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Abstract

Temporal complexity refers to qualities of a time series that are emergent, erratic, or not 

easily described by linear processes. Quantifying temporal complexity within a system is key 

to understanding the time based dynamics of said system. However, many current methods of 

complexity quantification are not widely used in psychological research due to their technical 

difficulty, computational intensity, or large number of required data samples. These requirements 

impede the study of complexity in many areas of psychological science. A method is presented, 

tangle, which overcomes these difficulties and allows for complexity quantification in relatively 

short time series, such as those typically obtained from psychological studies. Tangle is a measure 

of how dissimilar a given process is from simple periodic motion. Tangle relies on the use of 

a 3-dimensional time delay embedding of a 1-dimensional time series. This embedding is then 

iteratively scaled and premultiplied by a modified upshift matrix until a convergence criterion is 

reached. The efficacy of tangle is shown on five mathematical time series and using emotional 

stability, anxiety time series data obtained from 65 socially anxious participants over a five-week 

period, and positive affect time series derived from a single participant who experienced a major 

depression episode during measurement. Simulation results show tangle is able to distinguish 

between different complex temporal systems in time series with as few as 50 samples. Tangle 

shows promise as a reliable quantification of irregular behavior of a time series. Unlike many other 

complexity quantification metrics, tangle is technically simple to implement and is able to uncover 

meaningful information about time series derived from psychological research studies.
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Many natural systems exhibit dynamic change over time. From physical phenomena such 

as the formation of stars, to biological and behavioral phenomena impacting the day-to-day 

lives of individuals, things change. In order to fully understand such phenomena, it is not 

only imperative to understand that these systems change over time, but to also understand 

how these systems change over time (Brown et al., 2002; Z. Liu, 2010). While some systems 

change over time in relatively simplistic and predictable ways, other systems exhibit more 

complicated time dependent behaviors (Bak & Paczuski, 1995; Lorenz, 1963). That is to 

say, different natural processes exhibit different amounts of complexity in the ways in which 

such processes change over time. Understanding complexity of change is therefore crucial to 

understanding and making valid inferences regarding a given system (Abarbanel, 2013).

Researchers across multiple disciplines have attempted to understand temporal complexity 

in different ways (e.g., W. Chen, Zhuang, Yu, & Wang, 2009; Efatmaneshnik & Ryan, 

2016; Flood, 1987; Peitgen, Jürgens, & Saupe, 1992). Although there are many definitions 

of complexity, what appears to be common across these definitions is an overarching 

relationship between complexity and self-organization, dimensional scaling, non-linearity, 

and determinism within a system. Self-organization refers to the behavior of some systems 

to organize into larger, sustainable groups that in themselves act as a singular unit (e.g., 

flocks of birds, schools of fish, or neurons in a brain), or for systems to structure themselves 

in such ways as to reach meaningful and sustainable equilibria (Odum, 1988). Dimensional 

scaling or fractal-like behavior refers to changing qualities of a system when observing 

that system on different scales, and how changing the dimensional scale of a system may 

also change the behavior of said system (e.g., the length of coastlines, political leanings 

of countries versus. cities versus people, or daily fluctuations in temperature versus yearly 

weather patterns) (West, 1999). Nonlinear and chaotic behavior characterizes qualities of a 

system that do not grow or change in linear increments, or that show sensitive dependence 

on initial condition (Theiler, Eubank, Longtin, Galdrikian, & Farmer, 1992). Examples of 

nonlinear and chaotic behavior include bifurcations, non-stationary behavior, and systems 

showing other multiplicative or exponential components (e.g., changes in the physical states 

of matter, the growth rates of humans over their lifespans, or attempting to balance a 

sharpened pencil on its tip). Determinism versus randomness within a system can be thought 

of as the interplay between components of a system that do not deviate from underlying 

rules governing said system, and components of a system that are noise or are purely 

probabilistic in nature (e.g.,all humans need water [determinism], although the quantity and 

quality of water that an individual drinks on a given day can be described by a probability 

distribution [randomness]) (Bassingthwaighte, 1988). Though not necessarily an umbrella 

term for these qualities, complexity as a concept is deeply linked to the interplay between 

these (and assuredly more) dynamic and universal qualities of nature. As such, complexity 

theory has been applied to aid in understanding the behavior of systems studied in many 

scientific disciplines.
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Applications of Complexity Theory

Recent methodological and technological advances in data collection have allowed 

researchers in many scientific disciplines to begin collecting the necessary time series data 

needed in order to understand complexity within the time-based dynamics of their respective 

systems. For example, biological systems such as the human heart have been shown to 

display fractal-like behavior in time. Iyengar, Peng, Morin, Goldberger, and Lipsitz (1996) 

have shown that fractal scaling behavior is consistent in the interbeat intervals of hearts 

in healthy young individuals, but this consistency was not displayed in older individuals. 

This can be thought of as a decrease in the underlying complexity of interbeat intervals 

of heart rates as individuals age. Furthering this point, Mäkikallio et al. (2001) found that 

individuals with smaller short-term fractal exponents of heart rate variability (HRV), and 

thus less complexity in HRV, had a significantly lower 10-year survival rate compared 

to those individuals with larger short-term fractal exponents of HRV. These findings are 

unsurprising as the human heart is a system regulated by many different components. Each 

regulatory component can be thought of as adding a little more complexity to the behavior 

of human hearts. A decline in this complexity may then be indicative of a decline in the 

effectiveness of these regulatory components (Iyengar et al., 1996).

Complexity is also studied in fields such as ecology and economics. Garcia Martin and 

Goldenfeld (2006) showed how a power-law describes the self-organization of a species 

within a given area. Such power-law distributions have also been shown to describe 

economic phenomena. Gabaix, Gopikrishnan, Plerou, and Stanley (2003) ran a large 

analysis of more than 30-million stock transactions and found that an inverse-cube power-

law, known to adequately model U.S. markets, was able to model market transactions 

in other markets as well. Similar self-organization behavior has also been observed in 

chemistry (e.g., the Belousov—Zhabotinsky reaction) and in electrical blackout propagation 

in major cities (Dobson, Carreras, Lynch, & Newman, 2007; Petrov, Gáspár, Masere, & 

Showalter, 1993). In neuroscience research, complexity manifesting as non-linearity and 

chaotic behavior is central to many models of neuron spiking such as the FitzHugh–Nagumo 

model, the Hodgkin-Huxley model, and the Hindmarsh–Rose model (FitzHugh, 1961; 

Hindmarsh & Rose, 1984; Hodgkin & Huxley, 1952). Given complexity’s breadth of impact 

across many fields of study, complexity is unlikely to be rare, but is likely to be central to 

many common phenomena in nature.

Complexity in Behavioral Science and Mental Health Research

Concepts from complexity theory have also influenced behavioral science and mental health 

research. It may be difficult to characterize humans as anything other than complex systems. 

Human social groups from friendship circles to large societies show self-organization 

patterns, the behaviors of individual humans may show nonlinear/chaotic properties, and 

human communication patterns show fractal-like behavior (Ashenfelter, Boker, Waddell, & 

Vitanov, 2009; Barton, 1994; Lanham et al., 2013).

In modeling these complexities, researchers are able to gain insight into human systems 

in ways not admissible by more common mathematical and statistical methodologies. For 
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example, D. Chen, Lin, Chen, Tang, and Kitzman (2014) found a relationship between an 

individual’s cognitive ability and grip strength to follow the behavior of a cusp catastrophe, 

a type of bifurcation occurring in more than 1 dimension. Galea, Hall, and Kaplan (2009) 

found that a simple complex adaptive system model could replicate human drug purchasing 

behaviors. More recently, multiple researchers have begun modeling mental disorders 

as complex networks of associations with relatively high rates of comorbidity between 

disorders (Borsboom, 2017; Fried et al., 2017; Wigman et al., 2015). These findings are due 

to an increase in technical and computational methodologies allowing researchers to easily 

quantify complexity within human systems over time.

Quantifying Time Series Complexity

Researchers seeking to quantify complexity within their respective areas of study 

have relied on many mathematical, computational, and statistical techniques to model 

complexity over time. As complexity is a diverse and broad concept, so are the means of 

quantifying complexity. Researchers have attempted to quantify complexity using methods 

from information theory (e.g., approximate entropy), network modeling, and attractor 

reconstruction through dimensional embedding to name a few. Each of these methods 

quantify complexity in different ways, which may lead to different results.

Information theory.

Perhaps the most widely used method for quantifying complexity is through information 

theory. Metrics of time series complexity arising from information theory center around 

calculations of entropy within a system H (X),

H(X) = ∑
i

N
p xi log2 p xi , (1)

and mutual information between systems I (X; Y),

I(X; Y ) = H(X) − H(X ∣ Y ) . (2)

Here, p(xi) is the probability of observing a given event or discrete value in from a 

given signal X. H(X) is maximized when the distribution of pi is uniform, representing 

a system in its most entropic state. H(X) is minimized when pi tends to 1 or 0, representing 

certainty in the existence (or nonexistence) of a discrete value. When H(X) is conditional on 

additional information from an additional signal Y, represented as H(X |Y), this parabolic 

relationship also holds. I(X; Y) then represents the amount of entropy accounted for in 

signal X by knowing signal Y. Entropy may be conceptualized as the amount of disorder or 

randomness within a system, while mutual information can be thought of as the reduction 

of disorder in a system once new information, Y, is taken into account. Information metrics 

seeking to quantify complexity tend to rely on comparisons of entropy between two or 

more systems, information gain/loss between systems, or disorder within a system (X. Liu, 

Jiang, Xu, & Xue, 2016; Pincus, Gladstone, & Ehrenkranz, 1991). Time series complexity 
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quantification methods arising from information theory then define complexity as either 

entropy or changes in entropy over time.

Network analysis.

Due to increases in computational power, network analysis is becoming a popular method 

for quantifying time series complexity (Epskamp, Waldorp, Mõttus, & Borsboom, 2018; 

Marwan, Donges, Zou, Donner, & Kurths, 2009). Researchers using network analysis seek 

to model systems as individual units (nodes) that have some connection (edges) to other 

units. Network modeling can be generally divided into two distinct areas: social network 

analysis, modeling connections between discrete units such as people, and networks that 

estimate the connections between sets of variables. In either area, the structures formed 

once these connections are estimated/defined may then be used to quantify complexity and 

dynamics between units and over the entire network (Watts & Strogatz, 1998). Complexity 

quantification in the network analysis framework then focuses on complexity of structure 

and relationships between units. It should be noted that network analysis is not mutually 

exclusive to information theory as a means for quantifying complexity and information 

theory metrics may be used to define the connections in a network.

Dynamic metrics and dimensional embedding.

Another means of complexity quantification is the use of dynamic and nonlinear metrics 

derived from dimensional embedding of a time series (e.g., fractal dimension estimates, 

maximum Lyapunov exponents, and recurrence quantification analysis) (Theiler, 1990; 

Trulla, Giuliani, Zbilut, & Webber, 1996; Wolf, Swift, Swinney, & Vastano, 1985). 

Dimensional embedding is a method for mapping a set from one dimensional area to 

another. A given set existing in some dimension, D, can be mapped/projected to a lower 

dimension for the purposes of increasing ease of understanding, data aggregation, or 

latent variable construction (Golino & Epskamp, 2017; Kambhatla & Leen, 1997). A set 

can also be mapped/projected into higher dimensions in order to reconstruct phase space 

dynamics, and under certain conditions, the attractor of a system (Takens, 1981). Temporal 

complexity metrics, such as those obtained through recurrence quantification analysis, rely 

on embedding a 1D time series into a >1D space in order to understand patterns in the 

dynamics of said time series. Temporal complexity metrics derived from high dimensional 

embedding can be interpreted as measuring complexity in the underlying dynamics of a 

system. That is, complexity quantification from dimensional embedding gives information 

dealing with how the trajectory of a time series changes over time.

Challenges in Complexity Quantification in Applied Research

While temporal complexity quantification methods may give researchers unique insight into 

their respective areas of study, technical difficulties in implementing and understanding 

temporal complexity quantification methods reduce the widespread use of these methods by 

researchers in behavioral science and mental health research. For instance, perhaps the two 

most studied metrics for describing a given continuous distribution of data are sample mean 

and sample variance. These metrics are taught in elementary statistics courses and are the 
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basis for most linear analyses (e.g., analysis of variance and linear regression). Metrics 

derived from complexity theory however tend to be more mathematically complicated 

and do not lend themselves to being as intuitively understood. While simplistic, means 

and standard deviations alone may be sufficient to gain some meaningful insight into the 

underlying dynamics of a given system (Dejonckheere et al., 2019).

However, this is not true for all cases. In fact, it may not be true for most. For example, 

consider a time series, Xsine, which is 10,000 equally spaced samples of a sine wave with 

a frequency high enough to show between 5 and 10 peaks and troughs. Let mean(Xsine) = 

0 and sd(Xsine) = 1. Now consider a second time series, Xrand, which is 10,000 samples of 

random Gaussian noise with mean(Xrand) = 0 and sd(Xrand) = 1. Any method using means 

and standard deviations of each series alone would be unable to distinguish between these 

two series, even though a simple visual inspection would show obvious differences. Unlike 

means and standard deviations, complexity metrics such as fractal dimension would be 

able to distinguish between these series (Gneiting, Ševčíková, & Percival, 2012). Although 

useful, calculating fractal dimension of a time series (like many other complexity metrics) is 

generally more difficult compared to the calculation of a mean or standard deviation.

Further, it may be difficult to obtain data of sufficient quality as is needed by most current 

complexity metrics. Sources of error and noise are quite common in data obtained from 

research on human participants and error may impact the estimation of a given complexity 

metric. For instance, metrics of structure obtained from social network analysis may be 

biased when derived from data with poor signal:noise ratios (Thomason, Coffman, & 

Marcus, 2004). Even methods that can accurately calculate complexity metrics in the 

presence of signal:noise ratios like those observed in behavioral science and mental health 

data require a large number of data points (H.-F. Liu, Dai, Li, Gong, & Yu, 2005; 

Rosenstein, Collins, & De Luca, 1993; Wornell & Oppenheim, 1992). Time series data 

seen in behavioral science and mental health data, aside from physiological measurements, 

tend to be relatively short and quite noisy. That is, time series common in psychological 

and behavioral studies tend the be less than 100 total observations and have relatively small 

ratios of true variation to variation due to measurement error (< 5:1 signal to noise ratios). 

Much of the data obtained from ecological momentary assessment (EMA) and ambulatory 

assessment studies have substantial noise components, have missing data, and only tend to 

be a few hundred observations at best, to less than 10 at worst (Haedt-Matt & Keel, 2011a, 

2011b; Versluis, Verkuil, Spinhoven, van der Ploeg, & Brosschot, 2016; Wen, Schneider, 

Stone, & Spruijt-Metz, 2017). Researchers interested in modeling complexity of these data 

require a complexity metric that gives valid inference on some aspect of complexity even in 

relatively short time series data with noise components.

With this in mind, we present a new method for quantifying complexity based on a 3D 

embedding of a 1D time series. This new method, tangle, relies on a 3D embedding of a 

time series and is a quantification of how erratically a short time series moves throughout 

this space. Tangle is a measure of how difficult it is to transform some reconstructed shape 

in a space into an ellipse, or equivalently, how difficult it is to turn a time series into a simple 

periodic function. Of note, we show that tangle may be appropriate for short time series such 

as those obtained in behavioral science and mental health research. The remainder of this 
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article focuses on the mathematical derivation of tangle as a complexity quantification and 

provides examples of tangle on both simulated mathematical time series and on real-world 

mental health data. We then discuss limitations of tangle and conclude with closing remarks.

Method

One possible way of studying a time series is through studying its attractor. An attractor 

of a time series can be thought of as a manifold/shape in some dimension that represents 

the long-term behavior of that time series. This shape, if traced and then moved over time, 

would reconstruct the original time series. For example, an ellipse is the attractor of a sine 

wave. If one were to begin drawing the shape of an ellipse on a sheet of paper and then 

move that paper in one direction, the resulting tracing would be a sine wave. All of the 

dynamics of the sine wave are captured in the shape of the ellipse. This property of attractors 

generalizes to any bounded time series (Takens, 1981).

Unlike sine waves, many dynamical systems have more complicated attractor structures. 

These more complicated attractors may still show regular patterns such as the Lorenz 

attractor or Rössler attractor, Figure 1a - 1b. However, other attractors including those 

obtained from behavioral data do not show such visual consistency, Figure 1c. This is 

due to the complex and often erratic nature of behavioral time series as time series move 

through phase space. While this erratic behavior may seem in stark contrast to the regularity 

and beauty seen in attractors from purely theoretical mathematical systems, it is this very 

behavior that is the basis for the new complexity metric proposed in the current article. 

We will refer to this metric as tangle, referencing the tendency of attractors reconstructed 

from behavioral time series to appear as tangled webs or strings. Tangle is a measure 

of how erratically a time series traces its phase space relative to simple periodic motion, 

quantifying complexity of phase space trajectories across a measured length of time. Tangle 

accomplishes this by an iterative “untangling” process. This process iteratively forces any 

low dimensional phase space reconstruction into an ellipse, thereby untangling the phase 

space reconstruction into an ordered system. Complexity is then defined by tangle as the 

difficulty in forcing a phase space reconstruction into an ellipse. Similar to the behavior of 

a physical string that has become tangled in itself, the difficulty of untangling an attractor is 

indicative of the original complexity of the tangled system.

Mathematical Background

Dimensional embedding.—Given a time series X = x1, x2, …, xi , i ∈ 1, 2, …, T , of 

sufficient length and sampled at equal intervals from some continuous process, an attractor 

may be reconstructed based on a D dimensional time delay embedding of this time series at 

some constant time lag, τ (Takens, 1981). We will denote this embedding matrix asϕDτ(X),

ϕDτ(X) =

x1 x1 + τ … x1 + τ(D − 1)
x2 x2 + τ … x2 + τ(D − 1)
⋮ ⋮ ⋱ ⋮

xi − τ(D − 1) xi − τ(D − 2) … xi

. (3)
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This reconstructed attractor from discrete samples is a topologically consistent 

diffeomorphism of the associated attractor of a sampled continuous system. That is, an 

attractor can be reconstructed from discrete samples of a continuous process such that the 

reconstructed attractor is a smooth functional transformation of the attractor underlying 

the associated continuous process. This smooth transform preserves many qualities of the 

continuous attractor and it is generally accepted that many qualitative inferences obtained 

from a reconstructed attractor also hold true for its associated continuous time attractor, 

even in the presence of noise (Yap, Eftekhari, Wakin, & Rozell, 2014). In practice, D may 

be estimated by methods such as those proposed by Cao (1997) and Kennel, Brown,and 

Abarbanel (1992), and τ may be estimated through minimization of average mutual 

information or autocorrelation between Xi and Xi+τ or through the C-C method (Cao, 1997; 

Kennel, Brown, & Abarbanel, 1992; Kim, Eykholt, & Salas, 1999). Though many methods 

of estimating an optimal D may give vastly different values, the value of D generally does 

not influence qualitative inferences derived from attractor reconstruction and dimensional 

embedding as long as D is sufficently large. (Aleksić, 1991; Kantz, 1994; Small & Tse, 

2004).

Iterative untangling and scaling.—Matrix ϕDτ(X) now represents a reconstructed 

attractor in some D dimensional space, preserving qualities up to homeomorphisms of 

the underlying continuous time attractor. That is, ϕDτ(X) behaves qualitatively similar to 

the underlying continuous time attractor, but guarantees conservation of only topological 

structure and not geometric structure (Yap et al., 2014). Thus, metrics relying on topological 

structures (i.e., global structure of an attractor), or change in topological structure, remain 

unaffected by attractor reconstruction.

One way of changing the topological structure of a given manifold is through use of a 

shift matrix. A shift matrix, S, is a singular matrix used to shift the position of elements of 

another matrix into new rows and columns. For example given S and an arbitrary matrix A

S =

0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

, A =

1 5 9 4
2 6 1 5
3 7 2 6
4 8 3 7

, (4)

S can be used to modify the position of elements within A:

SA =

2 6 1 5
3 7 2 6
4 8 3 7
0 0 0 0

, SSA =

3 7 2 6
4 8 3 7
0 0 0 0
0 0 0 0

. (5)

Of note is that once S multiplied by any A, SA or AS can not be mathematically converted 

back into A due to information loss. For example, there are infinitely many matrices that 
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A in the example above could be before being transformed into AS, as any other matrix 

sharing rows 2, 3, and 4 of A would also yield AS.

Elmachtoub and Van Loan (2010) showed how a modified shift matrix, known as an upshift 

matrix, Su, can be used to create an averaging matrix M : M = (Su +1)/2. This averaging 

matrix can be used to average successive elements of columns of another matrix.

For example:

Su =

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

, MA =

3
2

11
2

10
2

9
2

5
2

13
2

3
2

11
2

7
2

15
2

5
2

13
2

5
2

13
2

12
2

11
2

. (6)

Premultiplication of matrix M averages successive column values of arbitrary matrix A. If 

A is an m × 2 matrix, then the columns of A represent coordinates of vectors representing a 

polygon, P, in some 2D space. Iterative premultiplication of M will result in P converging to 

a point in that space (Elmachtoub & Van Loan, 2010). By scaling A at each iteration (e.g., 

dividing each column of A by its euclidean norm) and also centering each column of A at 0, 

P will not converge to a point, but will unfold into an ellipse, no matter the initial shape (or 

indeed the dimension) of P (Elmachtoub & Van Loan, 2010).

Quantifying tangle—Tangle relies on the fact that ϕDτ(X) is essentially a D dimensional 

polygonal representation of the smooth manifold of an underlying continuous attractor. 

Thus, by iterative premultiplication of ϕDτ(X) with M, ϕDτ(X) will tend to an ellipse in 

phase space. An ellipse in phase space is identical to a regular periodic function across 

time. By counting the number of iterations required to transform ϕDτ(X) into an ellipse, a 

quantification of complexity of ϕDτ(X) can be derived. In this way tangle is a direct measure 

of how much more erratic and complex a system is relative to simple periodic behavior.

Let S(·) be a centering and scaling function on ϕDτ(X), centering each column at 0 and 

dividing each column by its euclidean norm. Let ϕDτ
1 (X) be defined as:

ϕDτ
1 (X) = MS ϕDτ(X) , (7)

and

ϕDτ
K (X) = MS ϕDτ

K − 1(X) (8)
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Here K is a count of the number of times ϕDτ(X) has been premultiplied by M. K is finalized 

when ϕDτ(X) forms an ellipse in phase space. There exists a number of principled ways of 

determining when transformation into an ellipse occurs. We consider the convex hull as a 

proper stopping rule, though a difference in distance (e.g., the normalized l2-norm) between 

all elements of ϕDτ
K (X) and of a downshifted ϕDτ

K − 1(X) less than some small threshold value 

may also be used.

Stopping rule.—The convex hull, Conv(·), of an arbitrary matrix A, is the set of all points 

in A such that all other points in A are contained within Conv(A). See Figure 2 for an 

example. As convex hull calculations are common in computer generated imaging, there 

exists many computationally simple convex hull calculation algorithms (e.g., Avis, Bremner, 

& Seidel, 1997; Barber, Dobkin, & Huhdanpaa, 1996; Eddy, 1977; Graham & Frances Yao, 

1983; Kirkpatrick & Seidel, 1986). For ϕDτ
K (X) to form an ellipse, each point in ϕDτ

K (X)
must be on the convex hull. Thus the choice of convex hull algorithm is arbitrary so long as 

the algorithm is able to establish when each point in A is on the convex hull and the same 

algorithm is used when comparing tangle values obtained from different systems. Indeed this 

computation becomes easier as ϕDτ
K (X) forms an ellipse (2D), and not an ellipsoid (>2D). 

Thus, all points of only a single projection of ϕDτ
K (X) into 2D space need to exist on the 

convex hull for ϕDτ
K (X) to form an ellipse. K is then set as the point in which ϕDτ(X) forms 

an ellipse in any 2D projection of ϕDτ(X) after iterative premultiplication of M onϕDτ(X).

Tangle equation.—As the number of points T of a time series increases, K will also 

generally increase at an exponential rate given that the trajectory of a discrete time series X 
is not already simple periodic motion. Thus, the derivative of K with respect to T for K > 0 

and T > 0 may the be approximately modeled as

ΔK
ΔT = αK, (9)

yielding the analytical solution

K = CeαT . (10)

This gives:

ln(K) = ln(C) + αT (11)

The tangle of a given ϕDτ(X) is then calculated by dividing ln(K) by T:

 Tangle  = ln(K)
T = ln(C)

T + α . (12)
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Thus, tangle is the time series length normalized log number of iterations it takes to untangle 
a system by forcing said system into an ellipse in a 3D space through premultiplication by 
a modified upshift matrix. Systems that show more erratic temporal behavior (i.e., behavior 

less like simple periodic motion), and thus more complexity, will take more iterations to 

converge to an ellipse. Tangle can be shown to asymptotically converge to α as T ∞. 

Thus, assuming an adequate sampling rate, for longer time series the influence of C will be 

minimized and the tangle of a given system will tend to α. See Figure 3 for an example of 

this method untangling a system and quantifying tangle.

Results

Simulated Time Series

For tangle to be a valid measure of deviation from simple periodic motion across a time 

series, and thus a valid measure of temporal complexity, it should be able to distinguish 

between systems known to be simple periodic functions and systems that are known to 

show more complicated and erratic behaviors. In order to verify the efficacy of tangle 

as a complexity quantification metric, tangle was calculated for 5 mathematical systems 

known to display differing amounts of complexity: (A) random uniform noise, (B) a Lorenz 

attractor, (C) a Rössler attractor, (D) a Hindmarsh-Rose neuron model, and (E) a sine wave 

with added noise. (A) represents a highly erratic system and (D) represents a highly regular 

system with measurement error. By other extant complexity metrics, systems (B), (C), and 

(D) represent systems somewhere in between. For (E) random normal noise was added to a 

sine wave such that variance of (E) would be composed of a signal:noise ratio of 5:1. Tangle 

was assessed on each system from 20 – 300 samples. Figure 4 shows the results.

As expected, the most erratic time series (A) shows the highest tangle values and smoothly 

converges to a constant as T increases. The most regular system (E), although sampled with 

a relatively high amount of noise, was shown to have a tangle value of 0 across all T. This is 

due to ϕDτ(X) being fairly robust to noise. (B) shows a similar pattern to (A), although (B) 

has noticeably lower tangle values. This makes sense as (B), though being known to show 

chaotic behavior, is still a deterministic system and thus has some regularity compared to 

noise. (C) and (D) are systems known to show regular behavior in short bursts, thus tangle 

first increases as T increases due to each system showing more irregular behavior (folding in 

[C] and spiking/resting in [D]) as T increases. (C) and (D) then begin to converge after these 

irregular behaviors becomes better assessed through larger T. The results of this analysis 

show that tangle is able to determine differences in complexity between these systems in 

as few as 50 samples, as this is where Figure 4 begins to stabilize. More samples however 

increase the stability of tangle estimation and allow for more valid inferences in magnitude 

and direction of complexity between different time series.

To verify that tangle estimates would remain stable regardless of embedding dimension 

D, we repeated the above analysis with D = [2, 3, 4] for time series derived from (A) - 

(D). Values were then correlated between each time series across embedding dimensions. 

All correlations were between .94 and .99. Assuming this extrapolates to other time series, 

this gives evidence that D may play little role in tangle estimation. This is perhaps due 
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to the fact that W will force ϕDτ(X) into a 2D ellipse with a 45-degree tilt defined by 

the eigenvalues of W (Elmachtoub & Van Loan, 2010). In experimentation, ϕDτ(X) was 

quickly “flattened” towards a 2D form after a relatively small number of iterations, quickly 

mirroring a projection of the attractor into 2D space. Consider that a D − 1 dimensional 

embedding may be considered a projection of a D dimensional embedding (Takens, 1981). 

The eigenvalues of W are pushing ϕDτ(X) toward a 2D space rapidly though W’s largest 

eigenvalues. It appears then that higher dimensions are quickly forced into a 2D space, only 

adding a relatively small number of iterations to the tangle calculation procedure. However, 

future research is needed to verify this possibility.

Effects of Measurement Error.

Measurement error is inherent in data collected from human systems commonly studied 

in psychological and behavioral science. Measurement error may also produce bias in 

parameter estimation and may increase variability of measured complexity values as 

measurement error is difficult to separate from genuine complexity (Yu, Ott, & Chen, 1990). 

That is, measurement error can bias complexity metrics as the measurement error is adding 

complexity to the observed time series values. In order to study the behavior of tangle under 

different error conditions, we conducted another simulation study. In each iteration, a time 

series of 75 observations was generated from either a Lorenz system, a Rössler system, or a 

neuron model. Then an amount of Gaussian noise was added to each time series such that 

each time series had specific a signal:noise ratio. Signal:noise ratios used this simulation are 

100:1, 20:1, 10:1, 5:1, and 2:1. Here, 100:1 represents an ideal case with little measurement 

error (e.g., from a bio-metric device such as a heart rate monitor) and the 5:1 and 2:1 

conditions represent signal:noise ratios more common in behavioral data. Tangle was then 

assessed for each time series at each signal:noise ratio. This process was then repeated 1000 

times for a total of 15,000 simulations. Table 1 shows the means and standard deviations of 

1000 tangle estimates for each time series at each signal:noise ratio. All distributions were 

approximately normal.

For the Lorenz system, increased measurement error lead to higher tangle estimates. The 

same effect was found for the neuron model, but to a lesser degree. The Rössler system 

showed an overall decrease in tangle estimates. As expected, across all systems the standard 

deviation of the simulated sampling distributions increased, but all values from within 

a given signal have good coverage across all signal:noise rations. That is, the estimates 

generally fall within 2 standard deviation units of the noiseless tangle estimate for each 

system. These findings imply that the point estimate of tangle remain stable even at 

relatively large signal:noise ratios.

However, the increased variation in the simulated distributions may make distinguishing 

time series from one another difficult. While tangle estimates from the Lorenz system, 

Rössler system, and neuron model are able to distinguish these three systems from one 

another when there is no measurement error, this may not be true in the presence of 

measurement error. Thus we compared the simulated distributions of tangle values from 

each time series across each signal:noise level using simple t-tests, table 2.
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Results of this analysis show an expected decrease in t values and effect size (cohen’s d) 

as measurement error increases. At high signal:noise ratios we see large t values and large 

effect size estimates. At low signal:noise ratios we still see large t values and effect size 

estimates, but these values are lower. However, even the lowest cohen’s d value (Lorenz 

vs. Rössler at 2:1 signal:noise ratio) is still a moderate/strong effect. This gives evidence 

that tangle is able to distinguish between complexity of deterministic systems even with 

relatively large amounts of measurement error, assuming measurement error distributions are 

iid across comparison groups.

Comparison to Other Complexity Metrics

In order to determine the behavior of tangle relative to other measures of complexity 

commonly used when quantifying complexity in short time series, we conducted a 

simulation study comparing tangle estimates to both approximate entropy (ApEn) and fractal 

dimension. Both ApEn and fractal dimension are common complexity metrics for short time 

series (Sase, Ramírez, Kitajo, Aihara, & Hirata, 2016; Yentes et al., 2013). The ApEn of a 

time series is defined as:

Φm(r) = (N − m + 1)−1 ∑
i = 1

N − m + 1
ln Ci

m(r) , (13)

ApEn = Φm(r) − Φm + 1(r) (14)

where N is time series length, m is embedding dimension, r is a positive real number 

generally set to be 20% of the standard deviation of the time series under study, and Ci
m(r)

is the correlation sum of the time series under study. ApEn is a measure of how patterns 

of behaviors in a time series remain similar as embedding dimension is increased (Pincus, 

1991).

Fractal dimension, on the other hand, is a measure of the “roughness” of a time series. There 

are numerous ways to approximate the fractal dimension of a time series. Perhaps the most 

popular of which is the box-counting dimension (Gneiting, Ševčíková, & Percival, 2012). 

In its simplest form, calculate the box-counting dimension of a time series is done by using 

boxes of a known size to tile a graph of a time series. The number of boxes containing 

values of the time series is then compared to the total number of boxes used to tile the graph. 

Then this process repeats with increasingly smaller boxes. The ratio of number of boxes 

used to the number of boxes containing part of the time series at each repetition is then used 

to calculate the box-counting dimension. This can also be achieved by measuring the area of 

the boxes. The box-counting dimension D of a time series is defined as:

D = 2 − lim
ϵ 0

ln[A(ϵ)]
ln(ϵ) , (15)
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where ϵ is the width of boxes used to tile a time series, A(ϵ) is the total area of the boxes 

defined by ϵ and is a function time time series length.

In each iteration of this simulation, a Lorenz system, a Rössler system, and a Neuron model 

were created, each consisting of 75 observations. Gaussian noise was then added to each 

time series such that each system would have a signal:noise ratio of 3:1. Values of tangle, 

ApEn, and fractal dimension were then recorded. This process was repeated 500 times for 

a total of 1500 simulated time series. Figure 5 displays the bivariate joint distributions of 

tangle, ApEn, and fractal dimension for each time series studied.

Tangle shows little relation to both ApEn and fractal dimension for the Lorenz system. 

However, tangle shows clustering behavior with both ApEn and fractal dimension for 

the Rössler system and neuron model. Although within each cluster there appears to be 

little relation between tangle and either complexity metric, across these clusters there is a 

slight curvilinear relationship. Additionally, both ApEn and fractal dimension show little 

relationship to one another, but still show a clustering behavior with one another across the 

Rössler system and neuron model. This is unsurprising as both ApEn and fractal dimension 

conceptualize time series complexity in different ways and researchers have found both to 

be useful when discussing specific aspects of temporal complexity of real-world systems 

(e.g. Yeragani et al., 1998). This lack of systematic relation between tangle, ApEn, and 

fractal dimension give evidence that these metrics are indeed measuring different aspects 

of temporal complexity. Any relationship between these metrics would then indicate a 

relationship between these distinct complexities within a given time series.

Real Data Example - Anxiety

We now present the results of an application of tangle to a real-world data set from an 

emotion regulation study of highly anxious individuals. The purpose of this example is to 

(a) demonstrate how tangle may be used to compare complexity values of time series across 

a number of covariates, (b) show a proposed way of discussing tangle as complexity, and 

(c) to give researchers interested in using tangle in their own research a scaffolding to build 

upon. Additionally, we believe the results of this study add to existing literature on changes 

in behavioral complexity with regard to mental health issues.

Difficulty regulating emotions is considered to be a hallmark of mood and anxiety-

related psychopathology (e.g., Sloan et al., 2017). Specifically, many mental illnesses are 

characterized by numerous difficulties in emotional reactivity (hypo- or hyperreactivity), 

response duration (too short or too long; see Gross and Jazaieri (2014)), and (in)stability 

(Association, 2013). Although the vast majority of research investigating emotion 

dysregulation has been conducted cross-sectionally or in lab-based experiments, experience 

sampling studies have begun to link trait emotion dysregulation to state emotional 

experiences in daily life to reflect complex, more externally valid emotional processes 

(e.g., complex processes that are making it difficult for individuals to identify and regulate 

their emotions in real time). For example, individuals with higher (vs. lower) trait emotion 

dysregulation report more labile negative affect and less ability to identify their emotions 

over the course of the day (Daros et al., 2019; MacIntyre, Ruscio, Brede, & Waters, 2018).
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However, the field has lacked good methods to simply and directly assess emotional 

complexity in daily life. We know, for instance, that socially anxious individuals frequently 

experience distress in the face of perceived social threat, but what does this experience 

actually look like in terms of complex emotional processes? Is it a case of more intense, 

sustained negative affect throughout the day (e.g., low complexity), or many erratic 

oscillations in affective states, making one’s emotional world feel unpredictable and 

overwhelming (e.g., high complexity)? To help address this gap in understanding, the tangle 

complexity quantification method was applied to time series data that were collected in a 

sample of socially anxious individuals to investigate whether differences in trait emotion 

dysregulation predict different levels of complexity in naturally occurring state anxiety and 

state affect (positive vs. negative valence) ratings over time.

Hypotheses.

We pre-registered (https://osf.io/53b2g/) competing hypotheses. On the one hand, it is 

possible that higher (vs. lower) trait emotion dysregulation is associated with a more 

complex profile of emotional experiences in daily life, given that emotion dysregulation 

is associated with greater emotional reactivity, lack of clarity, and affect instability (e.g., 

Gross & Jazaieri, 2014). Conversely, it is also possible that higher (vs. lower) trait emotion 

dysregulation is associated with a less complex profile of emotional experiences in daily 

life, given that dysregulated individuals rate themselves as more negative throughout 

daily life than better regulated individuals (e.g., MacIntyre et al., 2018) and experience 

more blunted positive affect (e.g., Lasa-Aristu, Delgado-Egido, Holgado-Tello, Amor, & 

Domínguez-Sánchez, 2019), potentially resulting in a more consistently negative (i.e., less 

complex) emotional presentation. Our predictions did not differ between state affect and 

state anxiety ratings.

Methods.

One-hundred and thirteen individuals scoring relatively high on a measure of trait social 

anxiety severity were recruited to complete a five-week ecological momentary assessment 

(EMA) study consisting of up to six randomly timed surveys sent to their mobile phone 

each day. (This study was part of a larger intervention trial: see https://osf.io/eprwt/). 

Prior to starting the EMA protocol, all participants completed a measure of trait emotion 

dysregulation. At each random time point, participants rated their in-the-moment level of 

anxiety and in-the-moment affect (general positive/negative valence). According to the pre-

registered plan for analysis, observations were binned into “half-day” (e.g., before 3pm or 

after 3pm) time windows to create approximately equal time spacing between observations. 

Within each time window, we averaged together multiple responses per participant and 

marked data as missing if no survey was submitted. We decided a priori that participants 

with greater than 20% missingness would be removed from analyses to ensure a sufficient 

sample of assessment points for this proof-of-principle application of the tangle method, 

leaving 65 participants (self-reported as 69.2% female; 64.6% Non-Hispanic White, 20% 

Asian, 6.2% Black/African American, 3.1% Hispanic White, 4.6% Multiracial, 1.5% prefer 

not to answer; Mage = 20.25 years old, SDage = 3.27). Missing data for the remaining 

participants were imputed according to linear interpolation using the na_interpolation() 

function from the imputeTS package within the R programming language for statistical 
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computing (Moritz & Bartz-Beielstein, 2017; R Core Team, 2018). All analyses were run 

using robust linear models in R. All analyses were run using robust linear models using the 

rlm() function from the MASS package.

Measures.

Trait emotion dysregulation was assessed using the 18-item Difficulties in Emotion 

Regulation Scale (DERS) (Gratz & Roemer, 2004). Participants rated their agreement with 

18 statements on a 1 (“almost never, 0–10%”) to 5 (“almost always, 90–100%”) scale, with 

higher scores indicating greater emotion regulation difficulties. Internal consistency for the 

overall score was acceptable (Cronbach’s α = .78). In addition to an overall composite 

score, six subscale scores were computed: non-acceptance of negative emotions (α = 

.76), difficulties engaging in goal-directed behaviors (α = .95), difficulties refraining from 

impulsive behaviors (α = .84), lack of awareness of emotional experiences (α = .74), lack of 

emotional clarity about the emotions one is experiencing (α = .76), and beliefs that one has 

limited access to emotion regulation strategies (α = .74).

In order to assess state anxiety and affect at each random time prompt, participants rated the 

degree to which they were feeling calm relative to anxious and positive relative to negative, 

using a 1 (“Very calm”/ “Very negative”) to 10 (“Very anxious” / “Very positive”) sliding 

scale. For further details on response rates and additional measures included in the larger 

study, please see (Daniel et al., 2020).

Results.

Analyses predicting the complexity of state anxiety and state affect from the overall DERS 

score were not significant. However, exploratory analyses predicting the complexity of these 

emotional experiences from the DERS subscales (where all six subscales were entered as 

simultaneous predictors) each found one significant predictor, table 3.

We found that endorsing lower trait difficulties with engaging in goal-directed behaviors 

when upset was associated with greater complexity in daily life affect ratings (feeling 

positive relative to negative, B = −.41, t = −2.62, p < .011), suggesting that people who 

feel that their ability to concentrate and work is not as hindered when they are upset tend 

to display a more erratic pattern of state affect ratings than people who report themselves 

to be more disrupted when upset. It is possible that people who believe they can handle 

negative emotions and still function will be more tolerant of experiencing a full range of 

emotions and therefore demonstrate greater complexity in their daily affect ratings (vs. being 

consistently negative or consistently positive). Alternatively, it could be that people who 

have lots of complex, emotional ups-and-downs have to learn how to still function and 

meet their goals even in the face of emotional instability. Notably, the current sample was 

socially anxious but generally high functioning (e.g., many were undergraduate and graduate 

students at a prestigious university); thus, it would be interesting in future work to determine 

if this same finding would hold for a more disabled, anxious sample.1

1A Type-I error rate of .1 was also considered for exploratory purposes (Venables & Ripley, 2013). Endorsing lower trait clarity about 
the emotions one experiences was associated with higher complexity in daily life anxiety ratings (feeling calm relative to anxious, B 
= .28, t = 1.67,p = .096). This finding may indicate that volatile feelings of anxiety throughout daily life make it more difficult for 
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Discussion.

Difficulty regulating emotions is associated with psychopathology (Sloan et al., 2017). The 

current study shows that individual differences in facets of trait emotion dysregulation 

(namely, less difficulty engaging in goal directed behavior when upset) are associated 

with emotional complexity in daily life, though not in consistent ways. This points to 

the importance of investigating multiple facets of emotion dysregulation and multiple 

affective states to comprehensively evaluate the complexities of emotional functioning in 

daily life. Tangle appears to be a useful metric to apply to EMA studies focused on 

emotional processes and may help uncover important indicators of emotion dysregulation 

and psychopathology in daily life. Differences in tangle were found even though data were 

from a more homogeneous sample (i.e., individuals high in trait social anxiety severity) than 

the general population, and thus had less possible variation in complexity than would have 

been observed otherwise.

Real Data Example - Depression

To further demonstrate the applicability of tangle on real-world data known to show complex 

behavior, we applied tangle to openly available time series data from an experience sampling 

method (ESM) study of a single participant measured up to 10 times daily over a period 

of 239 days (Kossakowski, Groot, Haslbeck, Borsboom, & Wichers, 2017; Wichers et al., 

2016). The participant, a 57-year old male with a history of major depression, agreed 

to be part of a multi-phase double-blind study in which his depression medication (the 

antidepressant venlafaxine) was systematically reduced from a full dose (150gm) to a 

placebo (0mg) over an 8-week period. At each measurement occasion, the participant 

answered items relating to his positive affect, negative affect, and mental unrest. This data is 

available from http://osf.io/j4fg8.

In their original study, Wichers et al. (2016) found that a complex phenomenon known 

as critical slowing down was apparent in the participant’s time series data prior to an 

unexpected major depressive episode. Critical slowing down is a process in which a system 

becomes unusually sensitive to perturbations before a major qualitative change occurs in that 

system (e.g., a bifurcation). Scheffer et al. (2009) note that a consequence of critical slowing 

down is that a system will show stronger auto-correlation across time (i.e. less erratic 

behavior) as it approaches a qualitative change point. This is because the system is no longer 

able to adapt as easily to external influences as it would otherwise, causing the system 

to show more regular and less adaptive patterns. Thus the system undergoes a change in 

order to gain back some level of adaptive resilience and again display variation and adaptive 

patterns (Ives, 1995). While Wichers et al. (2016) used network based metrics and change 

point analysis to determine the existence of critical slowing down, we show that tangle is 

also able to model critical slowing down as a change in complexity in the participant’s 

positive affect. Specifically, we show that immediately prior to his major depressive episode, 

individuals to identify their emotions, or that a lower ability to differentiate between one’s emotions contributes to volatile momentary 
anxiety. This is consistent with recent findings that greater trait difficulties in emotional clarity are associated with corresponding 
regulation difficulties in daily life (Daros et al., 2019).However, given the small sample size and exploratory nature of the test, the 
result should be interpreted with considerable caution.
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the participant’s positive affect showed significantly less complexity than during his major 

depressive episode.

Measures.

Each day of measurement, the participant was asked at random times to rate how much 

a statement reflected his positive affect. These questions include “I feel relaxed”, “I feel 

satisfied”, “I feel enthusiastic”, “I feel cheerful”, “I feel strong”, “I like myself”, and “I 

can handle anything”. Responses were rated on a scale of 1 (Not) to 7 (Very). For the 

current analysis, a time series consisting of 75 measurements immediately preceding the 

participant’s major depressive episode and 75 measurements from the start of the depressive 

episode for each positive affect question, yielding 7 total time series of 150 measurements 

each.

Results.

The tangle algorithm was performed on each of the participant’s positive affect time series. 

These values were then converted to z-scores for ease of interpretation. A robust mixed-

effects model (quantile regression on the median) was conducted to test for significant 

change in complexity of these 7 time series before and after the participant’s depressive 

episode (Geraci, 2014). A significant positive increase in the median standardized tangle 

values of these time series was found (β = 1.10, t = 2.46, p = 0.013). The average complexity 

of each time series was significantly lower before the participant’s major depressive episode 

than after the episode’s start, Figure 6.

Discussion.

Critical slowing down is characterized by a reduction in complexity and increased auto-

correlation of a system. Critical slowing down is a symptom of a system becoming not as 

adaptive to outside influences immediately prior to a major qualitative change or transition. 

After transition, the system regains some level of adaptive behavior and complexity. Wichers 

et al. (2016) demonstrated critical slowing down was present in a participant’s positive 

affect time series immediately prior to a major depressive episode using network metrics of 

complexity. We have successfully replicated this finding by modeling time series complexity 

directly through tangle analysis. This gives further evidence of the validity of tangle as a 

measure of time series complexity.

Discussion

We have presented tangle as a metric for quantifying temporal complexity as deviation 

of a time series from simple periodic motion. Temporal complexity analysis using tangle 

was able to show theoretical rank-order differences in complexity between known chaotic 

time series. Additionally, given that complex signals are made of multiple simple signals 

interacting with one another (i.e., Fourier series), tangle may be used as a quantifier for 

deregulation as lower values of tangle may indicate less regulatory processes making up an 

observed time series compared to time series with higher values of tangle. That is, higher 

tangle values may imply there are more underlying processes involved within a given time 

series.
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Understanding the temporal dynamics and complexity of a system is a critical part of 

understanding and making valid inferences about that system. While many metrics exist 

for understanding temporal complexity in large data sets with thousands of samples, fewer 

methods exist for data with < 100 samples. By allowing researchers with access to relatively 

few data points (as is often the case for behavioral science and mental health researchers) to 

investigate claims about the complexity of their data, tangle makes an important contribution 

to the emerging study of complex processes and has many benefits. First, tangle is a 

computationally simple alternative for studying temporal complexity as it is quantified 

by erratic temporal behavior. Next, tangle only estimates one hyper-parameter (τ), which 

lessens the impact of individual researcher decisions on the tangle value of a given system, 

thereby increasing confidence in derived values. Notably, tangle accurately differentiates 

between systems with as few as 50 time samples, far fewer than the requisite 1000+ samples 

needed for many established complexity methods.

Limitations

While a promising metric for understanding erratic behavior within a given time series, 

researchers attempting to use tangle should be aware of the following limitations. Although 

embedding dimension D did not appear to effect tangle estimates from the systems studied 

in this article, it is possible that some systems may be highly sensitive to estimates of 

D, especially those with theoretically infinite dimensions (Doyne Farmer, 1982). Further, 

although tangle appears to measure the degree of erratic temporal behavior versus simple 

periodic behavior within a time series, not all researchers view erratic behavior as 

synonymous with complexity. However, this is a limitation with all complexity metrics. 

It is of note that misunderstandings of complexity and chaos can be detrimental to scientific 

research (Kincanon & Powel, 1995). Thus it is imperative to discuss tangle in as direct 

terms as possible, i.e., a quantification of complexity as erratic behavior of a system across 

time compared to simple periodic motion. Established temporal complexity metrics such 

as the maximal Lyapunov exponent, fractal dimension, average mutual information, and 

correlation dimension each measure different distinct qualities of a time series that may not 

necessarily be related to one another (Chlouverakis & Sprott, 2005; Rosenstein et al., 1993). 

The distinct quality of complexity that tangle measures is how difficult it is to transform a 

time series into a simple periodic function (e.g., a sine wave).

Another consideration is that tangle, like other complexity metrics for short time series, 

is dependant on time series length. That is, tangle is a relative measure of time series 

complexity that may differ quite substantially if time series have different lengths. This 

means that time series compared with tangle should have the same length. This problem 

of time series length confounded with complexity estimation is a well-known problem in 

the complexity literature with no current solution (Montesinos, Castaldo, & Pecchia, 2018; 

Nagaraj & Balasubramanian, 2017; Zhou et al., 2017). We have shown that time series 

length becomes less of an influence on tangle as time series length tends to infinity, however 

this influence may still be relevant for short time series as those seen in the social and 

behavioral sciences. Thus, while 50 observations may be a hard cutoff for stabilization of 

tangle estimation in purely deterministic systems with no measurement error, we suggest 

researchers use a minimum of 75 observations when calculating tangle (as we have in our 
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simulations) so as to further reduce the influence of time series length for systems with 

measurement error.

A current limitation of tangle, and other complexity metrics, related to the issue of time 

series length is that tangle requires complete data sets of equal length for direct comparison. 

While current methods exist for up-sampling, down-sampling, and imputation for handling 

missing data in time series analysis, these methods may not be applicable for many of the 

time series collected in the social and behavioral sciences. Additionally, imputation may 

indeed reduce the complexity of a time series as underlying imputation models are generally 

less complex than the theoretical generating processes for a given set s of psychological 

or behavioral data. In the real world data example, we employed imputation to account 

for missing data as this is perhaps the most common and easy to J implement method 

for handling missing data from EMA studies (see supplemental material for an analysis 

of tangle values compared to the number of imputed time points in the J applied data 

example). However, the effects of missing data handling procedure on tangle estimates is 

an open question in need of further research. Indeed, because tangle relies on dimensional 

embedding (a method known to be robust to deletion of missing data by treating missing 

data as sampling misspecification) missing data handling procedures may not be necessary 

at all (Boker, Tiberio, & Moulder, 2018).

Future Directions

Future work regarding the advancement of tangle as a complexity quantification should 

focus on testing the stability, sensitivity, and accuracy of tangle across more systems 

and more embedding dimensions. We have studied tangle across multiple time series and 

multiple embedding dimensions, however there are many more of each to study. Tangle’s 

sensitivity to the τ hyper-parameter is also an important question for future work, as well as 

stability of tangle estimation across a number of methods available for estimating τ. Recent 

research in attractor reconstruction methods suggest that a universal τ of 1 may be sufficient 

for most cases (Brunton, Brunton, Proctor, Kaiser, & Kutz, 2017).

Additionally, the time to calculate tangle increases exponentially with time series length 

and thus could make tangle difficult to calculate for longer time series. There may be ways 

to estimate tangle at convergence of the convex hull without needing to reach the convex 

hull stopping point, based on modeling change in distance between points in the time-delay 

embedding matrix as K increases.

Missing data/attrition is perhaps the most common data problem in time series derived from 

longitudinal behavioral and mental health studies, as well as those in many other fields 

measuring human traits (Eysenbach, 2005). In this article, we dealt with these issues by 

assuming missing data were missing completely at random (MCAR) and employing a linear 

interpolation method. It is probable that different missing data methods will give different 

tangle estimates, however the amount to which missing data effects tangle estimates is 

an open question. There is some evidence that imputation may indeed be a poor method 

for missing data handling when using time-delay embedding and that simply ignoring 

missing values when constructing a time-delay embedding matrix (i.e., allowing for time 

misspecification) yields robust estimates (Boker et al., 2018).
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Future work should also assess tangle on systems outside of the ones assessed in this 

article. Although tangle was able to accurately distinguish theoretical rank-order differences 

in temporal complexity between the studied time series, testing on a wider variety of 

known complex systems is needed to fully establish whether what is being measured by 

tangle (i.e., difficulty in transforming a time series into simple periodic motion) continues 

to correlate with theoretical differences in complexity, thus better establishing tangle as a 

general measure of complexity. Additionally, although the systems assessed in this article 

are well-known representative models of highly complex systems, all systems studied 

(besides uniform random noise) are purely deterministic, albeit with added measurement 

error. However, many systems may not be purely deterministic. That is, systems may 

be considered to have deterministic and stochastic components, as well as measurement 

error (Tschacher & Haken, 2019). The behavior of tangle on mixed deterministic/stochastic 

processes (e.g., a Fokker-Planck system), or on purely stochastic systems (e.g., random 

walks and moving average models) is yet to be assessed. Indeed, the applicability of many 

complexity metrics have not yet been tested for mixed deterministic/stochastic processes or 

for a wide range of purely stochastic processes.

It is also possible that tangle is applicable to data outside of time series data. For instance, 

network models estimate structure based on qualities of data. It is possible that this structure 

may be untangled to determine network complexity. In this way, it may be possible to 

generalize tangle to cross-sectional data as well as time series data.

In the current article, we have defined and demonstrated tangle as a new method for 

assessing temporal complexity as erratic behavior within a time series. We have shown that 

tangle gives valid inferences of differences in complexity between two systems even with as 

few as 50 data points. For individuals interested in using tangle in their own research, we 

have a number of recommendations.

1. Although tangle may be valid in short time series, longer time series are 

encouraged. We believe 50 observations may be enough to give valid inference in 

direction, however researchers should aim for ideally 75+ observations given the 

results of our simulation study.

2. Complexity is an ill-defined term across multiple disciplines. We have chosen 

to discuss tangle estimates as quantifying erratic behavior in a time series, an 

important facet of temporal complexity. We suggest that other researchers use 

this language with discussing tangle estimates until further research better refines 

a colloquial definition.

3. Our stopping rule, all points existing on the convex hull, is only one possible 

stopping rule. Other rules may give other estimates. Due to this and other 

differences between computational implementations, tangle should only be used 

as a relative measure of complexity between time series of equal length sampled 

at the same rate, and should not be interpreted between studies using different 

time series lengths, sampling rates, or stopping rules.

Following these recommendations, we believe tangle will allow researchers in many fields to 

begin asking questions regarding time series complexity, where such questions were unable 
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to be answered before. To further this goal, R code for calculating tangle of a time series can 

be found at https://github.com/RobertGM111/Tangle.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

This work was supported in part by a grant from the National Institute on Drug Abuse (NIH DA-018673), a grant 
from the National Institute of Mental Health (R01MH11375), the Jefferson Scholars Foundation of Charlottesville, 
VA, and A University of Virginia Hobby Postdoctoral and Predoctoral Fellowship Grant. Any opinions, findings, 
and conclusions or recommendations expressed in this material are those of the authors and do not necessarily 
reflect the views of any supporting agency. The dataset and code supporting the conclusions of this article are 
available in the Open Science Framework (OSF) repository, https://osf.io/53b2g/ (Moulder, Daniel, Teachman, & 
Boker, 2019).

A portion of the material in this article has been presented at the 2019 International Meeting of the Psychometric 
Society in Santiago, Chile, and at the 2019 annual meeting of the Society for Multivariate Experimental Psychology 
(SMEP) in Baltimore, Maryland.

References

Abarbanel H. (2013). Predicting the future: completing models of observed complex systems. New 
York: NY: Springer.

Aleksić Z. (1991). Estimating the embedding dimension. Physica D: Nonlinear Phenomena, 52(2–3), 
362–368. doi: 10.1016/0167-2789(91)90132-S

Ashenfelter KT, Boker SM, Waddell JR, & Vitanov N. (2009). Spatiotemporal symmetry and 
multifractal structure of head movements during dyadic conversation. Journal of experimental 
psychology. Human perception and performance, 35(4), 1072–1091. doi: 10.1037/a0015017 
[PubMed: 19653750] 

Association, A. P. (2013). Diagnostic and statistical manual of mental disorders (dsm-5@). American 
Psychiatric Pub.

Avis D, Bremner D, & Seidel R. (1997). How good are convex hull algorithms? Computational 
Geometry, 7(5–6), 265–301. doi: 10.1016/S0925-7721(96)00023-5

Bak P, & Paczuski M. (1995). Complexity, contingency, and criticality. Proceedings of the National 
Academy of Sciences, 92(15), 6689–6696. doi: 10.1073/pnas.92.15.6689

Barber CB, Dobkin DP, & Huhdanpaa H. (1996). The quickhull algorithm for convex hulls. ACM 
Transactions on Mathematical Software, 22(4), 469–483. doi: 10.1145/235815.235821

Barton S. (1994). Chaos, self-organization, and psychology. American Psychologist, 49(1), 5–14. doi: 
10.1037/0003-066X.49.1.5

Bassingthwaighte J. (1988). Physiological Heterogeneity: Fractals Link Determinism and Randomness 
in Structures and Functions. Physiology, 3(1), 5–10. doi: 10.1152/physiologyonline.1988.3.1.5

Boker SM, Tiberio SS, & Moulder RG (2018). Robustness of time delay embedding to sampling 
interval misspecification. In Continuous time modeling in the behavioral and related sciences (pp. 
239–258). Basel: Switzerland: Springer. doi: 10.1007/978-3-319-77219-6_10

Borsboom D. (2017). A network theory of mental disorders. World Psychiatry, 16(1), 5–13. 
doi:10.1002/wps.20375 [PubMed: 28127906] 

Brown JH, Gupta VK, Li BL, Milne BT, Restrepo C, & West GB (2002). The fractal nature of 
nature: Power laws, ecological complexity and biodiversity. Philosophical Transactions of the 
Royal Society B: Biological Sciences, 357(1421), 619–626. doi: 10.1098/rstb.2001.0993

Brunton SL, Brunton BW, Proctor JL, Kaiser E, & Kutz JN (2017). Chaos as an intermittently forced 
linear system. Nature Communications, 8(1), 19. doi: 10.1038/s41467-017-00030-8

Cao L. (1997). Practical method for determining the minimum embedding dimension of a scalar time 
series. Physica D: Nonlinear Phenomena, 110(1–2), 43–50. doi: 10.1016/S0167-2789(97)00118-8

Moulder et al. Page 22

Psychol Methods. Author manuscript; available in PMC 2023 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/RobertGM111/Tangle
https://osf.io/53b2g/


Chen D, Lin F, Chen X, Tang W, & Kitzman H. (2014). Cusp Catastrophe Model: A Nonlinear 
Model for HealthOutcomes in Nursing Research. Nursing Research, 63(3), 211–220. doi: 10.1097/
NNR.0000000000000034 [PubMed: 24785249] 

Chen W, Zhuang J, Yu W, & Wang Z. (2009). Measuring complexity using FuzzyEn, ApEn, and 
SampEn. Medical Engineering & Physics, 31 (1), 61–68. doi: 10.1016/j.medengphy.2008.04.005

Chlouverakis KE, & Sprott J. (2005). A comparison of correlation and Lyapunov dimensions. Physica 
D: Nonlinear Phenomena, 200(1–2), 156–164. doi: 10.1016/j.physd.2004.10.006

Daniel KE, Daros AR, Beltzer ML, Boukhechba M, Barnes LE, & Teachman BA (2020). How anxious 
are you right now? using ecological momentary assessment to evaluate the effects of cognitive 
bias modification for social threat interpretations. Cognitive Therapy and Research, 1–19. doi: 
10.1007/s10608-020-10088-2

Daros AR, Daniel KE, Boukhechba M, Chow PI, Barnes LE, & Teachman BA (2019). Relationships 
between trait emotion dysregulation and emotional experiences in daily life: an experience 
sampling study. Cognition and Emotion, 1–13. doi: 10.1080/02699931.2019.1681364

Dejonckheere E, Mestdagh M, Houben M, Rutten I, Sels L, Kuppens P, & Tuerlinckx F. (2019). 
Complex affect dynamics add limited information to the prediction of psychological well-being. 
Nature Human Behaviour, 3(5), 478–491. doi: 10.1038/s41562-019-0555-0

Dobson I, Carreras BA, Lynch VE, & Newman DE (2007). Complex systems analysis of series of 
blackouts: Cascading failure, critical points, and self-organization. Chaos: An Interdisciplinary 
Journal of Nonlinear Science, 17(2), 026103. doi: 10.1063/1.2737822

Doyne Farmer J. (1982). Chaotic attractors of an infinite-dimensional dynamical system. Physica D: 
Nonlinear Phenomena, 4 (3), 366–393. doi: 10.1016/0167-2789(82)90042-2

Eddy WF (1977). A New Convex Hull Algorithm for Planar Sets. ACM Transactions on Mathematical 
Software, 3(4), 398–403. doi: 10.1145/355759.355766

Efatmaneshnik M, & Ryan MJ (2016). A general framework for measuring system complexity. 
Complexity, 21 (S1), 533–546. doi: 10.1002/cplx.21767

Elmachtoub AN, & Van Loan CF (2010). From Random Polygon to Ellipse: An Eigenanalysis. SIAM 
Review, 52(1), 151–170. doi: 10.1137/090746707

Epskamp S, Waldorp LJ, Mõttus R, & Borsboom D. (2018). The Gaussian Graphical Model in 
Cross-Sectional and Time-Series Data. Multivariate Behavioral Research, 53(4), 453–480. doi: 
10.1080/00273171.2018.1454823 [PubMed: 29658809] 

Eysenbach G. (2005). The Law of Attrition. Journal of Medical Internet Research, 7(1), e11. doi: 
10.2196/jmir.7.1.e11 [PubMed: 15829473] 

FitzHugh R. (1961). Impulses and Physiological States in Theoretical Models of Nerve Membrane. 
Biophysical Journal, 1 (6), 445–466. doi: 10.1016/S0006-3495(61)86902-6 [PubMed: 19431309] 

Flood RL (1987). Complexity: A definition by construction of a conceptual framework. Systems 
Research, 4 (3), 177–185. doi: 10.1002/sres.3850040304

Fried EI, van Borkulo CD, Cramer AOJ, Boschloo L, Schoevers RA, & Borsboom D. (2017). Mental 
disorders as networks of problems: a review of recent insights. Social Psychiatry and Psychiatric 
Epidemiology, 52(1), 1–10. doi: 10.1007/s00127-016-1319-z [PubMed: 27921134] 

Gabaix X, Gopikrishnan P, Plerou V, & Stanley HE (2003). A theory of power-law distributions in 
financial market fluctuations. Nature, 423 (6937), 267–270. doi: 10.1038/nature01624 [PubMed: 
12748636] 

Galea S, Hall C, & Kaplan GA (2009). Social epidemiology and complex system dynamic modelling 
as applied to health behaviour and drug use research. International Journal of Drug Policy, 20(3), 
209–216. doi: 10.1016/j.drugpo.2008.08.005 [PubMed: 18930649] 

Garcia Martin H, & Goldenfeld N. (2006). On the origin and robustness of power-law species-area 
relationships in ecology. Proceedings of the National Academy of Sciences, 103(27), 10310–
10315. doi: 10.1073/pnas.0510605103

Geraci M. (2014). Linear quantile mixed models: the lqmm package for laplace quantile regression. 
Journal of Statistical Software, 57(13), 1–29. doi: 10.18637/jss.v057.i13 [PubMed: 25400517] 

Gneiting T, Sevcíková H, & Percival DB (2012). Estimators of Fractal Dimension: Assessing the 
Roughness of Time Series and Spatial Data. Statistical Science, 27(2), 247–277. doi: 10.1214/11-
STS370

Moulder et al. Page 23

Psychol Methods. Author manuscript; available in PMC 2023 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Gneiting T, Sevcíková H, & Percival DB (2012). Estimators of fractal dimension: Assessing the 
roughness of time series and spatial data. Statistical Science, 247–277. doi: 10.1214/11-STS370

Golino HF, & Epskamp S. (2017). Exploratory graph analysis: A new approach for estimating 
the number of dimensions in psychological research. PLoS ONE, 12(6), 1–26. doi: 10.1371/
journal.pone.0174035

Graham RL, & Frances Yao F. (1983). Finding the convex hull of a simple polygon. Journal of 
Algorithms, 4 (4), 324–331. doi: 10.1016/0196-6774(83)90013-5

Gratz KL, & Roemer L. (2004). Multidimensional assessment of emotion regulation and 
dysregulation: Development, factor structure, and initial validation of the difficulties in emotion 
regulation scale. Journal of psychopathology and behavioral assessment, 26(1), 41–54. doi: 
10.1108/wjstsd-08-2017-0022

Gross JJ, & Jazaieri H. (2014). Emotion, emotion regulation, and psychopathology: 
An affective science perspective. Clinical Psychological Science, 2(4), 387–401. doi: 
10.1177/2167702614536164

Haedt-Matt AA, & Keel PK (2011a). Hunger and binge eating: A meta-analysis of studies using 
ecological momentary assessment. International Journal of Eating Disorders, 44 (7), 573–578. doi: 
10.1002/eat.20868

Haedt-Matt AA, & Keel PK (2011b). Revisiting the affect regulation model of binge eating: A 
meta-analysis of studies using ecological momentary assessment. Psychological Bulletin, 137(4), 
660–681. doi: 10.1037/a0023660 [PubMed: 21574678] 

Hindmarsh JL, & Rose RM (1984). A model of neuronal bursting using three coupled first order 
differential equations. Proceedings of the Royal Society of London. Series B. Biological Sciences, 
221 (1222), 87–102. doi: 10.1098/rspb.1984.0024

Hodgkin AL, & Huxley AF (1952). A quantitative description of membrane current and its application 
to conduction and excitation in nerve. The Journal of Physiology, 117(4), 500–544. doi: 10.1113/
jphysiol.1952.sp004764 [PubMed: 12991237] 

Ives AR (1995). Measuring resilience in stochastic systems. Ecological Monographs, 65(2), 217–233. 
doi: 10.2307/2937138

Iyengar N, Peng CK, Morin R, Goldberger AL, & Lipsitz LA (1996). Age-related alterations in the 
fractal scaling of cardiac interbeat interval dynamics. The American journal of physiology, 271 (4 
Pt 2), R1078–84. doi: 10.1152/ajpregu.1996.271.4.R1078 [PubMed: 8898003] 

Kambhatla N, & Leen T. (1997). Dimension Reduction by Local {PCA}. Neural Computation, 9, 
1493.

Kantz H. (1994). A robust method to estimate the maximal lyapunov exponent of a time series. Physics 
letters A, 185(1), 77–87. doi: 10.1016/0375-9601(94)90991-1

Kennel MB, Brown R, & Abarbanel HD (1992). Determining embedding dimension for phase-space 
reconstruction using a geometrical construction. Physical review A, 45(6), 3403.

Kim H, Eykholt R, & Salas J. (1999). Nonlinear dynamics, delay times, and embedding windows. 
Physica D: Nonlinear Phenomena, 127(1–2), 48–60. doi: 10.1016/S0167-2789(98)00240-1

Kincanon E, & Powel W. (1995). Chaotic analysis in psychology and psychoanalysis. 
Journal of Psychology: Interdisciplinary and Applied, 129(5), 495–505. doi: 
10.1080/00223980.1995.9914922 [PubMed: 7473301] 

Kirkpatrick DG, & Seidel R. (1986). The Ultimate Planar Convex Hull Algorithm? SIAM Journal on 
Computing, 15(1), 287–299. doi: 10.1137/0215021

Kossakowski J, Groot P, Haslbeck J, Borsboom D, & Wichers M. (2017). Data from ‘critical slowing 
down as a personalized early warning signal for depression’. Journal of Open Psychology Data, 
5(1). doi: 10.5334/jopd.29

Lanham HJ, Leykum LK, Taylor BS, McCannon CJ, Lindberg C, & Lester RT (2013). How 
complexity science can inform scale-up and spread in health care: Understanding the role of 
self-organization in variation across local contexts. Social Science and Medicine, 93, 194–202. 
doi: 10.1016/j.socscimed.2012.05.040 [PubMed: 22819737] 

Lasa-Aristu A, Delgado-Egido B, Holgado-Tello FP, Amor PJ, & Domínguez-Sánchez FJ (2019). 
Profiles of cognitive emotion regulation and their association with emotional traits. Clinical and 
Health, 30(1), 33–39. doi: 10.5093/clysa2019a6

Moulder et al. Page 24

Psychol Methods. Author manuscript; available in PMC 2023 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Liu H-F, Dai Z-H, Li W-F, Gong X, & Yu Z-H (2005). Noise robust estimates of the largest lyapunov 
exponent. Physics Letters A, 341 (1–4), 119–127. doi: 10.1016/j.physleta.2005.04.048

Liu X, Jiang A, Xu N, & Xue J. (2016). Increment Entropy as a Measure of Complexity for Time 
Series. Entropy, 18(1), 22. doi: 10.3390/e18010022

Liu Z. (2010). Chaotic Time Series Analysis. Mathematical Problems in Engineering, 2010, 1–31. doi: 
10.1155/2010/720190

Lorenz EN (1963). Deterministic Nonperiodic Flow. Journal of the Atmospheric Sciences, 20(2), 130–
141. doi: 10.1175/1520-0469(1963)020<0130:DNF>2.0.C0;2

MacIntyre JM, Ruscio AC, Brede E, & Waters AJ (2018). Emotion dysregulation and negative 
affect: Laboratory and ema investigations in smokers. Addictive behaviors reports, 7, 65–70. doi: 
10.1016/j.abrep.2018.01.001 [PubMed: 29687075] 

Mäkikallio TH, Huikuri HV, Mäkikallio A, Sourander LB, Mitrani RD, Castellanos A, & Myerburg 
RJ (2001). Prediction of sudden cardiac death by fractal analysis of heart rate variability in 
elderly subjects. Journal of the American College of Cardiology, 37(5), 1395–1402. doi: 10.1016/
S0735-1097(01)01171-8 [PubMed: 11300452] 

Marwan N, Donges JF, Zou Y, Donner RV, & Kurths J. (2009). Complex network approach 
for recurrence analysis of time series. Physics Letters A, 373(46), 4246–4254. doi: 10.1016/
j.physleta.2009.09.042

Montesinos L, Castaldo R, & Pecchia L. (2018). On the use of approximate entropy and sample 
entropy with centre of pressure time-series. Journal of neuroengineering and rehabilitation, 15(1), 
116. doi: 10.1186/s12984-018-0465-9 [PubMed: 30541587] 

Moritz S, & Bartz-Beielstein T. (2017). imputeTS: Time Series Missing Value Imputation in R. The R 
Journal, 9 (1), 207. doi: 10.32614/RJ-2017-009

Moulder RG, Daniel KE, Teachman B, & Boker SM (2019). Tangle: A metric for quantifying 
complexity and erratic behavior in short time series. PsyArXiv. Retrieved from psyarxiv.com/23csa 
doi: 10.31234/osf.io/23csa

Nagaraj N, & Balasubramanian K. (2017). Dynamical complexity of short and noisy time series. The 
European Physical Journal Special Topics, 226(10), 2191–2204. doi: 10.1140/epjst/e2016-60397-x

Odum HT (1988). Self-Organization, Transformity, and Information. Science, 242(4882), 1132–1139. 
doi: 10.1126/science.242.4882.1132 [PubMed: 17799729] 

Peitgen H-O, Jürgens H, & Saupe D. (1992). Length, area and dimension: measuring complexity and 
scaling properties. In Chaos and fractals (pp. 183–228). New York: NY: Springer.

Petrov V, Gáspár V, Masere J, & Showalter K. (1993). Controlling chaos in the Belousov—
Zhabotinsky reaction. Nature, 361 (6409), 240–243. doi: 10.1038/361240a0

Pincus SM (1991). Approximate entropy as a measure of system complexity. Proceedings of the 
National Academy of Sciences, 88(6), 2297–2301. doi: 10.1073/pnas.88.6.2297

Pincus SM, Gladstone IM, & Ehrenkranz RA (1991). A regularity statistic for medical data analysis. 
Journal of Clinical Monitoring, 7(4), 335–345. doi: 10.1007/BF01619355 [PubMed: 1744678] 

R Core Team. (2018). R: A language and environment for statistical computing [Computer software 
manual]. Vienna, Austria.

Rosenstein MT, Collins JJ, & De Luca CJ (1993). A practical method for calculating largest Lyapunov 
exponents from small data sets. Physica D, 65, 117–134. doi: 10.1016/0167-2789(93)90009-P

Sase T, Ramírez JP, Kitajo K, Aihara K, & Hirata Y. (2016). Estimating the level of dynamical noise in 
time series by using fractal dimensions. Physics Letters A, 380(11–12), 1151–1163. doi: 10.1016/
j.physleta.2016.01.014

Scheffer M, Bascompte J, Brock WA, Brovkin V, Carpenter SR, Dakos V, ... Sugihara G. (2009). 
Early-warning signals for critical transitions. Nature, 461 (7260), 53–59. doi: 10.1038/nature08227 
[PubMed: 19727193] 

Sloan E, Hall K, Moulding R, Bryce S, Mildred H, & Staiger PK (2017). Emotion regulation as a 
transdiagnostic treatment construct across anxiety, depression, substance, eating and borderline 
personality disorders: A systematic review. Clinical psychology review, 57, 141–163. doi: 10.1016/
j.cpr.2017.09.002. [PubMed: 28941927] 

Small M, & Tse C. (2004). Optimal embedding parameters: a modelling paradigm. Physica D: 
Nonlinear Phenomena, 194 (3–4), 283–296. doi: 10.1016/j.physd.2004.03.006

Moulder et al. Page 25

Psychol Methods. Author manuscript; available in PMC 2023 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Takens F. (1981). Detecting strange attractors in turbulence. In Lecture notes in mathematics (Vol. 898, 
pp. 366–381). doi: 10.1007/BFb0091924

Theiler J. (1990). Estimating fractal dimension. Journal of the Optical Society of America A, 7(6), 
1055. doi: 10.1364/J0SAA.7.001055

Theiler J, Eubank S, Longtin A, Galdrikian B, & Farmer JD (1992). Testing for nonlinarity in time 
series: the method of surrogate data. Physica D, 58(1–4), 77–94.

Thomason B, Coffman T, & Marcus S. (2004). Sensitivity of social network analysis metrics to 
observation noise. In 2004 ieee aerospace conference proceedings (ieee cat. no.04th8720) (pp. 
3206–3216). IEEE. doi: 10.1109/AER0.2004.1368126

Trulla L, Giuliani A, Zbilut J, & Webber C. (1996). Recurrence quantification analysis of 
the logistic equation with transients. Physics Letters A, 223(4), 255–260. doi: 10.1016/
S0375-9601(96)00741-4

Tschacher W, & Haken H. (2019). Causation and chance: Detection of deterministic 
and stochastic ingredients in psychotherapy processes. Psychotherapy research, 1–13. 
doi:10.1080/10503307.2019.1685139 [PubMed: 29254460] 

Venables WN, & Ripley BD (2013). Modern applied statistics with s-plus. Springer Science & 
Business Media.

Versluis A, Verkuil B, Spinhoven P, van der Ploeg MM, & Brosschot JF (2016). Changing Mental 
Health and Positive Psychological Well-Being Using Ecological Momentary Interventions: A 
Systematic Review and Meta-analysis. Journal of Medical Internet Research, 18(6), e152. doi: 
10.2196/jmir.5642 [PubMed: 27349305] 

Watts DJ, & Strogatz SH (1998). Collective dynamics of ‘small-world’ networks. Nature, 393(6684), 
440–442. doi: 10.1038/30918 [PubMed: 9623998] 

Wen CKF, Schneider S, Stone AA, & Spruijt-Metz D. (2017). Compliance With Mobile Ecological 
Momentary Assessment Protocols in Children and Adolescents: A Systematic Review and Meta-
Analysis. Journal of Medical Internet Research, 19 (4), e132. doi: 10.2196/jmir.6641 [PubMed: 
28446418] 

West GB (1999). The Fourth Dimension of Life: Fractal Geometry and Allometric Scaling 
of Organisms. Science, 284 (5420), 1677–1679. doi:10.1126/science.284.5420.1677 [PubMed: 
10356399] 

Wichers M, Groot PC, Borsboom D, Cramer A, Epskamp S, Kendler K, ... Scheffer M. (2016). 
Critical slowing down as a personalized early warning signal for depression. Psychotherapy and 
psychosomatics, 85(2), 114–116. doi:10.1159/000441458 [PubMed: 26821231] 

Wigman JTW, van Os J, Borsboom D, Wardenaar KJ, Epskamp S, Klippel A, ... Wichers M. 
(2015). Exploring the underlying structure of mental disorders: cross-diagnostic differences 
and similarities from a network perspective using both a top-down and a bottom-up approach. 
Psychological Medicine, 45(11), 2375–2387. doi: 10.1017/S0033291715000331 [PubMed: 
25804221] 

Wolf A, Swift JB, Swinney HL, & Vastano JA (1985). Determining Lyapunov exponents from a time 
series. Physica D: Nonlinear Phenomena, 16(3), 285–317. doi:10.1016/0167-2789(85)90011-9

Wornell G, & Oppenheim A. (1992). Estimation of fractal signals from noisy measurements using 
wavelets. IEEE Transactions on Signal Processing, 40(3), 611–623. doi: 10.1109/78.120804

Yap HL, Eftekhari A, Wakin MB, & Rozell CJ (2014). A first analysis of the stability of Takens’ 
embedding. In 2014 ieee global conference on signal and information processing (globalsip) (pp. 
404–408). IEEE. doi: 10.1109/GlobalSIP.2014.7032148

Yentes JM, Hunt N, Schmid KK, Kaipust JP, McGrath D, & Stergiou N. (2013). The appropriate use of 
approximate entropy and sample entropy with short data sets. Annals of biomedical engineering, 
41 (2), 349–365. doi: 0.1007/s10439–012-0668–3 [PubMed: 23064819] 

Yeragani VK, Sobolewski E, Jampala V, KAY J, YERAGANI S, & IGEL G. (1998). Fractal 
dimension and approximate entropy of heart period and heart rate: awake versus sleep differences 
and methodological issues. Clinical Science, 95(3), 295–301. doi: 10.1042/cs0950295 [PubMed: 
9730848] 

Yu L, Ott E, & Chen Q. (1990). Transition to chaos for random dynamical systems. Physical review 
letters, 65(24), 2935. doi: 10.1103/PhysRevLett.65.2935 [PubMed: 10042737] 

Moulder et al. Page 26

Psychol Methods. Author manuscript; available in PMC 2023 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Zhou R, Yang C, Wan J, Zhang W, Guan B, & Xiong N. (2017). Measuring complexity and 
predictability of time series with flexible multiscale entropy for sensor networks. Sensors, 17(4), 
787. doi: 10.3390/s17040787

Moulder et al. Page 27

Psychol Methods. Author manuscript; available in PMC 2023 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Three examples of attractors of nonlinear systems. (a) a Lorenz attractor, (b) a Rössler 

attractor, and (c) a reconstructed attractor from human head motion data. Mathematical 

attractors (a) and (b) are more well-behaved than (c), however attractors like (c) are more 

common in behavioral data sets.
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Figure 2. 
All points in this image can be represented by a 16×2 coordinate matrix. The black 

line represents the convex hull of this coordinate matrix. The concept extrapolates to 

3-dimensional sets, where the convex hull is a shell around all points, as well as to higher 

dimensions.

Moulder et al. Page 29

Psychol Methods. Author manuscript; available in PMC 2023 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Tangle algorithm in action on a down-sampled reconstructed attractor. First, an attractor is 

reconstructed for a given system (a). This system is then iteratively untangled through the 

use of a modified upshift matrix. (b) shows the system after 100 iterations. (c) shows the 

“untangled” system at algorithm termination.
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Figure 4. 
Each line in the figure represents the tangle value of a different mathematical system, for 

longer time series derived from those systems. Line (A) represents the tangle computed 

for uniform noise. This would in theory be a highly complex system and it indeed has the 

highest line. Lines (B) - (D) represent the tangle computed for 3 known chaotic time series. 

These series should be complex, but not as complex as (A). The lines (B) - (D) do indeed 

stay below uniform noise as the length of each time series increases. Finally, (E) represents 

a simple periodic system with a small amount of random noise. This series shows a tangle 

estimate of 0 across all time points as it is already simple periodic motion. The tangle 

calculation for these systems show a stabilizing behavior at 50 time points, indicating 50 

time points to be a minimum for valid tangle estimation of a time series. Longer time series 

give more stable tangle estimates.
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Figure 5. 
Pairs plots displaying joint distributions of tangle with approximate entropy (ApEn) and 

fractal dimension for (a) a Lorenz system, (b) a Rössler system, and (c) a neuron 

model. Each simulated time series consists of 75 observations with added Gaussian noise 

(Signal:Noise ratio = 3:1).
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Figure 6. 
Box-plot of tangle values of 7 positive affect time series 75 measurements prior to when 

a participant experienced a major depressive episode (Pre) versus after the episode’s start 

(Post).
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Table 1

Means and (standard deviation) of tangle estimates at different signal:noise ratios over 1000 simulations

Simulated Time Series

Signal:Noise Lorenz Rössler Neuron

100:1 0.0803 (0.0030) 0.0884 (0.0003) 0.0913 (0.0003)

20:1 0.0826 (0.0037) 0.0883 (0.0005) 0.0913 (0.0007)

10:1 0.0836 (0.0039) 0.0882 (0.0008) 0.0914 (0.0009)

5:1 0.0845 (0.0047) 0.0882 (0.0011) 0.0915 (0.0012)

2:1 0.0856 (0.0048) 0.0878 (0.0017) 0.0917 (0.0017)
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Table 2

t-tests comparing simulated distributions of three time series across multiple signal:noise ratios

t-test Comparisons

Lorenz vs. Rossler Lorenz vs. Neuron Neuron vs. Rossler

Signal:Noise t p cohen’s d t p cohen’s d t p cohen’s d

100:1 −59.03 < .001 3.73 −80.30 < .001 5.08 154.38 < .001 9.76

20:1 −34.62 < .001 2.19 −52.21 < .001 3.30 73.67 < .001 4.66

10:1 −25.72 < .001 1.63 −43.16 < .001 2.73 59.57 < .001 3.77

5:1 −17.05 < .001 1.08 −32.58 < .001 2.06 46.63 < .001 2.95

2:1 −9.41 < .001 0.60 −26.63 < .001 1.68 36.85 < .001 2.33
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Table 3

Robust linear model of DERS subscales predicting affect and anxiety complexity

Outcome Predictor robust β robust t robust p

Tangle(Affect) nonacceptance 0.08 0.43 0.670

goal directed −0.41 −2.62 0.011**

impulse 0.05 0.31 0.761

access 0.17 1.03 0.306

awareness 0.02 0.15 0.884

clarity −0.01 −0.07 0.940

Tangle(Anxious) nonacceptance −0.24 −1.23 0.222

goal directed −0.02 −0.10 0.924

impulse −0.08 −0.47 0.635

access 0.27 1.48 0.138

awareness −0.03 −0.22 0.827

clarity 0.28 1.67 0.097*

*
p < .1

**
p < .05
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