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Introduction

Few biological processes are as fundamental to individuality or collective identity as 

memory. Understanding the mechanisms underlying memory formation is dependent on 

our increased understanding of how gene transcription in the nucleus produces specific 

proteins underlying synaptic function (Figure 1). The synapse is hypothesized to be the 

physiological unit of memory, and the singular role of epigenetic modifications in regulating 

dynamic changes at the synapse during memory and neurodegeneration has been recently 

review in 1–3. Nuclear reprograming by epigenetic mechanisms is a process indispensable 

for memory function 4, and the study of these mechanisms has led to the emergence of the 

field of neuroepigenetics. Encompassing not only the classic stable, Warrington epigenetic 

marks necessary for cellular differentiation, neuroepigenetics is the study of epigenetic 

modifications that enable gene transcription programs necessary for cellular function in 

response to environmental stimuli 5–7. Though a complete understanding of the fundamental 

mechanisms underlying memory continues to elude us, the study of epigenetic regulation of 

gene transcription in brain regions such as the hippocampus, has begun to shed light on the 

underpinning of memory formation and maintenance.

Considerable progress has been made in our understanding of how certain epigenetic 

mechanisms, including DNA methylation and posttranslational modification of histones, 

contribute to memory formation. Long considered a static mark with the ability to 

sustain enduring cellular phenotypes, these epigenetic modifications are now known to be 

dynamically regulated in non-dividing and terminally differentiated neurons, and responsible 

for established transcriptional regulation of memory associated genes 8–13. For example, 

inhibition of DNA methyltransferases (DNMTs), which are responsible for the addition of a 

methyl group to the 5’ position of the cytosine ring, have been shown to attenuate expression 

of Bdnf in area CA1 of the hippocampus and interfere with contextual fear memory 

formation 14. Another example involves a diverse group of histone post-translational 

Correspondence: Farah D. Lubin, PhD, Department of Neurobiology, Shelby Building, University of Alabama at Birmingham, 1825 
University Boulevard, Birmingham AL, 35294, Phone: (205) 996-2242, Fax: (205) 934-6571, flubin@uab.edu.
Author statement
Ashleigh B. Irwin: Conceptualization, Investigation, Writing-Original Draft Rudhab Bahabry: Investigation, Writing- Original Draft 
Farah D. Lubin: Conceptualization, Writing-Review & Editing

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review 
of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered 
which could affect the content, and all legal disclaimers that apply to the journal pertain.

Conflicts of Interest: The authors declare no conflict of interest.

HHS Public Access
Author manuscript
Neurochem Int. Author manuscript; available in PMC 2022 November 01.

Published in final edited form as:
Neurochem Int. 2021 November ; 150: 105184. doi:10.1016/j.neuint.2021.105184.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



modifications, impacting chromatin structure around gene regions to contribute to the 

formation and maintenance of memory. One study found that contextual fear conditioning 

(CFC) resulted in increases in the transcriptionally repressive dimethylation of histone H3 at 

lysine 9 (H3K9me2) in CA1 of the hippocampus 15. Interestingly, inhibition of the G9a/GLP 

methyltransferase complex in the entorhinal cortex enhanced memory in a CFC paradigm 

via H3K9me2-mediated silencing of the memory-related gene COMT in hippocampal CA1 
16. Likewise, methylation of histone H3 at lysine 4 (H3K4me), associated with an open 

chromatin state, has been found to be necessary for the CFC memory formation process, 

reviewed extensively in 17.

Over the past 15 years, transcriptional programs necessary for synaptic function and 

memory formation have been demonstrated to be influenced by epigenetic mechanisms18–20. 

Despite our progress in the epigenetics research field, much remains to understand about 

the role of long non-coding RNAs (lncRNAs) in mediating epigenetic regulation of memory. 

Less than 2% of the genome contains protein coding transcripts 21, the remainder consisting 

of noncoding transcripts that were originally believed to be “junk” DNA. Though initially 

overlooked, the biological significance of non-coding RNAs (ncRNAs) appears indisputable 

as increased appreciation is gained for the profound regulatory capacities of lncRNAs. 

NcRNA, categorized as lncRNAs or small non-coding RNAs (which include microRNAs, 

ribosomal RNAs, small nuclear RNAs, piwi-interacting RNAS, transfer RNAs and small 

interfering RNAs; Figure 2), play a significant role in both normal cellular function and 

disease 22–25. Very recently a handful of studies have begun to show that lncRNA targeting 

to the synapse influences synaptic plasticity and likely learning and memory26–28. As it 

seems is often the case, our understanding of the role of ncRNAs in the brain has lagged 

behind other fields such as cancer biology, however a growing body of literature now 

implicates ncRNAs as potent regulators of cognition 29–32. The significance of lncRNAs in 

memory in particular, is an area ready for further exploration.

LncRNAs are endogenous regulatory RNA molecules defined somewhat arbitrarily as 

transcripts greater that 200 base pairs 33. Lacking an open reading frame, and thus protein 

coding capacity, lncRNAs are involved in numerous biological functions and regulate gene 

expression through a diverse array of mechanisms 34,35. LncRNAs display temporal, spatial 

and cell-type specific expression in the brain 36–38, suggesting the potential for unique 

functional roles. The diversity of mechanisms linked to lncRNA mediated gene transcription 

has led to the examination of epigenetic crosstalk across the genome. In this review we 

define epigenetic crosstalk as the ability of one epigenetic mechanism (e.g., lncRNAs) 

to modify or direct additional epigenetic marks (e.g., histone modifications) with indirect 

effects on gene expression and subsequently on memory formation. Prior investigations on 

how modification of chromatin structure by epigenetic enzymes are targeted to gene loci 

have been unclear. However, the predominantly nuclear localization of lncRNAs, which 

are heavily enriched in chromatin fractions 21, suggests a role for lncRNAs in chromatin 

restructuring. In fact, lncRNAs have been shown to bind to numerous chromatin-modifying 

enzymes, resulting in lncRNA modification or the guiding of regulatory complexes to 

specific genomic sequences by lncRNAs 39. Moreover, numerous studies have shown a 

significant role for lncRNAs in behavior 40, cognitive function 41,42, and disease 43–45.
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In this review we will place a specific focus on lncRNA crosstalk with other epigenetic 

mechanisms both in the brain and neurological disease, with the goal of increasing 

understanding of lncRNA function such that it might be applied to a better understanding of 

learning and memory.

First, we discuss lncRNA interactions with two epigenetic mechanisms which are critical to 

normal memory function (see Figure 3): 1) modifications directly to genomic DNA (DNA 

methylation), 2) mechanisms effecting chromatin availability via histone modification This 

is followed by an examination of what little is currently known about how lncRNAs are 

themselves regulated, specifically by epigenetic crosstalk. Next, we consider the role of 

lncRNA dysregulation in memory disorders, including age-associated memory impairment, 

Alzheimer’s disease (AD) and epilepsy. Finally, we discuss what, in our view, are critical 

gaps in the current knowledge in terms of lncRNA regulation of memory, as well as the 

promise of novel therapeutic options for memory disorders.

The emerging importance of lncRNA function in the brain has recently been highlighted 

by a number of quality reviews. Thus far there is significant evidence to demonstrate 

a role for lncRNA function in neural development46–49 and aging50–53. Even more 

data is available exploring the association of lncRNAs with psychiatric disorders54–59 

and neurological disorders such as CNS/PNS injury and inflammation60–64, ischemic 

stroke65–70, gliomas71–73, and neurodegenerative disease74–78. In a recent review, Grinman 

et al., nicely summarizes the conservation, evolution and expression of lncRNAs in the 

brain, as well as what little is known about lncRNA and the neurobiology of learning 

and memory, including transcriptional and post-transcriptional regulation. In particular, they 

emphasize the critical role of cis or trans-acting lncRNA regulation of gene expression via 

either direct interaction or as part of transcriptional complexes26.

What is missing from the literature is a comprehensive understanding of how lncRNAs 

influence gene transcription programs necessary for learning and memory, both in the 

healthy brain and in disease. Thus, in this review we attempt to specifically address a 

potential role for lncRNAs and epigenetic crosstalk in regulation of gene expression that 

may in turn be applied to the study of learning and memory.

Epigenetic regulation by lncRNAs

To understand the mechanisms underlying memory, and to develop treatments for disorders 

of memory, it is necessary to understand how large-scale gene transcription changes are 

unlocked to allow for memory formation. While our understanding of how lncRNA function 

to epigenetically control memory-associated gene expression is still in its infancy, much 

more is known about the function of lncRNA in other fields. Here we will review the known 

epigenetic cross talk between lncRNA, histone modifications and DNAme in a variety of 

contexts in the hopes of driving further study and providing insight into how these molecules 

are directing gene expression changes to enable memory function.

The significant enrichment of many lncRNAs within chromatin identified through the 

ENCODE transcriptome analysis 21 strongly suggests a role for lncRNA in epigenetic 

Irwin et al. Page 3

Neurochem Int. Author manuscript; available in PMC 2022 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



regulation of gene transcription. Indeed, higher order chromatin structure requires RNA

chromatin interactions 79–81. This is particularly true in the brain where lncRNA frequently 

act to direct chromatin modifying enzymes to specific genomic locations, thus altering 

chromatin state and inducing changes in gene expression necessary for cellular function 
82,83. While the whole of epigenetics includes numerous different mechanisms, this review 

focuses on the interaction between lncRNA and two significant epigenetic mechanisms 

responsible for gene expression changes, post-translational histone modification and DNA 

methylation, as well as how lncRNA themselves are regulated by epigenetic crosstalk.

LncRNA regulation of posttranslational histone modifications

The role of histone modifications in learning and memory is now well-established and has 

been review extensively17,84–93. However, only relatively recently has the role of ncRNAs in 

epigenetic control of gene expression been appreciated 94–96. The past few years have seen 

a rapid advancement of our understanding of how lncRNA interact with a variety of histone 

modifications 97 including histone methylation 98, acetylation 99,100, and ubiquitination 
101. Perhaps the most well-studied role of lncRNA is X-chromosome inactivation (XCI) 

via the lncRNA Xist. During XCI, a “Xist cloud” coats one X chromosome, recruiting 

polycomb repressive complex 2 (PRC2) and inducing heterochromatin confirmation via 

PRC2 as a mechanism of dosage compensation 102. Interestingly, Xist has recently been 

shown to play a role in maintaining repressive histone marks (H3K27me3 and H2AK119 

monoubiquitylation) for purposes of sustained XCI in both neurons and a smaller fraction of 

astrocytes into adulthood 103. Here we have a prime example of how lncRNA mechanisms 

associated with development are subsequently coopted for additional purposes across time 

and in a cell type-specific fashion.

The mechanisms by which lncRNA direct histone modification are diverse and include 

acting as scaffolds and tethers by binding chromatin modifying enzymes (CME), as 

well as guiding CME to specific targets 39,97. Polycomb Repressive Complex 2 (PRC2) 

is responsible for mediating the addition of largely transcriptionally repressive di or tri

methylation of Lys 27 of histone H3 104,105 and several studies have suggested regulation 

and recruitment of PRC2 by various lncRNA including HOTAIR 106–108, XIST 109,110 

and many others 111–113. For example, the long intergenic non-coding RNA (lincRNA) 

HOTAIR serves as a scaffold for PRC2 (5’) and LSD1/CoREST/REST complex (3’) and the 

tethering of these complexes results in coupled H3K27methylation and K4 demethylation 

at target genes 114. These same mechanisms have the potential to play a role in memory 

formation as this kind of intricate regulation of gene expression by epigenetic mechanisms 

is critical for memory. Indeed, histone demethylase LSD1 is necessary for synaptic plasticity 

and hippocampus dependent memory115–120 and has been shown to be dysregulated in 

memory-related diseases121,122. REST is a significant transcriptional regulator in a variety 

of neurodegenerative diseases123, while CoREST has recently been shown to mediate 

memory cosolidation in Drosophila124. Similarly, a component of the PRC2, the histone 

lysine methyltransferase EZH2, is a critical regulator of gene expression during fear 

memory125,126. Evidence for the direct interaction of Polycomb repressive complexes and 

lncRNA is still under debate with many elaborate RNA interactions believed to play a role in 

Irwin et al. Page 4

Neurochem Int. Author manuscript; available in PMC 2022 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



PRC2 direction of gene expression 127, however compelling evidence for a direct association 

with PRC2 by at least some lncRNA was recently reviewed in 128.

Much of what is known about epigenetic regulation of gene expression profiles by lncRNAs 

has been derived through the study of lncRNAs in cancer. Several lncRNAs are differentially 

expressed in glia-derived tumors and many studies are examining their capacity to serve 

as biomarkers. One such example, AGAP2-AS1, interacts with the active component of 

the polycomb repressive complex, EZH2 to direct them to the promoter region of TFPI2 

and inhibiting transcription 129. The lncRNA TUG1 with an EZH2 binding domain has 

also been shown to recruit PRC2 in glioma cells repressing differentiation relevant genes 

through increased H3K27me 130. Similarly, the lncRNAs HOTAIRM1 and PXN-AS1 have 

been found to promote proliferation and migration of glioblastoma cells via sequestration of 

G9a and EZH2, mediating dimethylation of H3K9 and H327 at the transcription start site 

of the HOXA1 and DKK1 promoter genes respectively 131,132. While these interactions are 

described in the context of glioma cells, EZH2 is a key mediator of memory associated gene 

expression during fear memory125,126.

Extending mechanisms observed in neoplastic tissues to other disease processes or healthy 

tissues must of course be done with caution. However, recent studies demonstrate that 

lncRNA interaction with chromatin remodeling mechanisms is not limited to oncogenic 

processes. With improved sequencing technologies, the ability to probe deeper and more 

thoroughly into the functions of these transcripts in the brain has advanced considerably. 

Recent RNA immunoprecipitation (RIP) sequencing studies show extensive binding of 

various lncRNA to the catalytic subunit of PRC2, EZH2, in numerous tissues including 

the brain 133, and that many of these interactions may be significant for neurological 

disease 134. For example, H19 knockdown reverses hypoxic stroke induced upregulation of 

HDAC1 and downregulation of acetyl-histone H3 and acetyl-histone H4, whereas HDAC1 

overexpression negated the beneficial effects of H19 knockdown on infarct volume and 

brain edema 135. It is well-established that histone acetylation and deacetylation driven 

regulation of gene expression contributes to memory function, and the use of HDAC 

inhibitors to treat neurological disorders characterized by memory dysfunction has garnered 

significant interest88,91,136,137. Given known interactions between HDACs and lncRNAs in 

other neurological conditions, it appears prudent to explore their likely role in regulating 

key memory-related epigenetic mechanisms. Indeed, as will be discussed in greater detail 

below, the lncRNA Neat1 which has been studied extensively in cancer biology, is now 

known to transcriptionally represses c-fos via H3K9me2, possibly through interaction with 

the histone methyltransferase G9a in the context of fear memory 37. Collectively, these 

studies demonstrate a significant role for lncRNA in directing histone post-translational 

modifications and subsequent gene transcription.

LncRNA regulation of DNA methylation

The dynamic regulation of DNA methylation is often choreographed and influenced by 

the expression of various lncRNA 138–140. For example, during development, the lncRNA 

Evf2 both recruits DLX and Methyl CpG binding protein 2 (MeCP2)141, and inhibits DNA 

methylation, modulating competition between the DLX1/2 activator and MeCP2 repressor, 
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enabling differential control of adjacent genes with shared DNA regulatory elements 142. 

MeCP2 regulation of transcription has a well-established impact on synaptic function143 and 

learning and memory144–146.

Beyond development, lncRNA continue to mediate gene expression throughout the normal 

lifespan, as well as in the case of disease. Regulation of gene expression by DNAme and its 

associated readers, writers and erasers, is critical for synaptic plasticity and in vivo measures 

of memory10,147–152. Thus, any potential recruitment or regulation of these mechanisms by 

lncRNA in the brain is likely to impact memory-associated gene expression.

In one such example, Diabetes Mellitus associated reduction in neurogenesis is followed 

by cognitive decline that can be linked to upregulation of the lncRNA H19. H19 
binds specifically to the IGF2 gene promoter region, resulting in hypermethylation 

through enrichment of DNA methyltransferase and ultimately silencing IGF2 expression 
153. Similarly, decreasing expression of the lncRNA PCAI can protect against 

neuroinflammation induced cognitive impairment, and does so via negative regulation of 

SUZ12, which in turn serves as a recruiting platform for DNA methyltransferases 154.

While there are few other examples from the field of learning and memory, the study of 

cancer has yielded significant insights into the role of lncRNA in epigenetic control of 

gene transcription profiles. Recruitment of DNA methyltransferases by lncRNA to promoter 

regions significantly alters proliferation and invasion-permissive genes, as that seen by the 

lncRNA MCM3AP-AS1 which recruits DNMT1/3 (A/B) to the promoter region of NPY1R 

resulting in its down regulation and activation of the MAPK pathway in prostate cancer 
155. Interestingly, NPY1R expression has recently been shown to mediate spatial learning 

in adult mice156. It may then be reasonable to ask if, in the context of memory formation, 

the lncRNA MCM3AP-AS1, which is also expressed in the brain, might contribute to 

NPY1R transcription regulation through control of DNA methylation at its promoter. 

Beyond recruitment and direction of DNMTs, lncRNAs have also been shown to modulate 

the stability of methyltransferases, inhibiting expression of tumor suppressors via increased 

DNAme 157.

Understanding the role of lncRNA-mediated epigenetic mechanisms in the context of 

behavior is still in its infancy. However much remains to be learned about how lncRNA 

mediation of DNA methylation contributes to learning and memory, and how these 

mechanisms are disrupted in cognitive impairment.

Regulation of lncRNA expression by epigenetic mechanisms

It can be safely surmised based on the studies described above, and the work of many 

others, that lncRNA are critical players in the control of gene expression. Less however 

is known about the signaling pathways that facilitate expression of lncRNAs themselves. 

The tissue, and time specific expression of many lncRNA argues for a tightly controlled 

regulation of lncRNA transcription. Once again there are few explicit examples of how 

regulation of lncRNA expression impacts memory formation. Instead, we must explore what 

has been elucidated from cancer biology and neurological disease to form a starting point 
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from which to investigate the role of lncRNA regulation in memory. For example, in breast 

cancer tissue, IGF/Insulin signaling arbitrates expression of a subset of lncRNA including 

SNHG7, which is downregulated by IGF via MAPK-driven post transcriptional mechanisms 
158. Interestingly, transcriptional control of SNHG7 also appears to occur through C-myc 

binding of the promoter region increasing expression and governing glycolysis through the 

miR-34a-5p/LDHA axis in breast cancer cells 159. These studies demonstrate multiple levels 

of transcription regulation of a single lncRNA.

Indeed, there are many broad potential mechanisms by which lncRNA expression including 

can be regulated including second messenger signaling160–162, drugs of abuse163–165, 

neuronal activation166–169, and many others which have been described elsewhere170,171. 

Perhaps unsurprisingly then, lncRNAs are subject to regulation themselves by various 

epigenetic mechanisms. In fact, it is likely that multiple levels of epigenetic regulation 

will be affected in the case of disease, such as the H3K27me3 facilitation of the lncRNA 

HOTAIR, leading to altered HOXA1 DNA methylation in chemoresistant small cell lung 

cancer 172. Complex governance of lncRNAs expression appears to play a role normal 

healthy development, such as Ezh2-mediated H3K27me of various lncRNAs in embryonic 

stem cells 173, as well as in disease. Interestingly, in some cases this regulation appears 

to be bidirectional with differential DNAme at promoter and transcriptional start sites of 

lncRNAs. For example, decreased DNAme at the promoter region of the lncRNA SNHG12 

results in upregulation of its expression and development of TMZ resistance in glioblastoma 

cells 174,175. In a number of human cancers, loss of MEG2 due to hypermethylation 

and promoter and intronic regions is associated with tumor growth 176. Similarly, 

aberrant methylation patterns at multiple lncRNA have been linked to both paranoid and 

undifferentiated schizophrenia 177. Four lncRNAs (UCA1, ADARB2-AS1, LINC324 and 

MAP3K14-AS1) were found to be differentially methylated (hypermethylated) in temporal 

lobe epilepsy, further showing transcriptional control of lncRNA by DNAme 178. In reality, 

multiple epigenetic mechanisms undoubtedly converge to maintain the delicate homeostasis 

necessary for cellular function and potentially memory formation.

LncRNAs in Memory disorders

Prior sections of this review attempted to impart the significance of lncRNA in regulating 

gene expression and the general mechanisms by which this might occur. A growing body 

of literature implicates aberrant lncRNA expression with cellular dysfunction in memory 

associate diseases (Figure 4; Table 1). It is imperative to obtain a solid understanding of 

lncRNA mediated gene expression changes in the healthy brain in order to target these 

transcripts for therapeutic manipulation under pathological conditions. The following is a 

discussion of lncRNA involvement in three highly prevalent disorders of memory. Taken 

together, age-related memory impairment, Alzheimer’s disease and Epilepsy represent a 

monumental global health burden for which there are currently very limited therapeutic 

options, and for which exploitation of lncRNAs holds particular promise.
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Age-associated memory impairment

Why some individuals age with cognition relatively intact and others slip precariously into 

dementia is a question that has intrigued and beleaguered the scientific community and 

layperson alike. In translating external experience or stimuli into functionally relevant gene 

expression changes, epigenetics mechanisms are a critical component of the aging process 
179–181. Studies investigating the various hallmarks of aging have revealed significant 

differences in lncRNA expression 182. Differential lncRNA expression is particularly 

pronounced in the brain, including thousands of novel lncRNA identified as “altered” in 

the synaptosomes of aging mice 183, as well as age-related expression of two lincRNAs 

(LINC-RBE and LINC-RSAS) described in the rat brain 184,185. These findings are 

consistent with trends seen in humans during aging; for example, post-operative cognitive 

dysfunction is particularly significant in elderly patients, and has been correlated with 

868 differentially expressed lncRNAs, as well as 690 differentially expressed mRNAs 

related to inflammation and apoptotic pathways 41. Similarly, studies of post-cardiac arrest 

cognitive impairment revealed significant changes in hippocampal expression of the lncRNA 

RNANONMMUT113601.1 and the mRNA Shc1, also an inflammation and apoptosis 

coupled gene 186. From these data we have two significant takeaways: first, differentially 

expressed lncRNA or groups of lncRNA have the potential to serve as biomarkers for 

age-associated cognitive impairment depending on the timeline with which their expression 

changes. Second, exosomes or membrane nanovesicles secreted by most cell types including 

those in the CNS 187, are carriers of a variety of RNAs, including lncRNA 188. This means 

there is the potential for minimally invasive (e.g., blood draw) means of measuring brain

derived lncRNA in order to identify those with or predisposed to age-associated cognitive 

decline.

One lncRNA that has been well studied in the context of aging is Neat1. There is an 

increase in lncRNA Neat1 expression in the brain of both humans and animal modes 

of normal aging 37. Neat1 mediates age-related impairment in hippocampus dependent 

memory formation 37. Downregulation of Neat1 (via nimodipine used to treat subarachnoid 

hemorrhage) resulted in upregulation of miR-27a and subsequent downregulation of MAPT, 

contributing to improved cognitive function 42. Interestingly, Neat1 knockout mice showed 

no deficits in memory 189 likely indicating redundant pathways capable of compensatory 

function in the case of constitutive knockout.

Alzheimer’s disease

The most significant risk factor for developing Alzheimer’s disease is aging. Therefore, 

with our rapidly aging population, significant funding and research effort has been devoted 

to the study of the mechanisms underlying AD in hopes of identifying novel therapeutic 

targets. Clinical trials targeting the accumulation of A β have been largely unsuccessful 
190 necessitating a different approach. A number of lncRNAs have been implicated in the 

pathophysiology of AD and were well reviewed recently by 43,76,77,191–193. For example, 

16 age-associated and 12 gender-associated lncRNAs were identified as dysregulated in 

AD; Specifically, SNHG19 and LNC00672 were significantly correlated with Braak stage, 

while AS1, LY86-AS1 and LINC00639 were negatively correlated with Braak stage 194. 

Interestingly, dysregulated lncRNA expression appears to be consistent across various AD 
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models, including Intranasal LPS-mediated AD disease model in mice 195. Likewise, 315 

lncRNAs and 311 mRNAs showed significantly altered expression in the hippocampus of 

a rat model of AD 196. However, understanding the mechanisms that result in differentially 

expressed lncRNA largely remains a mystery, although at least one study suggests that 

expression of many lncRNA may be dependent on histone modifications in AD 197.

Extensive research in humans and animal models suggests a role for epigenetic regulation 

of gene transcription in the development and progression of AD198–204. Altered DNA 

methylation205,206 and hydroxymethylation207 patterns have been described in humans 

with AD, including at known susceptibility genes including APOE208, BIN1,209 and 

TREM2210,211. Likewise, alterations in post-translational histone modification patterns are 

associated with synaptic dysfunction and memory impairment in AD212–215. Further, studies 

using a mouse model of AD indicated that a substantial number of differentially expressed 

lncRNAs and subject to transcriptional regulation by histone modifications197. Based on our 

previous discussion regarding lncRNA regulation gene expression through via epigenetic 

crosstalk, it stands to reason that this aberrant lncRNA expression likely contributes to AD 

pathology. As argued earlier, there is a long way to go towards understanding the governance 

of lncRNA expression both in the healthy brain and disease.

In the search for a viable biomarker for AD and potential progression, lncRNA are proving 

a promising target. For example, cyclin-dependent kinase 5 (CDK5) deregulation is highly 

correlated with progression of AD 216. Two lncRNA NEAT1 and HOTAIR have been shown 

to negatively regulate CDK5R1 while the lncRNA MALAT1 appears to positively regulate 

CDK5R1. Together with human data showing positive correlation between CDK5R1 

and NEAT1 in brain tissue from AD patients, these lncRNAs may serve as biomarkers 

and potential neuroprotective agents against AD progression 217. An additional potential 

biomarker for AD identified recently includes BACE1-AS has been found to be elevated in 

the exosomes of AD patient 218.

LncRNA appear to also be involved in the pathology of AD. The neuronal RNA

binding protein HuD stabilizes the lncRNA BACE1AS contributing to enhanced BACE1 

expression and APP levels in patients with AD and HuD overexpressing mice 219. Perhaps 

unsurprisingly given the significant role Neat1 appears to play in normal aging, the lncRNA 

Neat1 is upregulated in the APP/PS1 transgenic model of AD and interacts with NEDD4L to 

promote PINK1 ubiquitination and degradation, further promoting the pathogenesis of AD 
220. Neuron-specific lncRNA neuroLNC interacts with the RNA-binding protein TDP-43 

resulting in the stabilization of mRNAs encoding for presynaptic proteins, thus influencing 

neuronal excitability 221. Alterations in expression of several lncRNAs, either endogenously 

or artificially is also capable of halting the progression or limiting AD-associated pathology. 

For example, the apolipoprotein A-I mimetic D4F decreases expression of Aβ through 

up-regulation of long non-coding RNA SIRT1-AS 222. Silencing of the lncRNA SOX21
AS1 resulted in decreased oxidative stress injury and reduced apoptosis on hippocampal 

neurons of and AD mouse model 223. In an A β25–35 treated hippocampal mouse neurons, 

decreasing expression of the lncRNA TUG1 limits apoptosis via elevation of miR-15a and 

suppression of ROCK1224
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Perhaps most importantly, targeting of various lncRNA appears to hold significant promise 

for future therapeutics. BACE1-AS inhibition via lentiviral siRNA expression improved 

memory and learning behaviors in SAMP8 mice 225. Up-regulation of the lncRNA Meg3 
in the hippocampus of an AD rat model improved spatial learning and memory, inhibited 

apoptosis of hippocampal neurons and oxidative stress injury via the PI3/Akt pathway. 226. 

Finally, the lncRNA BC1 induces APP mRNA translation in an AD mouse model, while 

inhibition of BC1 protects against spatial learning and memory deficits 227.

Epilepsy

Epigenetic control of gene transcription contributes to the aberrant network excitability and 

recurrent seizures 228,229 however, the functional role of lncRNA in the pathogenesis of 

epilepsy is still not completely understood, although the state of their role in the disease has 

been recently reviewed 230–232. Differential expression of 497 lncRNAs have been identified 

in mesial temporal lobe epilepsy (TLE) patients with hippocampal sclerosis, along with 

co-dysregulated mRNAs correlated with inflammatory response and neuropeptide receptor 

activity predicted to play a role in epileptogenesis 233. For example, hippocampal and 

serum levels of the lncRNA ILF3-AS1 were increased in TLE patients. Ectopic expression 

of ILF3-AS1 in astrocytes increased expression of several metalloproteinases connected 

with epilepsy and decreased expression of miR-212 which is consistent with lower levels 

observed in TLE patients 234.

Nearly a third of epileptic patients develop resistance to available anti-epileptic drug 

therapeutic options. As such, there is emergent need to identify novel mechanisms and 

biomarkers for the progression of epilepsy. LncRNAs are emerging as interesting potential 

biomarker in in epilepsy as well. To date numerous different lncRNAs have been identified 

as differentially expressed in epilepsy 235,236, with some displaying additional sex-specific 

differences 237.

Rodent models of epilepsy have been invaluable in identifying the various roles lncRNA 

might play in the pathogenesis of epilepsy. For example, H19 is significantly upregulated 

in the hippocampus of a rat model of TLE and aggravates seizure induced neuronal 

apoptosis via sponging the microRNA let-7b 238. In a rat model of epilepsy downregulation 

of MALAT1 results in activation of the PI3K/Akt pathways decreasing autophagy and 

apoptosis in hippocampal neurons 239. Inhibition of the lncRNA PVT1 decreases the 

loss of neurons and astrocyte activation, as well as increases expression of BDNF in 

the hippocampus by downregulating the Wnt signaling pathway 240. Once again, the 

lncRNA Neat1 has been shown to be altered in the disease condition, binding epilepsy 

associated potassium channel interacting proteins and knockdown induces a neuronal hyper

potentiation phenotypes in iPSCs. Neat1 is also acutely down-regulated in response to 

neuronal activity, however it becomes unresponsive with chronic stimulation in a rat model 

of TLE 168.

Cognitive deficits are well-documented in intractable epilepsy 241,242, however mechanisms 

underlying these cognitive deficits have not been fully elucidated. Expression of the lncRNA 

UCA1 and NF-□B mRNA are higher in brain tissues of the pilocarpine model of Epilepsy 
243. NF-□B is well-known to mediate the gene expression dependent process of synaptic 
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function and memory 244, making its regulation of particular interest in terms of identifying 

novel therapeutic targets. Indeed, lncRNA interaction with NF- B signaling is a reappearing 

theme, with downregulation of the lncRNA ANRIL restoring learning and memory via the 

NF-□B signaling pathway in streptozotocin-induced diabetic rats 245.

Future outlook

The studies reviewed here support a significant role for lncRNAs in epigenetic regulation 

of transcriptional programs; however, our understanding of how lncRNAs function in the 

brain is still in relative infancy. Here, we discuss critical questions remaining in the field 

regarding how lncRNAs function in the context of memory and associated disorders. To 

better understand how specific lncRNAs contribute to memory formation, lncRNAs must be 

studied in a region-specific, sex-specific and cell-type-specific manner. Finally, we address 

the available technologies that can serve to probe important remaining research questions in 

the field, as well as the advantages and limitations of these molecular genetic approaches.

Brain region and sex specificity

In this section, we consider what is known about brain region specific functions in memory, 

and subsequently how that knowledge can be applied to the study of lncRNAmediated 

transcription of memory-permissive genes. Differential expression of several lncRNAs exists 

between various brain regions 36,38,313, and can be altered in the case of disease 74. It is 

well established that specific brain regions such as the hippocampus play a critical role in 

the acquisition and retrieval of memory 314–318. Furthermore, both human studies and rodent 

models demonstrate that hippocampal subfields show specialization associated with memory 
319–324. Thus, it seems likely that lncRNA-mediated regulation of epigenetic mechanisms 

plays a role in the region-specific transcriptome critical for memory formation.

Given that epigenetic integration of stimuli can confer significant differences in gene 

expression based on sex 325, expression of specific lncRNAs may vary by sex. Indeed, 

that appears to be the case in humans and animal models, with differential expression 

of lncRNAs between the sexes occurring in both the healthy brain and disease states 
194,326–328. The examination of sex differences in lncRNAs and influence on memory 

formation remain to be studied, and further, how functional control of lncRNAs might be 

leveraged for more precision directed therapeutics.

Cell type specificity

While research evidence has revealed glia specific enrichment of lncRNAs, most studies 

continue to focus on the role of lncRNAs in neuronal populations. Similarly, numerous 

studies examining the effects of manipulating lncRNAs in different brain regions did not 

determine if lncRNAs in specific cell-types is driving behavioral changes.

For example, overexpression of the lncRNA MEG3 via third ventricle infusion of 

overexpression plasmid led to improved learning and memory in a rodent model of AD 
226, a significant finding at a time when novel treatments for AD are desperately needed. 

However, these broad manipulations did not distinguish if the impacts on memory were 

due to reduced neurodegeneration or limited astrocyte activation, or some combination 
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thereof. This is an important distinction, as broad overexpression of the lncRNA MEG3 is 

also reported to play a role in ischemic stroke and may accelerate associated pathological 

progression 329. Additionally, determining differences in functional lncRNAs in major 

brain cell-types (neurons, astrocytes, microglia) should be considered in future studies, as 

cellular subpopulations exist with distinct lncRNA gene signatures 330. Moreover, lncRNAs 

impact microglia activation and associated inflammatory cascades 331–335. The well-studied 

lncRNA Xist was recently discovered to have microglia-specific functions, downregulating 

apoptosis and inflammatory associated with microglia following spinal cord injury 336. 

The potential functional implications of cell-type specific differences cannot be overstated 

given the growing body of literature demonstrating the profound impact of altered glia 

function on synaptic function 337,338, memory, 339–342 and disease 340,343,344. Therefore, 

distinguishing cell-type specific contributions of lncRNA during memory formation may 

lead to novel translational approaches for treating neurological disorders while limiting 

unintended, off-target effects.

Technological advances and limitations

Recent advances in our understanding of lncRNA are greatly indebt to rapidly progressing 

sequencing technologies. Despite our expanding catalogue of known lncRNAs, the 

functional roles of these transcripts will depend on techniques designed to study cell-specific 

function. Increasing use of single nucleus RNA sequencing (snRNA seq) has already 

provided an abundance of data, particularly in the context of disease states 345,346. For 

purposes of studying the functionality of lncRNA in animal models, innovative techniques 

are required in order to isolate of cell-type specific nuclear fractions, as well as manipulating 

transcripts in a cell-type specific manner. Fluorescent activated cell sorting (FACS) and 

Magnetically activated cell sorting (MACS) are both widely utilize cellular techniques 

that enable efficient cell-type enrichment and high viability for subsequent culture 347. In 

particular, MACS has proven valuable for isolating multiple cell types from the same brain 

and limiting damage to fragile glia projections which frequently occurs with FACS 348,349. 

For the purposes of deep sequencing, FACS has been shown to deliver cleaner microglia 

fractions 347. Difficulties arise when attempting to combine region specific and cell-type 

specific studies, given the relatively small volumes of tissues involved. However, these 

studies are critical as we have discussed significant differences in both cell type and regional 

functions of lncRNAs. In cases such as this, in situ hybridization methods provide spatial 

information and can be combined with cell-type specific markers for further detail.

There are numerous methods used to manipulate lncRNAs for functional studies 350, 

however cell-type specific manipulation of lncRNAs is a more challenging task. Most RNAi 

based methods (siRNA or shRNA) are adequate for cell culture designs 351,352, but in vivo 
lack the specificity necessary to exclusively target lesser studies cells such as astrocytes or 

microglia 353. There are multiple technological approaches designed to address this problem. 

Recently, the use of aptamer-siRNA chimeras has gained considerable interest as a treatment 

strategy, particularly for the treatment of cancer 354. Aptamers are small single-stranded 

oligonucleotides which bind with high affinity to their targets which can include lipids, 

proteins or other small molecules 355. The development of aptamer-siRNA chimeric RNAs, 

which can subsequently be internalized by the target cell and processed by Dicer, has 
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enabled cell type specific delivery of functional siRNA 356. Despite ongoing challenges to 

therapeutic application of aptamer-siRNA chimeras, 357,358, initial studies have begun using 

this technique for treatment of Glioblastoma both in vitro 359 and in vivo mouse models 360.

There is also great potential for Adeno-Associated Viral (AAV) delivery, which is already 

capable of targeting specific cell types for many over expression studies using cell-type 

specific promoters 361. A more extensive review of the various techniques which can be 

used in combination with AAVs for targeting neuronal populations can be found in 362. 

These cell-type specific promoters are often not however suitable for short siRNA/shRNA 

sequences necessary for knockdown studies in that they require Pol III recruitment for 

expression of non-polyadenylated sequences 363,364. Lentiviral vectors are larger with the 

potential to house shRNA targeting lncRNA of interest, however lentivirus is already known 

to result in increased expression of the lncRNA Neat1 365, and thus its application used with 

caution.

Metabolic signaling and lncRNA

An additional research area that deserves further exploration, is investigation of lncRNAs 

involved in metabolic function, and the reciprocal regulation of lncRNAs by metabolic 

signaling. Metabolic signaling is mediated at multiple signaling and tissue levels, including 

the brain 366,367. There is significant interest in the effect of diet on cognitive function 
368 and dietary approaches to disorders of memory 369. The so-called ketogenic diet has 

proven promising as an adjuvant or alternative therapy for pediatric patients with intractable 

epilepsy and other neurological disorder 370,371. Despite the tentative success of dietary 

therapeutics, very little is understood about the mechanisms by which these metabolic 

changes occur, and how they impact memory function. LncRNA have been found to 

participate in the establishment of metabolic homeostasis 372, representing a promising 

therapeutic avenue for many diseases. Metabolic reprograming is present with aging 373, 

cancer 374 and neurodegenerative diseases 375 and we are just beginning to understand 

the regulatory roles lncRNA may play and the therapeutic applications of targeting these 

lncRNA 376. Inspiration can be drawn from the cancer research field that aims to understand 

how lncRNAs contribute to metabolically relevant gene transcription programming. Thus, 

there is growing appreciation for similar approaches in understanding how lncRNAs control 

the epigenome and subsequent transcription programs to impact memory formation in health 

and in memory impairments.

Concluding remarks

The studies discussed here, and likely many others, demonstrate a complex epigenetic 

regulatory process driving dynamic and or persistent gene transcription necessary for 

memory. In this review, we have described how lncRNAs provide a valuable window 

by which we can view the crosstalk of epigenetic marks both in the healthy brain, and 

disease states. Finally, we discussed several questions that remain to be answered regarding 

lncRNAs crosstalk with epigenetic mechanisms in specific brain regions or specialized cell 

types affects memory, and how this crosstalk may be altered in disorders of memory. The 

contribution of lncRNAs to this epigenetic crosstalk is only now being fully appreciated, 
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and much of what we know about lncRNAs, has yet to be fully investigated in the 

context of memory. Future work should emphasize studies on lncRNA-epigenetic mediated 

gene transcription changes and determine if these mechanisms are transcript specific. 

Overall, these lncRNA-epigenetic mechanisms are engaged in an intricate, multi-leveled 

crosstalk geared towards homeostatic cellular function, with consequences for dysregulation 

at specific genes, not necessarily bulk changes in epigenetic marks, driving pathology. 

Importantly, the therapeutic potential of lncRNA-epigenetic transcriptional processes may be 

harnessed, and additional studies are crucial to elucidating the consequences of differential 

lncRNAs and the various epigenetic mechanisms by which they function to control large 

transcriptional programs in the brain to sub serve the process of memory formation.
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Highlights

• Epigenetic mechanisms drive transcriptional programs necessary for memory 

formation.

• LncRNAs interact with key epigenetic mechanisms to regulate gene 

expression.

• Aberrant expression of lncRNAs is associated with cellular dysfunction in 

cognitive disorders.

• Expression of LncRNAs in the brain is region-specific, sex-specific and cell

type specific.
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Figure 1. 
Schematic representation of the central dogma (DNA → mRNA → protein) of molecular 

biology in the neuron as it relates to synapse function and memory.
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Figure 2. Non-coding RNAs.
Non-coding RNA (ncRNA) are functional RNA molecules that are not translated into 

proteins. ncRNA can be classified into long ncRNAs (lncRNAs) and Small ncRNAs. Small 

ncRNAs include many different RNAs, such as microRNAs (miRNAs), small nucleolar 

RNAs (snoRNAs), transfer RNA (tRNA), piwi-interacting RNAs (piRNAs) and small 

interfering RNA (siRNA). lncRNAs are the most ubiquitous and functionally diverse class, 

they include linear lncRNAs and circular RNAs (circRNAs).
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Figure 3. Epigenetic mechanisms of gene expression regulation.
Several types of epigenetic mechanisms play a role in gene regulation, including (1) 

DNA methylation of gene promoter regions reflect that gene transcriptional activity; if 

the promoter region is hypermethylated then the gene transcription is repressed, and 

vice versa, hypomethylated promoter region favors active genes. In this reaction, DNA 

methyltransferases (DNMTs) modulate gene transcription via the addition of methyl 

group to the fifth position of cytosines to be converted to 5-methylcytosine (5mC), 

which then can be demethylated via ten-eleven translocation (TET) dioxygenase to 5

hydroxymethylcytosine (5-hmC) → 5-formylcytosine (5-fC) → 5-carboxycytosine (5-caC). 

(2) The post-translational modifications (PTMs) of the histone proteins by methylation 

on lysine or arginine, phosphorylation on serine or threonine residues, ubiquitylation of 

lysines, acetylation, and deacetylation of lysines. Histone tails can be modified by “writer” 

enzymes that catalyze the addition of epigenetic marks on histone tails such as histone 

acetyltransferases (HATs), histone methyltransferases (HMTs), and Kinases, and removed 

by “eraser” enzymes, such as histone deacetylases (HDACs), histone demethylases (HDMs) 

and Protein phosphatase (PPs); Histone variant functions is mediated via in histone variant 

exchange and turnover.
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Figure 4. Proposed Molecular Functions of lncRNA in memory disorders.
lncRNAs contribute to numerous processes necessary for cellular function and homeostasis. 

As a result, aberrant expression of lncRNAs seen in disease can significantly alter cellular 

function resulting in impaired learning and memory. See text for detailed discussion.
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Table 1.

Selected lncRNAs and Their Altered Expression in Memory Related Conditions lncRNA Description 

Regulation

lncRNA Description Regulation Associated 
disease

Related Biological 
Processes Functions & Implications References

17A LncRNA 17A Up AD Cognitive decline, 
neurodegeneration

Regulates alternative splicing 
and signaling. Linked to Aβ 
secretion and elevation of 
Aβ42 production. Dysregulation 
leads to deactivation of 
GABAB signaling, autophagy 
and neurodegeneration.

246–248

ANRIL

Antisense 
Noncoding RNA in 
The INK4 Locus 
(CDKN2BAS1)

Up AD Neurodegeneration

Regulates gene transcription 
repression. Involved in 
chromatin modifications via 
PRC2 recruitment.

249–251

BACE1-
AS

Beta-Secretase 1
Antisense RNA Up AD Neurodegeneration, 

protein aggregation

Involved in post-transcriptional 
regulation and BACE1 mRNA 
stability, competes with 
miR-485–5p for binding 
to BACE1 and prevents 
it’s targeting on BACE1 
mRNA. Increases Aβ 1–42 
accumulation.

252–255

BC1 LncRNA BC1 
(BC1-FMRP) Up AD

Spatial learning 
and memory 
impairments, protein 
aggregation

Involved in mRNA translation 
and downregulation of BC1. 
Leads to accumulation of Aβ 
peptides.

227,256–259

BC200 LncRNA BC200
Soma: Up 
Dendritic: 
Down

AD Cognitive decline

Regulates local translation at 
the synapse, long-term synaptic 
plasticity and enhances BACE1 
and Aβ1–42 expression.

256–258,260–263

EBF3-AS
Early B Cell 
Transcription Factor 
3-Antisense RNA

Up AD Neurodegeneration
Promotes neuronal apoptosis 
through Aβ25–35- and okadaic 
acid.

264

GDNF-
AS1

Glial Cell Derived 
Neurotrophic Factor 
(GDNF Antisense 
RNA 1)

-- AD Neurodegeneration Involved in mRNA translation. 206

GDNF-AS
Glial Cell Derived 
Neurotrophic Factor 
-Antisense RNA

down PD Cognitive decline; 
neurodegeneration Involved in mRNA stability. 263

LRP1‐AS
LDL Receptor 
Related Protein 1
Antisense RNA

Up AD Cognitive decline. 
neurodegeneration

Transcription repression by 
sequestration of chromatin
regulatory proteins. Linked to 
the increasing Aβ formation and 
decreased clearance. Regulate 
LRP1 expression.

265–268

MEG3 Maternally 
Expressed 3 Down AD

Cognitive decline, 
Involved with spatial 
learning and memory 
ability

Upregulation of MEG3 inhibits 
the pathological injury and 
hippocampal neurons apoptosis, 
decreased Aβ expression, 
inhibited oxidative stress and 
inflammatory injury. Involved 
in induced astrocytes activation 
through blocking PI3/Akt 
pathway.

226

MEG3 Maternally 
Expressed 3 Down HD Neurodegeneration

Involved in gene regulation. 
MEG3 is a direct target of 
REST and modulate mHTT 
aggregation.

251,269–271
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lncRNA Description Regulation Associated 
disease

Related Biological 
Processes Functions & Implications References

NEAT1
Nuclear Paraspeckle 
Assembly 
Transcript 1

Up AD Cognitive decline

Essential for Paraspeckles 
formation, integrity, gene 
expression regulation and 
miRNA sponging.

28

NEAT1, 
NEAT1-L, 
NEAT1-S

Nuclear Paraspeckle 
Assembly 
Transcript 1

Up HD Cognitive decline

Decreasing NEAT1 expression 
lowers mHTT aggregates and 
TP53 expression in HD. NEAT1 
provides neuroprotection against 
mHtt-induced cytotoxicity 
NEAT1-L) and oxidative stress
induced injury NEAT1-S).

251,271–273

NEAT1
Nuclear Paraspeckle 
Assembly 
Transcript 1

Up PD Cognitive decline

Upregulation of NEAT1 supports 
Bax/BCl ratio, caspase 3 
activity, α-synuclein expression, 
MPTP concentration, LC3-II/
LC3-I level and promotes PINK1 
protein stability. NEAT1 serves 
as miR-124 decoy and promotes 
cell death and apoptosis.

251,274–276

MIAT

Myocardial 
Infarction 
Associated 
Transcript

Down AD
Cognitive decline, 
Neurodegeneration, 
Protein aggregation

MIAT regulates Aβ clearance 
through LRP1 expression. 
Downregulation of MIAT 
promotes miR-150–5p/VEGF
mediated fibrillogenesis, reduces 
the number of microvessels and 
the expression of tight junction 
proteins. Loss of MIAT increases 
Aβ40 and Aβ42 levels and 
promotes neuronal loss.

251,277

NAT-
RAD18

Natural antisense 
transcript against 
RAD18 E3 
Ubiquitin Protein 
Ligase

Up AD Neurodegeneration
Promotes neuron loss through 
the down regulation of RAD18 
expression.

278

NDM29
Neuroblastoma 
Differentiation 
Marker 29

Up AD Neurodegeneration, 
Protein aggregation

Promotes Alu-induced 
inflammation and processing of 
APP and amyloid β secretion.

247,279

SORL1-
AS

Sortilin Related 
Receptor 1
Antisense RNA

Up AD Protein aggregation, 
Cognitive decline

Decreases SORL1 expression 
by altering mRNA splicing and 
impairs APP processing.

251,280

SOX2-OT

SRY-Box 
Transcription Factor 
2-Overlapping 
Transcript

Up AD, PD Neurodegeneration

Regulates co-transcribed Sox2 
gene expression, reduces 
Frizzled 3/5 FZD3/5)-mediated 
Wnt signaling and triggers 
oxidative stress generation that 
leads to apoptosis and neuronal 
loss.

281,282

HAR1A, 
HAR1F

Highly Accelerated 
Region 1A, F Down HD Neurodegeneration

Direct targets of REST. 
Mutated huntingtin gene lead 
to abnormal nuclear-cytoplasmic 
REST/NRSF trafficking leading 
to downregulation of HAR1 
expression and subsequently 
repression of numerous neuronal 
genes.

251,283–286

HTT-AS HTT Antisense 
RNA Down HD --

Overexpression of HTT-AS 
downgrades endogenous HTT 
transcript levels.

248,287

LINC003 
41

SYNE3: Spectrin 
Repeat Containing 
Nuclear Envelope 
Family Member 3

Up HD -- Unknown 251,269
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lncRNA Description Regulation Associated 
disease

Related Biological 
Processes Functions & Implications References

LINC003 
42

Long Intergenic 
Non-Protein Coding 
RNA 342

Down HD -- Unknown 251,269

RPS20P 
22

Ribosomal Protein 
S20 Pseudogene 22 Up HD --

RPS20P22 regulates RPS20 
expression. Reduction of 
RPS20P22 leads to accumulation 
of p53.

251,269

TUG1 Taurine Up
Regulated 1 Up HD, Aging Cognitive decline, 

neurodegeneration

Direct downstream target of p53. 
Binds to the PRC2 epigenetic 
regulatory complex of genes and 
sponge/decoy function.

250,288,289

TUNA 
(TUNAR)

Tcl1 Upstream 
Neuron-Associated 
lincRNA

Down HD --
TUNA expression declines 
significantly with increased HD 
disease grade.

251,290

HOTAIR HOX Transcript 
Antisense RNA Up PD Neurodegeneration

HOTAIR upregulation is 
associated with LRRK2 
upregulation and the induction of 
caspase 3-dependent apoptosis.

291–293

MALAT1

Metastasis 
Associated Lung 
Adenocarcino ma 
Transcript 1

Up PD Neurodegeneration

Involved in synapse development 
by regulating synapse formation 
and maintenance of genes 
expression. Modulates the 
recruitment of SR family pre
mRNA-splicing factors to the 
transcription site.

294,295

MALAT1

Metastasis 
Associated Lung 
Adenocarcino ma 
Transcript 1

-- AD Neurodegeneration

Negatively regulates the 
CDK5R1/p35 complex and 
promotes cell death by 
controlling expression of the 
miR-15/107 family.

217,251

NORAD
Non-Coding RNA 
Activated by DNA 
Damage

Down PD ---

NORAD stabilizes the genome 
through PUMILIO proteins. 
Downregulation of NORAD 
induces cytotoxicity through 
caspase3/7, ROS and LDH 
activity.

251,296

P21 Long non-coding 
RNA-p21 Up PD Neurodegeneration

p21 is a miR-1277–5p decoy and 
regulates α-Synuclein through 
miR-1277–5p. Upregulation of 
p21 inhibits cell viability, 
promotes caspase 3 activation, 
and increases Bcl family
initiated apoptosis.

297,298

PINK1-AS
PTEN Induced 
Kinase 1-Antisense 
RNA

Up PD Neurodegeneration

Regulates the stability of 
Pink1 transcript, involved in 
mitochondrial biogenesis and 
increases the sensitivity to 
apoptosis.

299

SNHG1 Small Nucleolar 
RNA Host Gene 1 Up PD Neurodegeneration Upregulation of SNHG1 

promotes neuroinflammation.
300–302

SNHG1 Small Nucleolar 
RNA Host Gene 1 Down PD Neurodegeneration Involved in miR-15 decoy and 

inhibits miR-15 function.
268,303

UCHL1-
AS1

Ubiquitin C
Terminal Hydrolase 
L1-Antisense RNA 
1

Down PD Neurodegeneration

Involved in dopaminergic neuron 
differentiation and maintenance, 
cellular stress response and 
miRNA decoy. Promotes Uchl1 
expression by upregulating the 
translation process.

304–306

RMST
Rhabdomyosar 
coma 2-associated 
Transcript

-- -- Neurogenesis, 
Neurodegeneration

Transcriptionally repressed by 
REST, required for the binding 
of SOX2 to promoter regions of 

307
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lncRNA Description Regulation Associated 
disease

Related Biological 
Processes Functions & Implications References

neurogenic transcription factors 
and involved in neurogenesis.

GAS5 Growth-arrest
specific 5 up Aging Cognitive decline, 

neurodegeneration

Prepares the cell to apoptosis. 
Upregulation correlates with 
impaired learning and novelty
induced behavior.

308–310

DGCR5
DiGeorge syndrome 
critical region gene 
5

Down HD Neurodegeneration DGCR5 is downstream target of 
REST in HD disease.

269,311,312
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