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ABSTRACT The neonatal body provides a range of potential habitats, such as the gut,
for microbes. These sites eventually harbor microbial communities (microbiotas). A “com-
plete” (adult) gut microbiota is not acquired by the neonate immediately after birth.
Rather, the exclusive, milk-based nutrition of the infant encourages the assemblage of a
gut microbiota of low diversity, usually dominated by bifidobacterial species. The maternal
fecal microbiota is an important source of bacterial species that colonize the gut of
infants, at least in the short-term. However, development of the microbiota is influenced
by the use of human milk (breast feeding), infant formula, preterm delivery of infants, cae-
sarean delivery, antibiotic administration, family details and other environmental factors.
Following the introduction of weaning (complementary) foods, the gut microbiota devel-
ops in complexity due to the availability of a diversity of plant glycans in fruits and vege-
tables. These glycans provide growth substrates for the bacterial families (such as mem-
bers of the Ruminococcaceae and Lachnospiraceae) that, in due course, will dominate the
gut microbiota of the adult. Although current data are often fragmentary and observatio-
nal, it can be concluded that the nutrition that a child receives in early life is likely to
impinge not only on the development of the microbiota at that time but also on the sub-
sequent lifelong, functional relationships between the microbiota and the human host.
The purpose of this review, therefore, is to discuss the importance of promoting the
assemblage of functionally robust gut microbiotas at appropriate times in early life.
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WHY IS THE GUT MICROBIOTA OF EARLY LIFE IMPORTANT?

In adult humans, the gut harbors a complex microbial community that is largely com-
prised of bacterial species and often referred to as the microbiota (1). The taxonomic

composition of the microbiota is individualistic and remains relatively stable over a rea-
sonable period of time (2, 3). Detailed knowledge of the composition of the gut micro-
biota, as revealed by the study of feces of westerners, is available due to the use of
high-throughput DNA sequencing methods and bioinformatic analysis of data (1). In
addition, metagenomic studies have revealed the constancy of metabolic capacity of
the microbiota between individual humans despite differences in taxonomic content
(4). Communities with high a-diversity (numerous kinds of bacteria) are considered de-
sirable because they have functional resilience due to metabolic redundancies (5–8).
Thus, loss of a species due to ecological perturbation need not result in a loss of func-
tion that might impair normal host-microbiota relationships; this represents a kind of
“insurance policy.” Therefore, constancy (robustness) of functional characteristics of
microbiotas is desirable (9, 10).

The newborn human does not acquire the gut microbiota as a complete entity.
Rather, just as the child develops physically and mentally over a timespan of years, the
development of the gut microbiota also proceeds in a longitudinal, more or less pre-
dictable manner, mainly associated with changes to the dietary intake of the child (11–
21). Although it might seem sensible to implant a complete microbiota from healthy
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parents in the gut of progeny immediately after birth (hereditary acquisition of micro-
biota lineages), the nutritional requirements of the infant do not support the establish-
ment of an adult (climax) microbial community. The substrates required for the growth
of many members of the Lachnospiraceae and Ruminococcaceae, for example, which
are major taxa comprising the adult microbiota, are absent in exclusively milk-fed
babies (22, 23).

Interest in the development of the gut microbiota during early life of humans has
been stimulated by the desire to ameliorate childhood conditions such as the effects
of preterm birth (24–26), allergies, asthma, eczema (27–30), sleep disorder (31), autistic
spectrum disorder (32–35), type 1 diabetes (36), malnourishment (37, 38), and obesity
(39). Further, as well as assisting in the optimal physiological development of tissues
and organs, the development of a functionally resilient microbiota established by
good dietary habits in childhood might contribute to better health long term due to
lessening the impacts of metabolic diseases in the fifth decade of life and beyond (40–
42). Thus, research of the gut microbiota in early life has three worthy goals. These
goals are to understand the ecological processes that drive the establishment of bacte-
ria in the infant gut and the impact of the neonatal microbiota on formative processes
in the infant and to define the progression that culminates in a robust assemblage of
species and associated functions characteristic of the adult microbiota.

THE PIONEERS

Historical studies assumed that the infant in utero was sterile (the sterile womb par-
adigm) and that first contact with bacteria occurred during passage through the birth
canal. Although it makes sense that the infant develops in an environment protected
from potential pathogens prior to birth, some studies have challenged this concept
and have described the detection of bacterial DNA in amniotic fluid and fetal tissues
(skin, lung, thymus, spleen, and gut) (43–47). It has been reasoned that an “amniotic
microbiota” might impact on the development of the fetus that is bathed in, and swal-
lows, amniotic fluid in utero. A “placental microbiome” has likewise been reported (48,
49). Although receiving wide publicity, the existence of amniotic/fetal and placental
microbiotas has been discounted, mainly on the basis of very low biomass in samples
(suggesting contamination) and inadequately controlled PCR procedures used to
search for bacterial DNA in samples (45, 50–55). It is noteworthy that bacteria are
known to occur in amniotic fluid samples where prelabor rupture of membranes has
happened, resulting in microbial contamination (56, 57). The historical derivation of
germfree mammals by hysterectomy and hand rearing under sterile conditions pro-
vides strong evidence that the mammalian foetus in utero is sterile (58). However, this
topic is likely to stimulate much further debate.

Also debatable is the biological importance of bacterial species detected in human
milk (59–66). In the more extreme view, the infant might, through suckling, be inocu-
lated with bacteria originating in the mother’s gut microbiota. These bacteria might
migrate from the gut lumen, circulating to the mammary glands within blood phago-
cytes (67). This prospect, too, is counterintuitive to the historical concept of breast milk
as a hygienic, nutritive source for baby. Through breastfeeding, the mother provides
dependent, refuge-bound offspring with nutrients from maternal reserves. The selec-
tive advantage to lactating mothers, who can provide infant nutrition without having
found food recently, is substantial when food supplies are uncertain (68). Nipples make
possible the direct transfer of milk from the breast to the infant digestive tract. It
makes sense to keep this food supply relatively free of interference by bacteria; the
microbes will otherwise remove nutrients from milk, might produce metabolites toxic
to the infant, produce metabolites with unpleasant taste, or be overt pathogens. Milk
expressed from the breast contains bacteria, but these are mainly bacteria characteris-
tic of cutaneous or oral habitats. Staphylococci (especially Staphylococcus epidermidis)
and streptococci are consistently the most prevalent and abundant bacteria detected
across studies (69–74). Moreover, microbial numbers in human milk are low (usually
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1 � 103 to 1 � 105 CFU/ml), suggesting contamination of milk during collection or due
to suckling (retrograde inoculation) rather than colonization of the lactiferous ducts
and sinuses within the breast (67, 75). Milk obtained before the infant feeds (“foremilk”)
is dominated by bacteria characteristic of the maternal skin microbiota, whereas after
feeding (“hindmilk”), bacteria characteristic of the oral microbiota of the infant are the
most common (76). Thus, there is strong evidence that human milk bacteria are alloch-
thonous species in that they originate in other habitats.

The contribution of the maternal fecal microbiota to the early seeding of the infant gut
is well established (77–84). Could it be that the proximity of the opening of the birth canal
to the anus is not coincidental? Defecation by mother during childbirth is very common,
including at the final “push”; the baby’s head emerges usually in the best fitting orientation
with the face looking toward the rectum, and there is a lot of fluid (“the waters”) rinsing the
area, making cross-contamination possible. Meta-analysis of fecal metagenomic data from
approximately 1,900 familial subjects recruited to nine studies demonstrated the predomi-
nant influence of the maternal fecal microbiota in the acquisition of bacterial strains during
the first year of life (84). Bifidobacterium, Bacteroides, Parabacteroides, Faecalibacterium,
Blautia, and Ruminococcus strains were particularly involved. The fecal microbiotas of adult
twins tend to be more similar in composition compared to those of their siblings (4, 85–87).
This supports the view that the taxa entering the gut around the time of birth may have
long-term effects on gut microbiota composition because the twins are born into the same
environment, whereas the birth of siblings is distanced from them in time, space, and cir-
cumstance. Genetic influences and very long-term cohabitation effects, of course, cannot
be ruled out (87, 88). Further, the fecal microbiota of infants delivered by sterile caesarean
section (C-section) is more likely to lack fecal bacteria such as bifidobacteria and Bacteroides
and is more likely to contain a diverse variety of oxygen-tolerant taxa, including those usu-
ally found on the skin and in the hospital environment (82, 89–98). This observation has
been considered to indicate an influence of vaginal bacteria in early colonization but really
points to the importance of the anal/birth canal proximity. Microbiological studies with C-
section infants are somewhat confounded because the mothers are routinely administered
antibiotics prior to delivery of the child (intrapartum antibiotic prophylaxis). “Vaginal seed-
ing” involves the deliberate exposure, immediately after delivery of C-section infants, to
vaginal secretions collected from the mother on a gauze swab (99). Based on the examina-
tion of a relatively small number of babies, vaginal seeding is reported to “partially restore”
the fecal microbiotas of C-section infants (99) but does not produce the dramatic difference
in microbiota composition obtained by oral inoculation of C-section infants with prepara-
tions of maternal feces (“maternal fecal microbiota transplant”) (100). Moreover, the influ-
ence of the vaginal microbiota on the fecal microbiota of even vaginally delivered infants is
brief. Typical vaginal bacteria (Gardnerella vaginalis, Atopobium vaginae, Lactobacillus crispa-
tus, and Lactobacillus iners) are detected (at low relative abundance) in infant feces only
within the first few days after birth (84). Some clinicians have questioned the safety of vagi-
nal seeding because they fear increased likelihood of transfer of potential pathogens from
mother to child in an ill-defined system (101). The compositional differences in microbiotas
detected in infants delivered vaginally or by C-section (without vaginal seeding) disappear
eventually (microbiota development converges between the two groups), so catch-up in
the assembly of a characteristic infant microbiota is possible (102–104). When this happens
is difficult to determine accurately because few fecal sampling times prior to 3 months after
birth have been included in microbiota studies. It may occur at less than 3 months or some-
times more than 12 months after birth. The importance of these early differences in micro-
biota composition may be relevant to development of the immune system (asthma and
allergies) or metabolic disease (obesity) according to some researchers. These conclusions
are based on the relative risk of the specific diseases or conditions in vaginally or C-section
delivered people later in life (105, 106).

Antibiotic administration to infants is also likely to contribute to disruption of the
development of the gut microbiota. Infants born preterm commonly receive antibiotic
treatment as a prophylactic measure (107–113). Of interest is the work of Vatanen
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et al., who found a differential effect of antibiotic treatment on bifidobacterial species:
B. longum and B. breve populations appeared to be relatively unscathed by antibiotic
exposure compared to the other common bifidobacterial species detected in the gut
microbiota of infants (109). Also of note, the size of bifidobacterial populations in the
fecal microbiota is inversely related to the prevalence of antibiotic resistance determi-
nants detected in the microbial community (108).

ASSEMBLY OF THE MICROBIOTA INVOLVES AN ECOLOGICAL SUCCESSION

Regardless of source of inoculating bacteria and other potential confounders, the
establishment of a microbiota in the infant gut in the days, weeks, and months following
birth is characteristically an ecological (biological) succession. An initial, heterogeneous col-
lection of species is replaced by specific bacterial populations, consistently detected in the
majority of infants, which expand or decrease in size over time in a characteristic manner
(114). The metabolic activities of the early arrivals lower the oxidation-reduction potential
(Eh of meconium, 1175 mV; 2-day-old infants, 2113 mV) of the digesta and so provide a
more suitable environment for the establishment of obligate anaerobes that will eventu-
ally dominate the microbiota. The qualitative and quantitative changes characteristic of
the ecological succession are regulated by factors described as autogenic (formed within
the habitat, such as competition for nutrients and Eh) or allogeneic (influences from out-
side the habitat, such as growth substrates in the food that is consumed) (114).

Tissier reported, in 1905, the predominance and persistence of Gram-positive bacterial
cells in the feces of infants fed human milk exclusively (115). A greater variety of bacterial
morphotypes was present in the feces of infants fed cow’s milk. This difference between
fecal microbiotas of infants fed human milk or formula (based on ruminant milk) still exists
today even though modern formula resembles human milk more closely in nutritional
aspects (89, 116–122). In most comparisons, members of the genus Bifidobacterium are
abundant in the feces of infants fed exclusively human milk (relatively about 60% of the
microbiota on average, but 100% of the microbiota in some infants) whereas the commu-
nity has a more varied taxonomic composition when infants are exclusively formula-fed
(about 40% bifidobacteria) (78, 118, 120, 123–130) (Table 1). Curiously, although fed
human milk, some infants have very low relative abundances of bifidobacteria in the feces.
Sometimes, none at all are detected even when more than one fecal sample is collected
and examined. It is possible that these results are due to lack of sufficient sensitivity of
detection methods (including poor choice of PCR primers and DNA extraction methods),
in conjunction with fluctuating population levels of bifidobacteria (131, 132). However,
there really may be infants who missed exposure to bifidobacteria at a critical time (the

TABLE 1 Examples of differences in fecal microbiotas of infants fed human milk or cow’s milk
formula

Bacterial family

Mean % (SEM)a

Human milk Cow’s milk formula
Bifidobacteriaceae 61.36 (6.28) 40.99 (5.16)
Lachnospiraceae 4.22 (2.65) 22.11 (4.52)
Erysipelotrichaceae 0.21 (0.15) 7.99 (2.34)
Enterobacteriaceae 8.22 (2.40) 4.42 (1.14)
Coriobacteriaceae 6.10 (2.67) 4.59 (2.20)
Streptococcaceae 4.12 (2.81) 4.04 (1.46)
Clostridiaceae 2.67 (1.33) 6.23 (2.80)
Enterococcaceae 0.88 (0.38) 3.80 (0.83)
Bacteroidaceae 4.93 (1.99) 0.03 (0.02)
Lactobacillaceae 1.75 (0.69) 0.07 (0.03)
Veillonellaceae 1.59 (0.81) 0.26 (0.12)
Peptostreptococcaceae 0.19 (0.10) 0.94 (0.56)
Ruminococcaceae 0.35 (0.24) 0.64 (0.42)
aRelative abundances of the 13 most highly represented bacterial families in the feces of 2-month-old infants fed
human milk or formula; 30 infants per group (data from reference 120) are presented. Statistically significantly
different values are indicated in boldface.
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“window of opportunity/infectivity”). Normally, however, bifidobacteria predominate in
the microbiota of infants during the exclusively milk fed period of life.

The relative abundance of bifidobacteria begins to decline once weaning (the introduc-
tion of solid foods to the diet, complementary feeding) begins, usually at 4 to 6 months of
age in western countries. The intake of milk (both human and formula) declines from then
on and, concomitantly, an increased amount of plant glycans (dietary fiber) is consumed
(20). Thus, growth substrates for bacteria provided by milk are reduced in concentration in
the gut, while those associated with “solid” foods increase. The increasing complexity of the
diet between 6 and 12 months of age provides a wider range of potential growth substrates
for obligately anaerobic bacteria that have degradative and fermentative capacities in rela-
tion to dietary fiber (11, 14, 17, 18, 133–135). Therefore, the diversity of bacterial types com-
prising the microbiota increases because, although population sizes of Bifidobacteriaceae are
reduced and Bacteroidaceae remain much the same, those of Lachnospiraceae and
Ruminococcaceae are increased. The relatively large Enterobacteriaceae population of early
life declines in size as the obligately anaerobic taxa that produce short-chain fatty acids, in-
hibitory to the enterobacteria, establish and proliferate in the gut (15, 20, 136, 137) (Fig. 1).
Stewart et al. (138) provided a comprehensive view of the development of the fecal

FIG 1 Examples of differences in the relative abundances of selected bacterial families detected in the
feces of the same New Zealand infants (n = 74) sampled at 7 compared to 12 months of age. (A)
Bifidobacteriaceae; (B) Bacteroidaceae; (C) Lachnospiraceae; (D) Ruminococcaceae; (E) Enterobacteriaceae. The
data are from reference 20.
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microbiota of approximately 900 children, at risk of developing type 1 diabetes, which were
recruited in various locations in the United States and Europe and sampled monthly from
3 months of age. Three phases of microbiota development could be recognized using 16S
rRNA gene and metagenomic sequence analysis: a “developmental” phase (months 3 to 14),
a “transitional” phase (months 15 to 30), and a “stable” phase (months 31 to 46). Particular
taxa were identified as markers of each phase because of changes in relative abundances
over time (for example, bifidobacteria in the developmental phase, Subdoligranulum and
Anaerostipes in the transitional phase, and the Eubacterium rectale group in the stable phase).
Based on taxonomic criteria, most studies point to the assembly of an adult-type microbiota
by 2 years of age, but further research may show that the process continues for an extended
time (139–144). Firm conclusions will not be drawn until gaps in the sampling of age groups
3 to 6 years, 6 to 12 years, and 12 to 18 years have been filled (141). Nevertheless, biochemi-
cal features of adult feces that reflect bacterial degradation of human secretions (decreased
protease activity, increased mucin and bilirubin degradation, and cholesterol reduction to
coprostanol) generally appear by age 12 to 24 months (145–150).

Although a general pattern, outlined above, of assembly of the gut microbiota of
infants can be recognized, confounding factors modify the acquisition of the micro-
biota. For example, ethnic differences in microbiota composition can be detected even
prior to the start of complementary feeding in Chinese, Malay, and Indian infants living
in Singapore (103). Ethnic differences in microbiota composition point to the potential
impact of human genetics, and/or fecal microbiotas of family members, and/or general
household environment on the development of the gut microbiota (142, 151, 152). All
things considered, the genotype of the host probably has little impact on the composi-
tion of the adult microbiota, but the situation in infants has not been investigated
comprehensively (153–156). Differences in gut microbiota compositions between eth-
nic groups prior to weaning might also be due to environmental factors such as dietary
preferences of the mother and other household members that could select for particu-
lar bacterial strains that would be dispersed to the infants (142, 157, 158). Humans
sharing the same environment tend to have microbiotas that are more similar in com-
position, indicating greater dispersal/acquisition of gut bacteria (159–162).

Environmental ecologists support the “Baas Becking hypothesis” in which it is
postulated that all types of microbes occur in all soils, no matter where (“everything is
everywhere”), but that the properties of different soils in different locations favor the
assemblage of microbial communities of different compositional proportions (“but the
environment selects”) (163). Equally, the infant gut may be exposed to bacterial species
from a variety of sources, but a characteristic community, of different complexity to
that of the mother’s adult microbiota is assembled during the first 3 months of life.
This infant community is simple in composition (low alpha-diversity), dominated by
the family Bifidobacteriaceae, in contrast to the highly diverse microbiota of an adult.
The differences in complexity provide something of a conundrum because, ecologi-
cally, high diversity equates to functional resilience. Perhaps the functional require-
ments of the microbiota of infants are quite simple at this stage of life and so can be
provided by a simple but highly networked community? The relatively limited nutri-
tional resources available to bacteria in the habitat could be depleted by a low diver-
sity, yet metabolically highly specialized, community that would ensure competitive
exclusion of pathogens. In contrast, in a more complex nutritional environment, a
higher diversity microbiota would be required to fill all of the ecological niches (164).
With these differences in view, the bowel of exclusively human milk-fed infants is likely
to provide an example of environmental selection due to the provision of a “fertile
soil” in which a limited collection of specialized bacteria can thrive (165).

HUMANMILK OLIGOSACCHARIDES PROVIDE A “FERTILE SOIL” FOR SOME BACTERIAL
SPECIES

Complex carbohydrates, synthesized in the mammary glands, form the third most
abundant solid component of mature human milk (10 to 15 g/liter) (166–168). They are
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referred to as human milk oligosaccharides (HMOs), of which there are at least 150
types (169, 170). These are constructed from five building blocks: glucose, galactose,
N-acetylglucosamine, fucose, and sialic acid. In general, they consist of a lactose core
linked to lacto-N-biose or to N-acetyllactosamine. The lactose core can be elongated at
the C-3 position of galactose with repeats of lacto-N-biose (Galb1-3GlcNAc; referred to
as type 1 chain) or N-acetyllactosamine (Galb1-4GlcNAc; type 2 chain) (171). The termi-
nal lactose in the chains may be linked to fucose (a1-2, a1-3, or a1-4 linkages) or sialic
acid (N-acetylneuraminic acid [Neu5Ac]; a2-3 or a2-6 linkages) (172, 173). Fucosylation
depends in part on the “secretor” status of the mother; the FUT2 gene encodes a fuco-
syltransferase and results in milk containing a1-2 fucosylated HMOs. These are absent
in the milk of “nonsecretor” mothers because they have a FUT2 gene that encodes an
inactive protein (174, 175). Elongation of chains can occur at the C-6 position of galac-
tose, resulting in branched molecules. HMOs can be separated from human milk to
give an acidic fraction (mostly sialylated oligosaccharides; 12 to 14% of HMOs in milk)
and a neutral fraction containing oligosaccharides that may be fucosylated (35 to 50%
of HMOs in milk) or nonfucosylated (42 to 55% of HMOs in milk) (176). HMOs that have
a type 1 chain linkage (such as lacto-N-tetraose [LNT]) are not degraded by human
b-galactosidase in the small bowel, whereas those with a type 2 linkage (such as lacto-
N-neotetraose [LNnT]) are susceptible to cleavage (171). However, type 1 chains are
predominant in human milk, and it is considered that much of the HMO fraction of
milk is not digested in the small bowel but passes to the colon where the oligosaccha-
rides are metabolized by bifidobacterial species (172). Bacteroides thetaiotaomicron,
Bacteroides vulgatus, Bacteroides fragilis, and Akkermansia muciniphila are also able to
degrade HMOs because HMO structures make them similar to those of mucin oligosac-
charides (Lewis antigens) (177, 178). The Bacteroides species are more abundant in the
feces of infants fed human milk than cow’s milk formula, indicating that HMOs enrich
for these bacteria, too, and divert their degradative activities away from mucins in the
mucus layer lining the gut (120, 179, 180). The molecular mixture of HMOs detected in
human milk varies between mothers but remains constant, per individual, throughout
lactation. However, quantities diminish with time (168, 181–187). Comparison of the
amounts and structures of HMOs in human milk of mothers and the feces of their
infants provides evidence of transit of HMOs through the gut and degradation of at
least some of these structures by bacteria, as well as bacterial utilization of carbohy-
drates linked to proteins (N-glycans) (185–187).

The common bifidobacteria detected in global studies of infant feces fed human milk
include B. longum subspecies infantis, B. longum subsp. longum, B. breve, and B. bifidum.
Other species detected in some studies include Bifidobacterium animalis subsp. lactis,
Bifidobacterium pseudocatenulatum, Bifidobacterium dentium, Bifidobacterium adolescentis,
Bifidobacterium catenulatum, Bifidobacterium kashiwanohense, and Bifidobacterium scardo-
vii (78, 120, 123, 126, 188–192). There is a good biochemical fit between the common bifi-
dobacterial species and HMOs because the bifidobacteria produce fucosidases, hexosami-
nidase, sialidase, biosidase, and galactosidases that hydrolyze the oligosaccharides (170,
193–212). These enzymes are located at the cell surface of B. bifidum, whereas they are in-
tracellular in B. longum subsp. infantis and subsp. longum and in B. breve (213). Thus,
HMOs are internalized by the latter species before hydrolysis occurs, whereas cleavage of
the oligosaccharides by B. bifidum results in accumulation of fucose and sialic acid in the
extracellular environment because the bacteria do not use these substances for growth
(205, 214–216). Fucose and sialic acid are, however, growth substrates for some strains of
B. breve, thus providing an opportunity for syntrophy between the two species (214, 215).
However, cleavage of fucose or sialic acid from simple HMOs such as 29-O-fucosyllactose
(2FL) or 69-O-sialyllactose also liberates lactose that is utilized for growth by both B. bifidum
and B. breve. Therefore, a seemingly beneficial cross-feeding interaction between the bifi-
dobacterial species might become competitive (215). In vitro, B. bifidum has been shown
to adjust to the situation because its abundance is the same in monoculture as in cocul-
ture with B. breve in medium containing 2FL. B. bifidum achieves this in coculture by
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increasing transcription of the fucosidase gene so that more lactose becomes available
and by increasing transcription of genes associated with carbohydrate transport and with
energy production and conversion (215). B. bifidum also has the capacity to use mucin as a
substrate, perhaps explaining why it persists in the feces of infants even when weaned, at
which time HMOs are no longer available (217–219). The biochemical pathways associated
with the utilization of HMOs by bifidobacterial species has been well reviewed recently by
Sakanaka et al. (211). There is more lactose in human milk than the infant can utilize (traces
can be detected in infant feces), so this substance, too, is available for microbial growth
(132). Much more information about the intricacies of metabolic interaction among bifido-
bacteria is required in order to understand nutritional regulation of these populations.

Efficiency of use of HMOs and their component parts for growth is markedly differ-
ent between bifidobacterial species and can be used to differentiate between them in
laboratory culture (Fig. 2). B. longum subsp. infantis has much the best growth on HMO
substrates, probably because of the expression of a cluster of genes that form an HMO
utilization locus in the genome of the bacteria (206). The capacity of subsp. infantis to
preferentially utilize and efficiently grow on the most abundant (especially fucosylated)
HMOs (220, 221) should ensure its dominance in the gut of infants fed human milk, yet
this seems not always to be the case. Infants in California and in some other regions of
the United States, as well as in particular countries, are reported to have low abundan-
ces of subsp. infantis. However, data are relatively sparse, and it is difficult to gain a
good global perspective (95, 124, 130, 189, 192, 222–227). A paucity of subsp. infantis
could be related to feeding practices, or perhaps some environments are not condu-
cive to the transmission of subsp. infantis (224). Nevertheless, bifidobacteria in general
are abundant in the gut microbiota of infants, and bacterial genes associated with
HMO utilization are more abundant in fecal DNA when infants are receiving human
milk than during weaning (109).

BIFIDOBACTERIAL FUNCTIONS IN RELATION TO INFANTWELL-BEING

A preponderance of bifidobacteria in the gut may mediate competitive exclusion of
bacterial pathogens by virtue of the creation of an acidic environment due to fermen-
tation products acetate and lactate (propanediol in the case of fermentation of fucose
by B. longum subsp. infantis and B. breve) (215, 228). Fecal pH of infants fed human
milk is lower than that of formula-fed (cow’s milk-based) infants (229–232). Although
the amount of historical data are limited, some investigators argue that fecal pH of
western infants may have increased temporally due to a paucity of subsp. infantis in
the gut microbiota (233). Infants fed formula have a fecal metabolome suggestive of
greater metabolism of peptides and amino acids than do human milk-fed infants. This
probably reflects the lower oligosaccharide content of formula, higher protein content
of formula, different microbiota composition, and slower gut transit time in formula-
fed infants compared to those fed human milk (234, 235).

Apart from a competitive exclusion role, bifidobacteria may be important to infant
development because they produce folate (vitamin B9), which is a coenzyme or cosub-
strate in single-carbon transfers in the synthesis of nucleic acids and metabolism of
amino acids (13, 236). An important folate-dependent reaction is the conversion of ho-
mocysteine to methionine in the synthesis of S-adenosylmethionine, a methyl donor.
Another folate-dependent reaction, the methylation of deoxyuridylate to thymidylate
in the formation of DNA, is required for proper cell division (237). The enrichment of
genes involved with the de novo biosynthesis of folate (known to be absorbed from
the colon) in infants relative to the favored synthesis of another B vitamin, cobalamin,
in adults is interesting because it provides circumstantial evidence that folate produc-
tion in the infant gut is of developmental significance (13, 238).

A baby’s brain is only 15% formed at birth and in 3 years increases in weight from
300 g to 1.2 kg and exceeds the rate of growth of any other organ or body tissue (239).
The infant is born with neurons already formed but the synaptic connections between
these cells are mostly established and elaborated after birth, causing a large nutritional
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demand for the biosynthesis of gangliosides. Nutrition of the infant in early life affects
developmental processes, including cognition (240–243). While long-chain fatty acids in
milk (such as docosahexanoic acid) have been the focus of much of this research, there
is tantalizing evidence that sialic acid is also important for optimal brain development
and cognition (244, 245). Sialylated oligosaccharides are detectable in the blood of
infants and the sialic acid content is higher in the brain of human milk-fed infants rela-
tive to formula-fed infants (246–248). Perhaps metabolism of HMOs by bifidobacterial
species, particularly the extracellular sialidase activity of B. bifidum, makes a contribution
to this phenomenon?

Many clues to the influences of the gut microbiota on the mammalian host have
been obtained from comparisons of the biochemical and physiological characteristics

FIG 2 Heat map showing the growth (optical density after 24 h anaerobic incubation) of bifidobacterial species
(B. longum subsp. infantis, B. longum subsp. longum, B. bifidum, and B. breve) in media containing HMO
fractions (0.2% [wt/vol]) or component molecules (0.2% [wt/vol]) or basal medium (no added carbohydrates).
The data are from references 191 and 215.
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of germfree mice with conventional animals (which have a microbiota) (249). Among
the differences in these animal groups is the underdevelopment of immune features,
including the lesser size of ileocecal lymph nodes and the gamma-globulin fraction of
blood of germfree animals. Experiments with ex-germfree mice colonized by a gut
microbiota show that the presence of the bacteria programs the immune system to-
ward tolerance of members of the microbiota while still retaining the ability to prevent
invasion and dispersion of pathogens in the body (29, 250–255). The maintenance of
this homeostasis is dependent on tightly controlled immune responses as well as parti-
tioning of functions (mucosal relative to systemic immunity) (256–258). Modulation of
immune function can be achieved for the most part by inoculating adult ex-germfree
mice at any age with a gut microbiota (259). However, the ability to restore some cellu-
lar defects (for example, negating the mucosal accumulation of invariant natural killer
T cells in gut mucosa) that occur in the absence of the microbiota is restricted to a
short time interval in early life and thus is age dependent (29, 259). Therefore, the
members of the gut microbiota in very early life of humans may have important inter-
actions with the developing immune system. In this context, a variety of molecules
associated with bifidobacterial cells are reported to stimulate aspects of the immune
system, and the size of bifidobacterial populations has been correlated with the
amount of salivary sIgA production and B cell maturation (260–263). Bifidobacterial
effects on the expression of the dendritic-cell activation marker CD83 and the produc-
tion of interleukin-10 (IL-10), as well as response to vaccinations by human infants,
have been reported (124, 192). Infants inoculated with the EVC001 strain of B. longum
subsp. infantis harbor abundant bifidobacteria in the gut, and there is a negative corre-
lation with fecal cytokines IL-13, IL-17A, IL-21, and IL-33 that indicates a silencing of
Th2 and Th17 responses in the gut. This phenomenon may be mediated by a specific
metabolite (indole-3-lactic acid) produced by bifidobacteria when they utilize HMOs
(264). However, overall, research on this topic seems to lack cohesion and relation to
real life. It may indeed be an intractable situation given that few babies have low or
absent bifidobacterial populations for comparative purposes, that low bifidobacterial
populations are counterbalanced by those of other bacterial species, and that sam-
pling of appropriate immune features is difficult and therefore very limited in neonatal
humans.

The maternal production of milk rich in substances that do not obviously contribute
to the nutrition of the child is certainly curious and indicates a phenomenon of evolu-
tionary importance. As well as providing “fertilizer” to encourage a predominance of
bifidobacteria in the colon that could contribute to competitive exclusion of patho-
gens in the gut and assist infant nutrition as indicated above, HMOs probably also con-
tribute to host defense through decoy functions in that they resemble receptors in the
gut mucosa to which pathogens, including viruses, may bind. “Mopping up” patho-
gens in the gut lumen with HMOs would minimize opportunity for mucosal adherence
and infection to occur. Examples of possible decoy roles apply to the bacterial patho-
gens Campylobacter jejuni, enteropathogenic Escherichia coli, viruses such as norovirus,
and the protozoan Entamoeba histolytica (265–270). However, some caution is required
because G10P[11] rotavirus infection of neonates has been reported to be facilitated
by the presence of HMOs (271). In vitro studies indicate inhibitory effects of HMOs on
some bacteria and promotion of epithelial cell integrity (272–277). These effects may
be specific to particular HMOs (268).

THE RESEARCH PATH AHEAD

Human milk for human infants in the months following birth is clearly the desired
option to satisfy the nutritional requirements of the child. Exclusive breast milk feeding
during the first 6 months of life and partially breast milk-feeding during weaning, is
recommended by the World Health Organization, as well as by professional medical
associations and agencies (278). Maternal antibodies in milk, iron-sequestering mole-
cules, and molecular decoys help provide protection of the newborn infant from
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infections (279, 280). For example, data gathered from about 20,000 mother/infant
pairs at a time when antibiotics were not available in pediatrics (1930s), show that
infants fed totally “artificially” demonstrated 3-fold-higher morbidity and 7-fold-higher
mortality from gastrointestinal disease than infants fed human milk. Partially artificially
fed infants had 2.5 times more morbidity and 3 times higher mortality than infants fed
human milk (279, 281). HMOs are probably molecular decoys allied to protection from
infection but collaterally encourage the development of an abundant bifidobacterial
population in the gut microbiota during the period of exclusive human milk feeding.
The bifidobacterial population commonly contains several species that have varying
abilities with respect to utilization of HMOs. The relative efficiency of utilization of
HMOs by different bifidobacterial species has been studied, but the interactive rela-
tionships between species and between bifidobacterial and other gut inhabitants has
only been studied superficially. There is a need, therefore, to define how a stable (ro-
bust) microbiota is maintained during the first months of life, probably by means of
cooccurrence or metabolic networks (282, 283). Once identified, the trophic networks
could be established using in vitro systems, probably including simple chemostats
(215) and tested for resilience when nutritional factors are altered.

The early contribution of bacterial strains from maternal feces to infants is likely to
be very important, but further research is needed to establish specific effects resulting
from this early seeding. Indeed, murine studies using antibiotic-treated and gnotobi-
otic animals suggest that, even before birth, the maternal gut microbiota influences
the concentrations of numerous molecules in maternal serum and hence in fetal brain
(284). Thus, the maternal microbiota metabolism may influence neural development
even in utero! An exciting prospect is therefore the study of the influence of maternal
microbiota pre- and postpartum to delineate a potentially critical and long-term rela-
tionship that goes beyond the usual mother-child nurture.

Modification of infant formula will continue to be made so as to increase the oligo-
saccharide content and provide “probiotic” bacteria that might function in the gut eco-
system. Space limitation does not allow substantial review of these two topics, but
examples are provided with comments in Table 2. The nascent use of synthetic HMOs,
29-O-fucosyllactose (2FL) and lacto-N-neotetraose (LNnT) as additives for infant formula
is of considerable interest (325–328). 2FL is the major HMO in milk from secretor moth-
ers, comprising almost 30% of all HMOs present (327). As discussed above, the enrich-
ment of bifidobacteria in the infant gut may not be the sole evolutionary function of
HMOs and galacto- and fructo-oligosaccharides (GOS/FOS) are only able to provide
growth substrates for bacteria. Thus, the inclusion of synthetic HMOs in formula may
be an important advance. To date, trials with infants indicate that formula supple-
mented with 2FL/LNnT is safe for ingestion by neonates (329, 330), but the bifidobacte-
rium-stimulating effect is likely to be species-specific because some bifidobacteria (for
example, strains of B. breve) cannot metabolize these HMOs (Fig. 2) (191, 215). The few
microbiological investigations of infants fed supplemented (synthetic HMOs) relative
to nonsupplemented formula are somewhat unsatisfactory because the bifidobacterial
data are superficial and the numbers of infants examined are small (328). The use of
LNnT in formula is curious because it is susceptible to cleavage by human b-galactosi-
dase (171). Caution about reliance on the addition of single HMOs is suggested
because different developmental effects of human milk in the infant might relate to
specific HMOs. Certainly, the addition of one or two HMOs to formula does not repli-
cate the features of human milk where a diversity of HMO structures is a characteristic
feature.

In-depth knowledge of the immunological influences of bifidobacterial species in
very early life requires more research. Specifically, we need to know whether they are
the critical bacterial species that affect the aspects of immune development that, as
mentioned above, cannot be replicated in older gnotobiotic animals. Since most
human infants are naturally exposed to bifidobacteria, much of this work will probably
require comparisons of germfree and gnotobiotic animals exposed to bifidobacteria
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and fed human milk. However, comparisons of the effects of infant formulas with or
without bifidobacterial components may also be useful in this research. The success of
this approach will depend on which bifidobacterial species are included in the formula
and must also take into consideration the biochemical differences that exist between
human milk and formulas. In other words, the background nutritional environment

TABLE 2 Examples of probiotic, prebiotic, and synbiotic approaches to influencing the assemblage of gut microbiota in infants

Approach Organism Description
Probiotics L. rhamnosus In separate studies, Lactobacillus rhamnosus strain GG or strain HN001 (DR20) was

administered to mothers whose children were at high risk of developing allergies. The
probiotic was taken by mothers before the baby was born and was administered
postnatally to the infants for 6 months. The occurrence of atopic eczema at 2 years of
age was recorded as the main point of comparison between placebo and test groups.
Atopic eczema was diagnosed in 50% fewer probiotic-administered infants compared
to controls (285, 286). Strain HN001 was shown to be present in about 60 to 70% of
the infants in the test group (5% in the placebo group) when feces were tested on a
single occasion during the course of the study (286). Thus, efficacy could be linked to
the passage of the probiotic strain through the gut. Probiotic trials like this do not
relate directly to the natural situation where lactobacilli, although detectable, are
present at low relative abundances in the gut microbiota compared to values
associated with the common bifidobacterial species (120). Nevertheless, there has
been much pediatric interest in this topic, and there is an extensive review literature
regarding the impact of the administration of probiotic products on the prevalence of
allergies and atopy in children (287–293). In general, clinical views of the effectiveness
of these products are rather mixed.

B. infantis (presumbaly B. infantis
subsp. infantis; B. bifidum included
in later versions of this product)
and Lactobacillus acidophilus or B.
breveM-16V

Premature, very-low-birthweight infants (,1,500 g) are highly susceptible to
necrotizing enterocolitis (NEC) wherein the infants show poor feeding and spilling of
gastric contents (which may be bile stained), abdominal distension, and blood in
feces. Necrotic inflammation of the intestine may lead to perforation and bacterial
infection and, potentially, NEC has high mortality (294). Reduction in historical rates of
NEC have been reported when administration of these probiotics to infants in
neonatal intensive care has been introduced as a routine practice (295–300).

B. animalis subsp. lactis BB-12 Administration of formula containing B. animalis subsp. lactis BB-12 augments
bifidobacterial abundance in the feces of preterm infants, and enterobacterial
proportions are reduced (302, 303).

Synbiotic B. breveM-16V, galacto- and fructo-
oligosaccharides

Feeding formula containing B. breveM-16V in combination with short-chain galacto-
oligosaccharide and long-chain fructo-oligosaccharide augments bifidobacterial
proportions in the microbiota of C-section infants. Both the probiotic strain and
naturally colonizing B. breve strains were boosted in the infant gut. Fecal pH was
lowered compared to controls due to increased acetate production by the microbiota,
and there was a reduction in the proportion of Enterobacteriaceae (301).

Prebiotics Galacto- and fructo-
oligosaccharides

Efforts have been made to increase the oligosaccharide content of formula by the
addition of naturally occurring or synthetic oligosaccharides. Galacto- and fructo-
oligosaccharides (GOS and FOS, respectively) are common prebiotics used for this
purpose (304–308). Commercially available GOS contain oligosaccharides composed
of galactose residues that are variously linked b-D-1,2, b-D-1,3, b-D-1,4, and b-D-1,6
and range in degrees of polymerization (DP) from 2 to 5. Each oligosaccharide is
terminated with a glucose residue. FOS contain two series of b-D-2,1-linked fructo-
oligosaccharides, one of which contains a terminal glucose (GF series, with DPs of 2 to
6) and one which does not (F series, with DPs of 2 to 6) (309–311). As such, GOS and
FOS do not chemically resemble HMOs, but various bifidobacterial species are known
to utilize GOS and FOS for growth in laboratory experiments (312–314). Inclusion of
the substrates in formula tends to result in somewhat augmented total bifidobacterial
populations in infant feces relative to controls (315–322). In coculture experiments, B.
breve has demonstrated the greatest trophic potential with respect to GOS/FOS to
outcompete the subspecies of B. longum (323). Unfortunately, the in vivo effect of
GOS/FOS dietary supplementation on the proportions of the different species within
bifidobacterial populations has not been included in trials in which the outcome of
feeding supplemented formula has been compared to that of nonsupplemented
formula. This may be due to past difficulties in differentiating between bifidobacterial
species using DNA-based methodologies (224, 324).
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may confound extrapolation of results from formula-fed infants to those fed human
milk.

Although the bifidobacteria have been a major focus of the gut microbiota in early
life throughout microbiological history, the predominance of these bacteria in the gut is
a transient phenomenon and is largely over by just a few months postpartum. The com-
mencement of weaning and the development of a highly diverse microbiota that pro-
vides a platform for the rest of life is equally important. Knowledge of how microbial
communities with high functional resilience are constructed is required, with a particular
need to understand how complex microbiotas promote health through involvement in
molecular signaling in human physiology (331–334). It is relevant to this topic that there
is a reduced prevalence of allergies in children whose microbiota is characterized by the
end of the first year of life by an enrichment of propionate- and butyrate-producing bac-
teria (335, 336). The main drivers of the development of the gut microbiota after wean-
ing and throughout the rest of life are the complex plant glycans contained in the diet
(135). Therefore, encouraging the development of a functionally resilient microbiota in
the first year or two of life requires that the infant be exposed to a wide spectrum of
tastes and textures of the diverse foods provided by Earth’s bounty. An intake of a vari-
ety of whole foods, especially those containing complex plant polysaccharides, will pro-
mote microbiotas of high functional resilience (135). Traditionally, parents have been
encouraged to start spoon-feeding their infant puréed foods from around 6 months of
age, progressing to mashed and then chopped foods in the hope that they will be eating
family foods by about 12 months of age. An alternative method of complementary feed-
ing, known as baby-led weaning, encourages babies to feed themselves whole pieces of
food from the family meal from 6 months of age, instead of being offered “baby food”
(337–341). As a result, infants following this procedure are more likely to eat the same
foods as the rest of the family than their baby-food counterparts. Because the introduc-
tion of “solid” foods is a major determinant of the development of the gut microbiota, it
is possible that the more rapid transition to the family diet observed in baby-led
approaches could beneficially influence the assembly of the gut microbiota in these chil-
dren. However, recent microbiota research in baby-led weaning, using mediation analy-
sis, indicates that adequate intakes of “fruit and vegetables” and “dietary fiber” are criti-
cal for development of a diverse microbiota and that this may not be sustained by
family foods if they are not soundly based on good nutrition for the whole family (20).
Care must also be taken that the infants do not bite off more than they can chew; chok-
ing is not a desirable outcome (342).

Despite the large volume of research that has been directed to studying the bacte-
rial taxa comprising gut microbiotas in early life, there is yet little detail about the mo-
lecular biology of microbe-human interactions. It seems quite likely that future break-
throughs in understanding the early life relationships between the gut microbiota and
humans will arise from genetical (including gene transcription), biochemical, neurolog-
ical, and physiological (including immunology) studies rather than predominantly taxo-
nomic, compositional investigations. However, since much of this work will probably
have to be accomplished using murine models, clear translations to human biology
may be difficult to perceive given the different nutritional, gut microbiota, and devel-
opmental trajectories that occur between humans and mice. It is a difficult task worth
pursuing because the early life events associated with the assemblage of the gut
microbiota may impact the human host throughout its remaining life span!
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