x–y representation (each orbit over time). Locations corresponding to the membrane were 

analyzed by autocorrelation giving G(0) and diffusion coefficient Dcoef (μm2/s) for several 

red blood cells. (D) Autocorrelation analysis. (E) Plot of G(0) versus Dcoef, showing the 

structures responsible for the fluctuations with sizes of 300, 75, and 25 nm.
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Figure 4. 
Schematic representation of the phasor FLIM analysis: (A, B) Lifetime measurements using 

the time and frequency domain method, respectively. (C) For the phasor transformation, the 

phase shift, ϕ, and relative modulation, M, are used to obtain the x-axis (G) and y-axis (S) 

of the phasor plot. Single exponential decays fall on the universal circle (orange semicircle). 

(D) In a FLIM image (represented as a 3 × 3 image in the inset), the decay from each pixel 

maps to a single point in the phasor plot. Multiexponential decay phasors are located inside 

the universal circle (represented by the shaded circles). The linear combination property 

allows one to obtain the fraction of each component (as represented in figure D). The 

reciprocity principle (gray arrow) enables one to connect the intensity image and the phasor 

plot data. The cursors (blue, cyan, and red) are valuable tools to select a region of interest in 

phasor plot and then trace back to where these pixels, selected by the cursors, are located in 

the image.
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Figure 5. 
FLIM phasor three component analysis for the effect of H2O2 in NIH-3T3 cells. H2O2 

treated versus nontreated cells were compared. (A) Analysis for the blue channel. A color 

palette for the polarity-axis was used to obtain the corresponding figures (middle panel) and 

histogram of polarity fraction (right panel). (B) Analysis for the green channel. Images were 

generated using the coloring scheme shown in the phasor plot for the dipolar relaxation axis 

and the histogram for the dipolar relaxation enables quantification of the effect of H2O2 

(right image). For both analysis cell images were masked to analyze pixels from the plasma 

membrane. lo and ld refer to liquid order and liquid disorder environments, respectively. We 

note that dipolar relaxation may bring phasor points outside of the universal circle due to the 

additional phase shift.
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Figure 6. 
Spectral phasor analysis. (A) Spectral phasor represents spectra as vectors of length (M) and 

with phase (ϕ), which are related to the spectrum λmax and width. As the spectrum λmax 

increases, the phasor moves counterclockwise from position (1,0) 2π (phase increases). 

Increase on spectrum width moves the phasor closer to the center (modulation decreases). 

(B) 3D Spectral phasor analysis of a GUV (DOPC/SM/cholesterol; 1:1:1 molar) labeled 

with LAURDAN. The black and grays dots correspond to the position obtained for solid 

order (lβ), liquid order (lo), and liquid disordered (ld) phases. Using the cursor selection, the 

GUV is colored. (C) Phasor plot analysis for live NIH-3T3 cells labeled with LAURDAN. 

Cursor selection generates the phasor color image on the left. (D) Three-component 

analysis. LAURDAN and mRuby protein spectra define the LAURDAN trajectory in a three 

component triangle. The inserted color palette was used to color the intensity images of 

Hek-293 control and expressing 97Q-mRuby according to the phasor distribution.
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