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Abstract

P450 and heme oxygenase-1 (HO-1) receive their necessary electrons by interaction with the 

NADPH-cytochrome P450 reductase (POR). As the POR concentration is limiting when compared 

to P450 and HO-1, they must effectively compete for POR to function. In addition to these 

functionally required protein-protein interactions, HO-1 forms homomeric complexes, and several 

P450s have been shown to form complexes with themselves and with other P450s, raising 

the question, “How are the HO-1 and P450 systems organized in the endoplasmic reticulum?” 

Recently, CYP1A2 was shown to associate with HO-1 affecting the function of both proteins. The 

goal of this study was to determine if CYP1A1 formed complexes with HO-1 in a similar manner. 

Complex formation among POR, HO-1, and CYP1A1 was measured using bioluminescence 

resonance energy transfer, with results showing HO-1 and CYP1A1 form a stable complex that 

was further stabilized in the presence of POR. The POR•CYP1A1 complex was readily disrupted 

by the addition of HO-1. CYP1A1 also was able to affect the POR•HO-1 complex, although 

the effect was smaller. This interaction between CYP1A1 and HO-1 also affected function, 

where the presence of CYP1A1 inhibited HO-1-mediated bilirubin formation by increasing the 

Km
POR•HO-1 without affecting the Vmax

app. In like manner, HO-1 inhibited CYP1A1-mediated 7­

ethoxyresorufin dealkylation by increasing the Km
POR•CYP1A1. Based on mathematical simulation, 

the results could not be explained by a model where CYP1A1 and HO-1 simply compete for POR, 

and are consistent with formation of a stable CYP1A1•HO-1 complex that affected the functional 

characteristics of both moieties.
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INTRODUCTION

As members of the CYP1A subfamily, CYP1A1 and CYP1A2 have similar amino 

acid sequences (80% identical) and induction of both enzymes is mediated by the aryl 

hydrocarbon receptor [1, 2]. Some conserved CYP1 family-specific residues are responsible 

for forming a small, planar active site [3], leading to both P450s sharing many of the same 

substrates and inhibitors [4]. Despite their high degree of sequence similarity, differences 

in these proteins have been observed. CYP1A1 is constitutively expressed extrahepatically 

at low levels, with induction required for more substantial expression in tissues such as the 

lung [5], liver [6, 7], skin [8], or intestine [9, 10]. In contrast, CYP1A2 is expressed in the 

liver [2].

Class 2 P450 enzymes require an interaction with the flavoprotein NADPH-cytochrome 

P450 reductase (POR) in order to function in an NADPH-dependent reaction. POR and 

P450s form a 1:1 functional complex that occurs within a region of the protein that is 

proximal to the heme of the P450 molecule. As the total concentration of the expressed 

P450s exceed that of POR in most tissues [11–13], each of the P450s must effectively 

compete for POR or be functionally silent. These interactions become more complex when 

considering the potential for the levels of several of these proteins to be regulated by 

exogenous chemicals. These characteristics raise continued questions regarding how the 

P450 system proteins are organized in the endoplasmic reticulum (ER).

As part of these studies, we examined the potential of P450 enzymes to form complexes 

with each other. Our initial results showed that CYP1A2 and CYP2B4 form a high affinity 

complex that is stable in the presence of POR [14–18]. Interestingly, formation of the 

heteromeric complex leads to the selective binding of POR to the CYP1A2 moiety of the 

CYP1A2•CYP2B4 complex, leading to stimulation of CYP1A2 and inhibition of CYP2B4 

activities [16–18]. Subsequent reports have shown the formation of both homomeric [19–24] 

and heteromeric [14, 16–18, 23, 25–34] complexes with several different P450 enzymes.

Heme oxygenase-1 (HO-1) is another heme-containing protein that is found in the ER [35], 

although in this case, the heme serves as a substrate rather than a prosthetic group. It is 

responsible for the first step of heme catabolism. An interesting feature of the enzyme is 

related to its inducibility, as enzyme levels in most tissues are negligible at baseline, with 

exposure to numerous compounds and oxidative stress leading to HO-1 expression [36]. 

Generally, HO-1 provides a protective function for cells during inflammatory stress, not 

only by decreasing the proinflammatory free heme [37–39], but also by generating CO and 

bilirubin, which have antioxidant properties [40–43]. Therefore, HO-1 functions in vivo not 

only in heme degradation, but also in a cytoprotective role when organisms are exposed to 

radical-generating agents [37]. However, HO-1 does not function alone; it also requires a 

physical interaction with POR in order to function.

As both P450s and HO-1 co-reside in the ER membrane, and must compete for limiting 

POR to function, our interest turned toward the potential for P450s and HO-1 to form 

complexes that may affect protein function. This is particularly relevant due to the 
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inducibility of both HO-1 and the P450s to such an extent that the relative ratios of these 

proteins to POR and each other can be dramatically altered [44].

Recently, we examined the potential for HO-1 and CYP1A2 to affect each other’s behavior 

[45]. The results could not be explained by the mutual inhibition that would be expected 

by simple competition between HO-1 and CYP1A2 for POR. In fact, HO-1 actually 

stimulated CYP1A2-mediated EROD activity at subsaturating POR, and HO-1-mediated 

heme catabolism was significantly inhibited by the presence of CYP1A2 despite the 60x 

higher affinity of HO-1 for POR. These unexpected changes in function were attributed to 

the formation of a heteromeric complex between HO-1 and CYP1A2.

The goal of this study was to determine whether similar interactions occur with HO-1 

and the closely related CYP1A1. The results showed a completely different pattern of 

behavior, such that there was mutual inhibition of both HO-1 and CYP1A1 function in 

the presence of the competing protein. Interestingly, the bioluminescence resonance energy 

transfer (BRET)-detectable complex between HO-1 and CYP1A1 was actually stabilized by 

the presence of POR, whereas the POR•HO-1 and POR•CYP1A1 complexes were disrupted 

in the presence of the competing protein.

EXPERIMENTAL

Materials

L-α-dilauroyl-sn-glycero-3-phosphocholine (DLPC), resorufin, nicotinamide adenine 

dinucleotide phosphate reduced tetrasodium salt (NADPH), glucose-6-phosphate, and 

glucose-6-phosphate dehydrogenase were purchased from Sigma-Aldrich (St. Louis, MO). 

7-ethoxyresorufin (7-ER) was purchased from Anaspec (Fremont, CA). Lipofectamine 2000, 

Dulbecco’s Modified Eagle Medium (DMEM), and phosphate-buffered saline (PBS) were 

purchased from Invitrogen (Carlsbad, CA). Antibiotic-antimycotic solution was purchased 

from Life Technologies (Carlsbad, CA). Coelenterazine 400a was purchased from Gold 

Biotechnology (St. Louis, MO), and coelenterazine h was purchased from Promega 

(Madison, WI). Escherichia coli C41 cells were purchased through Avidis SA (Biopole 

Clermont-Limagne, France). HEK293T/17 cells (CRL-11268) were purchased from ATCC 

(Manassas, VA). The BRET vectors were obtained from Perkin Elmer (Waltham, MA).

The vector coding for human CYP1A1 (vector: pCMV-SPORT6; accession number: 

BC023019), was purchased from GE Healthcare/Dharmacon (Lafayette, CO). Human HO-1 

cDNA was derived from the pGEX-4T-2 vector and was described previously [46].

The plasmids used to generate BRET vectors (pGFP2-N1, pGFP2-N2, pRluc-N2, pRluc-N3) 

and the pGFP2-Rluc vector were obtained from BioSignal Packard (Waltham, WA). GFP2 is 

a wild-type green fluorescent protein (GFP) that has been modified by a F64L substitution 

mutation which results in brighter fluorescence but similar excitation and emission spectra. 

The BRET vectors were obtained from Perkin Elmer (Waltham, MA). BRET measurements 

were performed on a TriStar LB 941 plate reader (Berthold Technologies, Bad Wildbad, 

Germany).
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The human CYP1A1 expression system was obtained from Dr. Doug-Young Ryu (Seoul 

National University, South Korea), and expressed in Escherichia coli C41 [47, 48]. 

CYP1A1 in this construct was purified using a modification of the previous method [48]. 

Briefly, membranes from the bacterial cells were solubilized with 10 mM Tris-acetate, 

pH 7.6 containing 20% glycerol, 0.6% Tergitol NP-10, 0.625% sodium cholate, 30 μM 

α-naphthoflavone (αNF), 1 mM EDTA, 1 mM PMSF, and 10 mM β-mercaptoethanol 

(βME) (buffer A). After stirring for at least 4 h, the sample was centrifuged at 100,000 × 

g for 1 hour, and the supernatant applied to DEAE Sepharose (GE Healthcare), equilibrated 

with buffer A. CYP1A1 was eluted with buffer A and directly applied to a CM Sepharose 

column (GE Healthcare) that was equilibrated with 10 mM potassium phosphate pH 7.4 

with 20% glycerol, 30 μM αNF, 0.2 mM EDTA, and 10 mM βME (buffer B). CYP1A1 was 

eluted from the CM Sepharose with buffer B, and then slowly applied to a Reactive Red 

Agarose type 3000 (Sigma) column that was equilibrated with 20 mM potassium phosphate 

pH 7.4, 20% glycerol, 0.5% Tergitol NP-10, and 0.1 mM EDTA (buffer C). This column 

was then rinsed with buffer C containing increasing concentrations of NaCl (50 mM and 

then 150 mM) to remove impurities. CYP1A1 was eluted with buffer C containing 500 

mM NaCl. The sample was dialyzed with 10 mM potassium phosphate pH 7.5 with 20% 

glycerol and 0.1% Tergitol, and then applied to Hydroxyapatite (Biorad Type II ceramic 80 

μm) that was equilibrated with 8 mM potassium phosphate pH 7.5, containing 20% glycerol 

and 0.3% Tergitol (buffer D). The column was rinsed with 100 mM potassium phosphate 

pH 7.5 containing 20% glycerol until detergent was not detected in the eluate. CYP1A1 

was eluted with 500 mM potassium phosphate pH 7.5 containing 20% glycerol and was 

dialyzed with 100 mM potassium phosphate pH 7.5 containing 20% glycerol. Recombinant 

NADPH cytochrome P450 reductase (plasmid: pSC-POR, provided by Lucy Waskell (Univ. 

Michigan); constructed from plasmid pCWori-rabbit POR, utilizing a T7 promoter) was 

expressed in Escherichia coli C41, solubilized, and purified according to a modification of 

previously described methods [49, 50].

Measurement of protein-protein interactions using bioluminescence resonance energy 
transfer

HEK293T/17 cells were transiently transfected with 1–3 μg total DNA and Lipofectamine 

2000 at different ratios of the GFP and Rluc constructs [14, 20]. The DNA amounts in 

these transfections were adjusted to produce cells expressing approximately the same total 

protein at a range of GFP:Rluc ratios. This was done to ensure that the BRET complexes 

were specific and not due to changes in protein expression. After at least 24 hours, the 

fluorescence of the cells was checked to ensure efficient expression of the GFP fusion 

protein. Transfections were performed with the following controls: a GFP-Rluc fusion 

protein, the Rluc fusion protein alone, and cells transfected with only pUC19. Cells were 

collected in 1 ml PBS, centrifuged, and resuspended in 700 μl PBS.

A portion of the suspended cells (100 μl/well) was distributed in quadruplicate into an 

opaque, white 96-well plate (PerkinElmer; Waltham, MA). A TriStar LB 941 microplate 

reader (Berthold Technologies; Bad Wildbad, Germany) was used to measure BRET, and 

was programmed to (1) inject 100 μl of a 10 μM coelenterazine 400A/PBS solution, (2) 

shake for 1 s to mix, (3) read Rluc emission for 3 s at 410 nm, and (4) read GFP emission for 

Connick et al. Page 4

Biochem J. Author manuscript; available in PMC 2021 October 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3 s at 515 nm. The ratio of GFP fluorescence (at 510 nm) to Rluc luminescence (at 410 nm), 

immediately following the addition of coelenterazine 400a to a final concentration of 5 μM, 

was used as the BRET measurement.

The relative expression levels of GFP and Rluc tagged proteins were determined by 

comparison of the fluorescence/luminescence to cells expressing a GFP-Rluc fusion protein. 

GFP expression was estimated by measuring fluorescence (410 nm excitation, 515 nm 

emission), whereas Rluc expression was measured by adding coelenterazine h to a final 

concentration of 5 μM and measuring the unfiltered emission. The GFP and Rluc signals 

from the samples were then normalized to that of the GFP-Rluc fusion protein (which was 

assumed to have a 1:1 GFP:Rluc expression ratio), so that dividing the normalized GFP 

value by the normalized Rluc value yielded the GFP:Rluc expression ratio.

Preparation of reconstituted systems for enzyme activity measurements

Reconstituted systems were prepared as described previously [51]. A 5 mM suspension of 

DLPC in 50 mM potassium phosphate (pH 7.25) with 20% (v/v) glycerol, 0.1 M NaCl, and 

5 mM EDTA was sonicated in a bath sonicator until clarification (about 20 min). Purified 

recombinant CYP1A1, HO-1, or both were mixed with varying quantities of purified 

recombinant POR in the DLPC stock solution at a molar ratio of 160:1 DLPC:P450 when 

measuring P450 activity (or DLPC:HO-1 when measuring HO-1 activity) and preincubated 

for 2 h at room temperature.

Measurement of heme metabolism

HO-1 activity was measured using a coupled assay including biliverdin reductase (BVR), 

which converts the biliverdin generated by HO-1 into bilirubin. Reconstituted systems 

(RS) were prepared and pre-incubated for 2 h at room temperature before the addition 

of other reaction components in 0.1 M potassium phosphate (pH 7.4). The assay components 

included the reconstituted system (0.05 μM HO-1, POR ranging from 0–0.3 μM, and 8 μM 

DLPC), 15 μM heme, 0.25 U/μl catalase (to mitigate the effect of H2O2 accumulation on 

reaction linearity [52]), and liver cytosol to provide BVR (0.8 mg protein/ml). Reactions 

were preincubated at 37°C for 3 min prior to initiation of the reaction by the addition of 

NADPH to a final concentration of 0.5 mM. Each reaction was performed in triplicate in 

black, clear-bottom 96-well plates with a final volume of 0.1 ml. Bilirubin production was 

measured as the absorbance difference at 464–530 nm using an extinction coefficient of 40 

mM−1 cm−1 [53, 54].

Measurement of 7-ethoxyresorufin deethylation

CYP1A1-mediated 7-ethoxyresorufin deethylation was measured by monitoring the 

formation of the fluorescent product resorufin. The final assay conditions were the 

reconstituted system (containing 0.05 μM CYP1A1, 8 μM DLPC and POR, ranging from 

0–0.3 μM), and 4 μM 7-ethoxyresorufin in 50 mM HEPES (pH 7.5), 15 mM MgCl2, 0.1 

mM EDTA. The reactions were initiated by the addition of NADPH (final concentration 0.5 

mM) in 96-well plates, at 37°C using a SpectraMax M5 plate reader to monitor fluorescence 

(excitation: 559 nm, emission 585 nm). Initial rates were calculated using a resorufin 

standard curve.
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DynaFit Simulations based on simple competition

DynaFit (BioKin Ltd.; Watertown, MA) [55] was used to provide preliminary simulations 

of the expected results if HO-1 and CYP1A1 simply competed for POR. This simulation 

utilizes the Km and Vmax values obtained with simple binary systems containing only POR/

CYP1A1 or POR/HO-1. The equations that would govern the effect of CYP1A1 on HO-1 

activity are:

POR + HO1 POR • HO1 KPH

HO1 + S HO1 • S KHS

POR • HO1 + S POR • HO1 • S KPH+S

HO1 • S + POR POR • HO − 1 • S KP+HS

POR + CY P1A1 POR • CY P1A1 KI

POR • HO1 • S POR • HO1 + P ks

where S represents heme, the equilibrium and rate constants are alongside the equations, 

and other abbreviations already described. In order to simply the analysis and specifically 

focus on the protein-protein interactions, a saturating substrate concentration (15 μM) was 

used. KHS (for heme binding) was 15 μM, as determined using a simple binary system at 

saturating [POR] [52]. The KPH (i.e. Km
POR•HO-1) and ks (0.0022 μM and 220 pmol/min, 

respectively) were calculated from the binary system described in Fig. 5. The KI was taken 

from the Km
POR•CYP1A1 (0.10 μM) that was determined from the binary POR/CYP1A1 

system in Fig. 4.

The equations that would govern the effect of HO-1 on CYP1A1 activity are:

POR + CY P1A1 POR • CY P1A1 KPA

CY P1A1 + D CY P1A1 • D KAD

POR • CY P1A1 + D POR • CY P1A1 • D KPA+D
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CY P1A1 • D + POR POR • CY P1A1 • D KAD+P

POR + HO1 POR • HO1 KI

POR • CY P1A1 • D POR • HO1 + P kd

where D represents 7ER, the equilibrium and rate constants are alongside the equations, and 

other abbreviations already described. In order to simplify the analysis and specifically focus 

on the protein-protein interactions, a saturating substrate concentration (4 μM) was used. 

The KAD (for 7ER binding) was 0.5 μM, and was determined using a simple binary system 

at saturating [POR] (not shown). The KPA (i.e. Km
POR•CYP1A1) and kd (0.10 μM and 0.16 

pmol/min, respectively) were calculated from the binary system described in Fig. 4. The KI 

was taken from the Km
POR•HO-1 (0.002 μM) that was determined from the binary POR/HO-1 

system in Fig. 5. The script files are included as supplemental information.

Data analysis

POR titration data were fit using DynaFit, assuming tight binding for the protein-protein 

interactions. The 7-ethoxyresorufin activity data are represented as the mean ± SD for five 

reconstituted systems prepared and measured on separate days, whereas heme oxygenase 

activities are the mean ± SD for four separate determinations. The BRET data shown in 

Figures 1–3 are from a single experiment with each point being measured in triplicate. 

Because there is day-to-day variability in transfection levels, we generally observed 

variation in both the x- and y-axis values. However, each experiment was repeated on 

separate days with newly transfected proteins to ensure reproducibility. Similar results were 

obtained with each of the repeated experiments in Figures 1–3.

RESULTS

Characterization of the physical interactions among CYP1A1, HO-1, and POR

With evidence for the recently reported formation of CYP1A2•HO-1 complexes, our 

initial studies focused on whether the closely related CYP1A1 also associated with HO-1. 

Formation of this complex was detected using BRET, labeling CYP1A1 with GFP, and 

HO-1 with Renilla luciferase (Rluc). As shown in Fig. 1, the CYP1A1/HO-1 pair was able to 

produce a BRET-detectable complex. Interestingly, co-transfection with 500 ng POR (~33% 

of the total transfected DNA) caused a sharp increase in BRETmax, potentially indicating 

a stabilization of the CYP1A1•HO-1 complex by POR. Transfecting a larger quantity of 

unlabeled POR DNA (1000 ng, ~50% of the total) caused some attenuation of the BRET 

signal compared to that measured at 500 ng POR; however, a significant BRET signal 

remained indicating a stable CYP1A1•HO-1 complex.

CYP1A1 function requires the formation of a redox complex with POR. However, as the 

effect of the presence of HO-1 on the POR•CYP1A1 complex is unknown, we examined 
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the stability of this complex in the absence and presence of HO-1 (Fig. 2). As expected, 

CYP1A1-GFP and POR-Rluc generated a BRET signal consistent with the formation of a 

POR•CYP1A1 complex. Addition of 500 ng unlabeled HO-1 DNA to the transfection led to 

a sharp decrease in BRETmax, indicating that the ability of POR and CYP1A1 to form their 

redox complex was disturbed when HO-1 was present.

As a complex between POR and HO-1 is required for heme degradation, the ability of 

CYP1A1 to disrupt the POR•HO-1 complex was examined. Again, HO-1 formed a BRET­

detectable complex with POR (Fig. 3), consistent with the high affinity complex found when 

measuring HO-1 activities [56]. Transfection of 1200 ng unlabeled CYP1A1 DNA led to a 

decrease in BRETmax for the GFP-HO-1/POR-Rluc pair (Fig. 3), which is consistent with its 

ability to disrupt the POR•HO-1 complex, but not to the extent observed with disruption of 

the POR•CYP1A1 complex (Fig. 2).

Effects of HO-1 on CYP1A1 activity

Based on the BRET data, we understand that CYP1A1 and HO-1 form a stable complex 

that is not disrupted, and potentially enhanced, by the addition of POR. This suggests 

that there is, at a minimum, a ternary complex among POR, HO-1 and CYP1A1 formed. 

However, it is uncertain how POR interacts with the CYP1A1•HO-1 complex, due to the 

ability of the competing heme-containing protein to disturb complex formation with POR. 

By simple observation of the BRET data, HO-1 appears to cause a greater disruption of the 

POR•CYP1A1 complex than in the converse experiment (Figs. 2 & 3), which is consistent 

with the previously reported high affinity of HO-1 for POR when in the membrane [46]. 

These results suggest that these proteins will not simply compete for the available POR 

but may exhibit a more complex catalytic mechanism, raising questions regarding how 

monooxygenase (CYP1A1) activity and heme (HO-1) metabolism are affected by the 

presence of the competing heme-containing protein.

As expected, reconstituted systems containing POR and CYP1A1 efficiently metabolized the 

probe substrate, 7-ethoxyresorufin, with a Km
POR•CYP1A1 of about 0.1 μM (95% CI: 0.05 

– 0.15 μM), with Vmax = 0.16 μM/min (95% CI: 0.14 – 0.18 μM/min), a typical affinity 

for P450 complexes (Fig. 4 blue). The presence of equimolar HO-1 dramatically inhibited 

CYP1A1-mediated EROD activity, with inhibition evident even in the presence of excess 

POR (12:1:1 POR:CYP1A1:HO-1). This led to an increase in the apparent Km to 1.2 μM 

(95% CI: 0.3 – 2.2 μM). The apparent Vmax was 0.18 μM/min (95% CI: 0.08 – 0.27 μM/

min), and although similar to the uninhibited rate exhibited significant uncertainty.

These changes suggest that complex formation caused a conformational change that affected 

the ability of both proteins to associate with POR. To test this possibility, DynaFit was used 

to simulate the expected result from a simple model where either: (1) CYP1A1 and HO-1 do 

not form a complex and simply compete for the available POR, or (2) CYP1A1 and HO-1 

can form a complex, but complex formation does not alter the abilities of the two proteins to 

associate with POR (Fig. 4, red dashed line). The results show a sigmoidal response would 

be expected in the presence of HO-1. Because of the high affinity of HO-1 for POR, a 

significant inhibition of EROD was predicted at subsaturating POR. However, once all of the 

HO-1 binding sites were occupied (assuming a 1:1 POR•HO-1 complex), additional POR 
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would be available for binding to CYP1A1. The significant difference between the model 

and the experimental results indicates that CYP1A1•HO-1 complex formation significantly 

affected the catalytic characteristics of CYP1A1 in a manner more complex than simple 

competition for POR.

Effects of CYP1A1 on HO-1 activity

In the converse experiment, the effect of CYP1A1•HO-1 complex formation on HO-1 

activity and POR binding was examined. As previously reported [46, 51], full-length 

membrane-bound HO-1 has an extremely high affinity for POR having a Km POR•HO-1 

of < 0.001 μM (95% CI: 0 – 0.004 μM) (Fig. 5). The presence of equimolar CYP1A1 

caused a significant inhibition of HO-1 activity at subsaturating POR, but this was much 

less pronounced at the highest POR levels. It is interesting to note that the apparent ability 

of HO-1 to associate with POR was significantly altered in the presence of CYP1A1 with 

an apparent Km
POR•HO-1 of 0.31 μM (95% CI: 0.14–0.78 μM). Because of the >100-fold 

difference in affinity for POR between HO-1 and CYP1A1, we would expect the presence of 

CYP1A1 to have little effect on HO-1 activity in the case of simple competition, which was 

simulated using DynaFit. According to this model, HO-1 activity would only be marginally 

affected in the presence of CYP1A1 (Fig. 5 red dashed). These results clearly show that 

formation of the HO-1•CYP1A1 complex significantly affected the catalytic characteristics 

of HO-1.

DISCUSSION

Whereas baseline CYP1A1 expression is low, induction of CYP1A1 activity by exposure 

to aryl hydrocarbon receptor agonists has been observed in many tissues [1, 57]. HO-1 

shares this pattern of low basal expression paired with ubiquitous inducibility (in this case, 

by general oxidative stress instead of by polycyclic aromatic hydrocarbons) [36]. There are 

numerous examples of specific cells that have been shown to express both CYP1A1 and HO 

1 such as vascular endothelial cells [58–61], type II pneumocytes in the lung [62–64], and 

macrophages [65, 66], among others. This, together with the fact that both proteins share 

the cytosolic face of the ER membrane provides ample opportunity for physical interaction 

between CYP1A1 and HO-1 to occur [35, 67].

When analyzing physical complex formation using BRET, the most striking result was 

with the formation of the CYP1A1•HO-1 complex. This complex appeared to be stable 

on its own, but the lower BRETmax level suggested that a fraction of the proteins may be 

dissociated, and not in a CYP1A1•HO-1 complex. The effect of POR on the CYP1A1•HO-1 

interaction was surprising in that BRETmax was increased when 500 ng POR DNA was 

co-transfected. There are two possible explanations for these results. First, POR could 

change the affinity of HO-1 for CYP1A1, leading to the recruitment of other HO-1 and 

CYP1A1 molecules into complex formation. Second, the presence of POR could lead to a 

conformational change in the proteins, leading to a closer interaction between the GFP and 

Rluc moieties, and consequently to BRET enhancement.

Interestingly, this increase was attenuated by transfection with a larger amount (1000 

ng) of POR DNA. A plausible explanation for this behavior would be POR binding and 
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stabilizing the POR•P450 complex at lower POR levels followed by less favorable complex­

forming conditions once there is enough POR to form both POR•CYP1A1 and POR•HO-1 

complexes. Again, this change in BRET could be attributed to either another change in 

conformation that moves the GFP and Rluc moieties farther apart, or to dissociation of the 

CYP1A1•HO-1 complex.

When examined qualitatively, the BRET competition experiments for both CYP1A1 and 

HO-1 interactions with POR (Figs. 2 & 3) were roughly consistent with competition 

between the enzymes for POR binding. When specifically examining the POR•HO-1 

complex, the presence of CYP1A1 caused a moderate disruption of the POR•HO-1 complex. 

In contrast, HO-1 caused a larger disruption of the POR•CYP1A1 BRETmax. This is 

consistent with the Km values for the proteins when examined in binary systems. That is, 

with a Km
POR•CYP1A1 of about 0.1 μM and a Km

POR•HO-1 of about 0.002 μM, the presence 

of HO-1 would be expected to significantly disrupt the POR•CYP1A1 complex, whereas 

the POR•HO-1 complex would be less affected by co-transfection of CYP1A1. However, 

the data indicating formation of the CYP1A1•HO-1 complex clearly discount this simplest 

possibility.

In the event that HO-1 and CYP1A1 simply were to compete for the available POR, 

without any changes in their affinities or kcat, certain predictions could be made. We would 

anticipate that the interactions would be consistent with a competitive response. As shown 

in the simulated data (Fig. 4, black), CYP1A1 activity would be dramatically inhibited, but 

only until all of the POR binding sites on HO-1 were occupied. Further increases in the 

POR concentration would allow POR binding to CYP1A1, leading to the S-shaped curve 

predicted by DynaFit.

Experimentally, HO-1 activity was inhibited at lower POR levels; with CYP1A1 having no 

apparent effect on Vmax. Assuming that the HO-1•CYP1A1 complex either did not form, or 

the HO-1•CYP1A1 complex did not affect the ability of CYP1A1 to affect HO-1 binding 

or catalysis, HO-1 activity would not be measurably inhibited by the inclusion of CYP1A1, 

which is shown in the DynaFit simulation. The effect of CYP1A1 on HO-1 activity is much 

larger than expected given the disparity in apparent affinities of the two proteins for POR 

when measured alone. A more complete kinetic analysis will be required to decipher the 

mechanistic details related to this response.

These results are consistent with the formation of a CYP1A1•HO-1 complex that is further 

stabilized by the presence of POR. Although understanding the specific characteristics of 

this complex will require further study, the results point to a ternary CYP1A1•HO-1•POR 

complex (at subsaturating POR) and quaternary (POR•CYP1A1•HO-1•POR) complex at 

higher POR concentrations. Although the presence of CYP1A1 decreased the affinity 

of HO-1 for POR, the maximal catalytic activity of the POR•HO-1 complex was not 

substantially affected. In contrast, the presence of HO-1 caused a dramatic increase in the 

apparent Km for the POR•CYP1A1 complex, likely through a conformational change caused 

by CYP1A1•HO-1 complex formation.
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These results are particularly interesting when considering our recent report that the closely 

related CYP1A2 and HO-1 also form complexes, but the characteristics of these complexes 

are completely different [45]. Both CYP1A1 and CYP1A2 form stable complexes with 

HO-1. Although the CYP1A2•HO-1 complex is unaffected by the presence of POR, 

the CYP1A1•HO-1 BRET complex is stabilized by POR. Another major difference was 

found with the enzyme activities. Whereas HO-1 caused substantial inhibition of CYP1A1­

mediated EROD (Fig. 4), HO-1 actually caused an increase in CYP1A2-mediated EROD at 

subsaturating POR [45]. CYP1A1 also had a greater inhibitory effect on heme metabolism 

than did CYP1A2. These differences can be particularly important when considering tissue­

specific differences in P450 expression and their response to chemical- or stress-induced 

induction of HO-1. With CYP1A2 being the predominant CYP1A form in the liver, 

induction of HO-1 would be expected to have a minimal effect on CYP1A2-dependent 

activities. However, in extrahepatic tissues where CYP1A1 predominates, induction of HO-1 

may lead to substantial inhibition of CYP1A1. The consequences of these effects would be 

dependent on the expression levels of each of the contributing proteins, and the chemicals to 

which the organism is exposed.
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NADPH reduced nicotinamide adenine dinucleotide phosphate

POR NADPH – cytochrome P450 oxidoreductase
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DLPC L-α-dilauroyl-sn-glycero-3-phosphocholine

PBS phosphate buffered saline

αNF α-naphthoflavone

βME β-mercaptoethanol

PMSF phenylmethylsulfonyl fluoride
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Figure 1. 
Determination of complex formation between CYP1A1 and HO-1 – Effect of POR. HEK 

293T/17 cells were transfected with plasmids coding for human CYP1A1-GFP and Rluc­

HO-1 at a range of GFP:Rluc ratios, in the absence and presence of untagged-POR. The 

CYP1A1-GFP/Rluc-HO-1 BRET pair was measured 24 hours after transfection in the 

absence (blue), and presence of 500 ng (orange), or 1000 ng (red) of co-transfected POR 

DNA. Error bars represent the standard deviation of triplicate measurements of cells from 

a single transfection. The experiment was performed three times with small adjustments to 

transfection conditions for optimization of protein expression, generating similar results.
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Figure 2. 
Effect of HO-1 on the interaction between CYP1A1-GFP and POR-Rluc. HEK 293T/17 

cells were transfected with plasmids coding for human CYP1A1-GFP and POR-Rluc at 

a range of GFP:Rluc ratios in the absence (blue) and presence (red) of 500 ng unlabeled 

HO-1. Cells were collected 24 h after the initial transfection, and BRET was measured. Data 

points represent triplicate measurements from a single transfection. In this experiment, the 

error bars representing the standard deviation (SD) did not exceed the size of the points. This 

experiment was repeated with small adjustments to transfection conditions for optimization 

of protein expression, generating similar results.
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Figure 3. 
Effect of CYP1A1 on the interaction between GFP-HO-1 and POR-Rluc. A. HEK 293T/17 

cells were transfected with plasmids coding for GFP-HO-1, POR-Rluc at a range of 

GFP:Rluc ratios in the absence and presence of unlabeled CYP1A1. BRET signals generated 

by the POR-Rluc•GFP-HO-1 pair were measured 24 hours after transfection in the absence 

(blue) and presence (red) of 1200 ng of unlabeled CYP1A1. Data points represent triplicate 

measurements of cells from a single transfection; error bars (SD) did not exceed the size of 

the points. This experiment was repeated with small adjustments to transfection conditions 

for optimization of protein expression, generating similar results.
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Figure 4. 
Effect of HO-1 on CYP1A1-mediated EROD. Effect of HO-1 on CYP1A1-mediated 7­

ethoxyresorufin O-dealkylation. CYP1A1 (0.05 μM) was reconstituted in DLPC over a 

range of POR concentrations in the absence (red) and presence (blue) of 0.05 μM HO-1. 

The final concentration of the substrate 7-ethoxyresorufin was saturating at 4 μM. The rates 

of product formation were determined by measuring formation of the fluorescent product. 

DynaFit was used not only to fit the experimental data, but also to simulate the expected 

rate of product formation under conditions where CYP1A1 and HO-1 behaved as monomers 

and simply competed for the available POR (red dashed line). Values represent the mean and 

standard deviation from five separate experiments conducted on different days.
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Figure 5. 
Effect of CYP1A1 on heme degradation by HO-1. HO-1 (0.05 μM) was reconstituted 

in DLPC as a function of POR concentration in the absence (red) and presence (blue) 

of CYP1A1. A saturating concentration of heme (15 μM) was used in these assays. 

Heme oxygenase activity was determined using a coupled assay containing biliverdin 

reductase and monitoring the accumulation of bilirubin. DynaFit was used not only to fit 

the experimental data, but also to simulate the expected rate of product formation under 

conditions where CYP1A1 and HO-1 behaved as monomers and simply competed for the 

available POR (red dashed line). Plotted data represent the mean and standard deviation of 

four separate experiments conducted on different days.

Connick et al. Page 20

Biochem J. Author manuscript; available in PMC 2021 October 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	INTRODUCTION
	EXPERIMENTAL
	Materials
	Measurement of protein-protein interactions using bioluminescence resonance energy transfer
	Preparation of reconstituted systems for enzyme activity measurements
	Measurement of heme metabolism
	Measurement of 7-ethoxyresorufin deethylation
	DynaFit Simulations based on simple competition
	Data analysis

	RESULTS
	Characterization of the physical interactions among CYP1A1, HO-1, and POR
	Effects of HO-1 on CYP1A1 activity
	Effects of CYP1A1 on HO-1 activity

	DISCUSSION
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.

