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Abstract

Multi-modality medical imaging techniques have been increasingly applied in clinical practice and 

research studies. Corresponding multi-modal image analysis and ensemble learning schemes have 

seen rapid growth and bring unique value to medical applications. Motivated by the recent success 

of applying deep learning methods to medical image processing, we first propose an algorithmic 

architecture for supervised multi-modal image analysis with cross-modality fusion at the feature 

learning level, classifier level, and decision-making level. We then design and implement an image 

segmentation system based on deep Convolutional Neural Networks (CNN) to contour the lesions 

of soft tissue sarcomas using multi-modal images, including those from Magnetic Resonance 

Imaging (MRI), Computed Tomography (CT) and Positron Emission Tomography (PET). The 

network trained with multi-modal images shows superior performance compared to networks 

trained with single-modal images. For the task of tumor segmentation, performing image fusion 

within the network (i.e. fusing at convolutional or fully connected layers) is generally better than 

fusing images at the network output (i.e. voting). This study provides empirical guidance for the 

design and application of multi-modal image analysis.
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I. INTRODUCTION

In the field of biomedical imaging, use of more than one modality (i.e. multi-modal) on 

the same target has become a growing field as more advanced techniques and devices have 

become available. For example, simultaneous acquisition of Positron Emission Tomography 

(PET) and Computed Tomography (CT) [1] has become a standard clinical practice for a 

number of applications. Functional imaging techniques such as PET which lacks anatomical 

characterization while providing quantitative metabolic and functional information about 

diseases can work together with CT and Magnetic Resonance Imaging (MRI) which provide 

details on anatomic structures via high contrast and spatial resolution to better characterize 

lesions [2]. Another widely-used multi-modal imaging technique in neuroscience studies 

is the simultaneous recording of functional Magnetic Resonance Imaging (fMRI) and 

electroencephalography (EEG) [3], which offers both high spatial resolution (through fMRI) 

and temporal resolution (through EEG) on brain dynamics.

Correspondingly, various analyses using multi-modal bio-medical imaging and computer

aided detection systems have been developed. The premise is that various imaging 

modalities encompass abundant information which is different and complementary to each 

other. For example, in one deeplearning based framework [4], automated detection of 

solitary pulmonary nodules were implemented by first identifying suspect regions from CT 

images, followed by merging them with high-uptake regions detected on PET images. As 

described in a multi-modal imaging project for brain tumor segmentation [5], each modality 

reveals a unique type of biological/biochemical information for tumor-induced tissue 

changes and poses “somewhat different information processing tasks”. Similar concepts 

have been proposed in the field of ensemble learning [6], where decisions made by different 

methods are fused by a “meta-learner” to obtain the final result, based on the premise that 

the different priors used by these methods characterize different portions or views of the 

data.

There is a growing amount of data available from multimodal medical imaging and a variety 

of strategies for the corresponding data analysis. In this work we investigate the differences 

among multi-modal fusion schemes for medical image analysis, based on empirical studies 

in a segmentation task. In their review, James and Dasarathy provide a perspective on 

multi-modal image analysis [7], noting that any classical image fusion method is composed 

of “registration and fusion of features from the registered images”. It is also noted in the 

survey work of [8], that networks representing multiple sources of information “can be taken 

further and channels can be merged at any point in the network.”

Motivated by this perspective, we advance one step further from the abstraction of image 

fusion methods in [7] and propose an algorithmic architecture for image fusion strategies 

that can cover most supervised multi-modal biomedical image analysis methods. This 

architecture also addresses the need for a unified framework to guide the design of 

methodologies for multi-modal image processing. Based on the main stages of machine 

learning models, our design includes fusing at the feature level, fusing at the classifier level, 

and fusing at the decision-making level. We further propose that optimizing a multi-modal 
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image analysis method for a specific application should consider the possibility of all the 

three strategies and select the most suitable one for the given use case.

Successes in applying deep Convolutional Neural Networks (CNN) for natural image [9] 

and medical image [10, 11] processing have been recently reported. Further, for the task of 

automatic tumor segmentation, CNN have been applied to segmentation of tumors in brain 

[5, 12, 13], liver [14], breast [15], lung [16, 17] and other regions [18]. These deep learning

based methods have achieved superior performance compared to traditional methods (such 

as level set or region growing), with good robustness towards common challenges in 

medical image analysis including noise and subject-wise heterogeneity. Deep learning on 

multi-modal images (which are also referred to as multi-source / multi-view images) is 

an important topic with growing interest in the computer vision and machine learning 

community. To name a few, works in [19] proposed the cross-modality feature learning 

scheme for shared representation learning. Work in [20] developed a multi-view deep 

learning model with deep canonical correlated autoencoder and shared representation to fuse 

two views of data. Similar multi-source modeling has also been applied for image retrieval 

[21] by incorporating view-specific and view-shared nodes in the network. In addition to 

correlation analysis, consistency evaluation across different information sources is used by 

multi-source deep learning framework in [22] to estimate trustiness of information sources. 

When image views/sources are unknown, the multi-view perceptron model introduced in 

[23] explicitly perform classification on views of the input images as an added route in 

the network. Various methods have also been developed for deep learning-based works for 

multi-modal / multi-view medical analysis. For example, work in [24] used shared image 

features from unregistered views of the same region to improve classification performance. 

Framework proposed in [25] fuses imaging data with non-image modalities by using a 

CNN to extract image features and jointly learn their non-linear correlations using another 

deep learning model. The multi-modal feature representation framework introduced in 

[26] fuses information from MRI and PET in a hierarchical deep learning approach. The 

unsupervised multimodal deep belief network [27] encoded relationships across data from 

different modalities with data fusion through a joint latent model.

However, there has been little investigation from a systematic perspective about how multi

modal imaging should be used. There are few empirical studies on how different fusing 

strategies can affect segmentation performance. In this work we address this problem by 

testing different fusion strategies through different implementations of CNN architecture.

A typical CNN for supervised image classification consists of: 1) convolutional layers 

for feature/representation learning, which utilize local connections and shared weights of 

the convolutional kernels followed by pooling operators, resulting in translation invariant 

features; and 2) fully connected layers for classification, which use high-level image features 

extracted from the convolutional layers as input to learn the complex mapping between 

image features and labels. CNN is a suitable platform to test and compare the different 

fusion strategies as proposed above in a practical setting, as we can customize the fusion 

location in the network structure: either at the convolutional layers, fully connected layers or 

network output.
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II. MATERIALS AND METHODS

A. Algorithmic architecture for multi-modal image fusion strategies and summary of 
related works

As any supervised learning-based method consists of three stages: feature extraction/

learning, classification (based on features), and decision making (usually a global 

classification problem but varies), we summarize the three strategies for fusing information 

from different image modalities, as shown below:

• Fusing at feature level: multi-modality images are used together to learn a unified 

image feature set, which shall contain the intrinsic multi-modal representation of 

the data. The learned features are then used to support the learning of a classifier.

• Fusing at the classifier level: images of each modality are used as separate inputs 

to learn individual feature sets. These single-modality feature sets will be then 

used to learn a multi-modal classifier. Learning the single-modality features and 

learning the classifier can be conducted in an integrated framework or separately 

(e.g. using unsupervised methods for learning the single-modality features then 

train a multi-modality classifier).

• Fusing at the decision-making level: images of each modality are used 

independently to learn a single-modality classifier (and the corresponding feature 

set). The final decision of the multi-modality scheme is obtained by fusing the 

output from all the classifiers, which is commonly referred to as “voting” in the 

literate [6], although the exact scheme of decision making varies across methods.

Any practical scenario using supervised learning on multi-modal medical images belongs 

to one of these fusion strategies, and most of the current literature reports can be grouped 

accordingly. Works in [28] (co-analysis of fMRI and EEG using CCA), [29] (co-analysis 

of MRI and PET using PLSR) and [30] (co-learning features through pulse-coupled 

neural network) perform feature-level fusion of the images. Works in [31] (using features 

of contourlets), [32] (using feature of wavelet), [33] (using features of wavelets) and 

[34] (using features learned by Linear Discriminant Analysis) perform the classifier-level 

fusion. Several other works in image segmentation such as [35] (fusing the results from 

different atlases by majority voting) and [36] (fusing the Support Vector Machine results 

from different modalities by majority voting), as well as the Multimodal Brain Tumor 

Segmentation (BRATS) framework [5] (using majority vote for fusing results from different 

algorithms, rather than modalities) belong to decision-level fusion.

B. Data acquisition and preprocessing

In this work, we use the publicly available soft-tissue sarcoma (STS) dataset [37] from 

the Cancer Imaging Archive (TCIA) [38] for model development and validation. MRI is 

mainly used for the diagnosis of soft tissue sarcoma, while other options including computed 

tomography (CT) or ultrasound [39, 40]. As STS poses high risk of metastasis (especially to 

lung) leading to low survival rates, a comprehensive characterization of STSs including 

imagingbased biomarker identification is a crucial task for better adapted treatment. 

Accurate segmentation of the tumor region plays an important role for image interpretation, 
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analysis and measurement. The soft-tissue sarcomas dataset contains a total of four imaging 

modalities: FDG-PET/CT and two anatomical MR imaging sequences (T1-weighted and 

T2-weighted fatsaturated). Images from all those four modalities have been pre-registered to 

the same space. It should be noted that throughout this work we regard T1- and T2-weighted 

imaging as two “modalities” because they portray different tissue characteristics. The STS 

data set encompasses 50 patients with histologically proven STSs of the extremities. The 

FDG-PET scans were performed on a PET/CT scanner (Discovery ST, GE Healthcare, 

Waukesha, WI) at the McGill University Health Centre (MUHC). PET attenuation corrected 

images were reconstructed (axial plane) using an ordered subset expectation maximization 

(OSEM) iterative algorithm. PET slice thickness resolution was 3.27mm and the median 

in-plane resolution was 5.47×5.47mm2. For MRI imaging, T1 sequences were acquired in 

the axial plane for all patients while T2 (or short tau inversion recovery (STIR)) sequences 

were scanned in different planes. The median in-plane resolution for T1-weighted MR 

imaging was 0.74×0.74mm2 and T2-weighted MR was 0.63×0.63mm2. The median slice 

thickness was 5.5mm and 5.0mm for T1 and T2, respectively.

The gross tumor volume (GTV) was manually annotated based on the T2-weigthed MR 

images by expert radiologists with access to the other modalities. After drawing the GTV 

on T2 images, corresponding contours of these annotations for the other modalities were 

then obtained using rigid registration with the commercial software MIM®(MIM software 

Inc., Cleveland, OH). As the PET/CT images have a much larger fields of view (FOV) than 

the MR images, they were truncated to the regions with MR images. In addition, the PET 

images were first converted to standardized uptake values (SUV) and linearly up-sampled 

to the same resolution of other modalities. Pixel values for all three modalities are linearly 

normalized to the value interval of 0∼255 according to the original pixel value.

The final data used as input in this analysis has four modalities of imaging (PET, CT, 

T1 and T2 MR), all in the same image size for each subject while the size varies across 

different subjects. A sample multi-modal image set is illustrated in Fig. 1. In the analysis, 

image patches with the size of 28×28 are extracted from all images. A patch is labeled as 

‘positive’ if its center pixel is within the annotation (i.e. tumor-positive) region and labeled 

as ‘negative’ otherwise. On average, around 1 million patches were extracted from each 

subject, with around 0.1 million ‘positive’ patches. During the training phase, to balance 

the number of positive and negative patches, we randomly selected negative patches to the 

same number of positive patches. During the testing phase, we used all the patches for 

segmentation.

C. Multi-modal Image Classification Using CNN

We implemented and tested the three fusion strategies in three different patch-based 

CNNs with corresponding variations in network structures, as illustrated in Fig. 2: The 

Type-I fusion network represents feature-level fusing; the Type-II fusion network represents 

classifier-level fusing; and the Type-III fusion network represents decision-level fusion. All 

the networks use same set of image patches as input. The network outputs, which are the 

labels of the given patches, are aggregated by assigning the corresponding label to the pixel 

in the patch center in the output label maps. All the single and multi-modal networks were 
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implemented in TensorFlow and run on a single NVIDIA 1080Ti GPU. Training time for a 

single-modal network on the current dataset was around 3 hours. For multi-modal networks 

of all types, the training time was around 10 hours. Testing time (i.e. segmentation on new 

images) of any single or multi-modal network was negligible (<2 minutes).

For the Type-I fusion network, patches from different modalities are transformed into a 3D 

tensor (28×28×k, where k is the number of modalities) and convoluted by a 2×2×k kernel as 

shown in Fig. 2a, to fuse the high-dimensional features to the 2D space thus performing the 

feature-level fusion. Outputs from the k-dimensional kernel are then convoluted by typical 

2×2 kernels. For the Type-II fusion network, the features are learned separately through 

each modality’s own convolutional layers. Outputs of the last convolutional layers from each 

modality, which are considered the high-level representation of the corresponding images, 

are used to train a single fully connected network (i.e. classifier), as in Fig. 2b.

For the Type-III fusion network, for each modality we train a single-modal 2D CNN to 

map its own image to the annotation. The prediction results (i.e. patch-wise probability) of 

these single-modality networks are then ensembled together to obtain the final decision (i.e. 

patch-wise label). The ensemble can be done in many ways: the simplest form is majority 

voting (i.e. label of a patch is set to the majority label from classifiers). In this work we 

utilized the random forest algorithm [41] to train a series of decision trees for the patch-wise 

label classification, as random forest has been shown to be capable of achieving better 

generalizability and avoid overfitting in many applications. The random forest algorithm 

uses bootstrap sampling of the data to learn a set of decision trees, where a random subset 

of data is used at each decision split. Details of implementation can be found in [42]. 

The random forest algorithm in this study uses an ensemble of 10 bagged decision trees, 

each tree with maximum depth of 5. These hyper parameters were determined through grid 

search.

D. Experiments on synthetic low-quality images

While it is expected that multi-modal imaging should offer additional information for lesion 

classification resulting in better performance compared with single-modality methods, it 

is interesting to investigate the extent of such a benefit. To answer this question, and at 

the same time simulate a practical scenario of low-dose imaging, we generated synthetic 

low-quality images by adding random Gaussian noise into the original images and used 

them for training and testing in both the single-modality and multi-modality networks, 

following the same 10-folds cross-validation scheme. Images after adding Gaussian noise 

were normalized to the same value interval as the original images to ensure similar settings 

in the imaging parameters. A sample multi-modal image before and after adding noise is 

visualized in Fig. 3.

As seen in Fig. 3, when the noise magnitude is 1 (standard deviation equal to the 90% of 

the cumulative histogram distribution value of the image), low-quality PET images maintain 

good contrast of the tumor region with blurred boundaries. Similarly, tumor regions can 

be visually identified from the low-quality T2 image, but the contrast is very low. On the 

other hand, the contrast of CT image after adding noise became so low that tumors cannot 

be distinguished from background. Apparently performing segmentation on these synthetic 
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images will be challenging for certain modalities, which is similar to the case of low-dose 

image analysis.

E. Segmentation and performance evaluation

The whole image set containing PET, CT and MR T1-weighted and T2-weighted images 

from 50 patients were divided into training (including validation) and testing sets, based 

on the 10-folds cross-validation scheme. In each run of the cross-validation experiment for 

the single-modality and type I/II networks, PET+CT+T1 or PET+CT+T2 images from 45 

patients were used for training the 3-modality network, while the remaining 5 patients were 

used for testing and performance evaluation. With a total of 10 runs, images from every 

patient were tested. In each run, the same number (around 5 million) of ‘positive’ and 

‘negative’ samples were used as training input. Model performances were evaluated based 

on pixel-wise accuracy by comparing the predicted label with the ground truth from human 

annotation, as well as Sørensen–Dice coefficient [43] (DICE coefficient) which equals to 

twice the number of voxels within both regions divided by the summed number of voxels 

in each region to measure the similarity between predicted region and annotation region. 

It should be noted while labels of all the patches from the 5 test patients in each run 

were predicted during the testing phase, we calculated the prediction result based on equal 

numbers of positive and negative patches, in order to overcome the problem of unbalanced 

samples. For the Type-III network with random forest, the prediction was based on the 

single modality networks in the 10-folds cross validation. Patch-wise probabilities of each 

patch being within the tumor region from the single-modality networks are then combined to 

train a random forest (training labels of the patches are ground truth) in the same 10-folds 

cross validation approach.

We also performed comparison between the model performance using three modalities 

(PET, CT, MRI T1 or T2) and two modalities (PET+CT, CT+T2, and PET+T2). Hyper 

parameters remain similar for these networks with alteration of network structure for the 

number of modalities. For example, multi-modal PET+CT fusion Type-I network has two 

input channels, the images will go through 2×2×2 convolutional kernel followed by 2D 

2×2 kernels. All fused networks were implemented with Type-I, Type-II and Type-III 

strategies. Raw outputs of the networks, which are of patch-wise classification results, were 

transformed to the “label map” by assigning each pixel in the input image the label of the 

patch centered at it.

III. RESULTS

A. Performances comparison between single-modality networks and multi-modality 
fusion networks

DICE coefficient of single and multi-modality networks are summarized in the box charts 

of Fig. 4: average DICE of Type-I, II and III fusion networks on PET+CT+T1 is 82%, 

80% and 77%. Average DICE of Type-I, II and III fusion networks on PET+CT+T2 is 

85%, 85% and 84%. Average performance of a single-modality network is 76%, 68%, 

66% and 80% for PET, CT, T1 and T2 images. From the statistics, it can be seen that the 

DICE of single-modality networks are all lower than the multi-modality fusion networks, 
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while no network achieved result higher than 80%. The networks trained and tested on the 

T2-weighted MR had the best performance. The reason is that: 1) annotation is performed 

on T2 images, and 2) T2 relaxation is more sensitive to soft-tissue sarcomas, as illustrated 

in Fig. 1d. It is also interesting to observe that the performance of PET-based network is the 

worst in average while PET is designed to detect the tumor presence. This is mainly caused 

by the necrosis in the center of large tumor which barely show uptake in FDG-PET images.

Although the annotation was mainly performed on the T2-weighted images, the fusion 

network trained and tested on the combination of PET, CT and T1 (without T2) achieved 

better result, on average compared to the single-modality network based on T2 images (by 

around 2% improvement). Such result shows that while modalities other than T2 might be 

inaccurate and/or insufficient to capture the tumor region in single, the fusion network (using 

any of the fusion scheme) can automatically take advantage of the combined information. 

An illustrative example is shown in Fig. 5, where the multi-modality fusion network Fig. 

5(b) can obtain the better result comparing with T2-based single modality network (c). 

A closer examination of the single modality networks based on PET, CT and T1 shows 

that neither of these three modalities can lead to a good prediction: PET (d) suffers from 

the necrosis in the center issue as discuss above, while a large region of false positive is 

presented in CT, T1 and T2 results (c, e, and f).

B. Performance comparison on synthetic low-quality image

By training and testing the single-modality and multi-modality networks on the synthetic 

low-quality images with Gaussian noise, we obtained label maps and corresponding 

prediction accuracies. Model performance on both original images and low-quality images 

are summarized in Fig. 6, under the noise magnitude k of 1. From the statistics, three 

important observations can be made:

First, when the image quality degrades, the segmentation performance decreased for all the 

networks. However, the level of decrease for single-modality networks was far higher than 

the multi-modality networks. For example, the result of segmentation on single-modality 

low-quality CT images decreases to random guessing, which is in correspondence with what 

has been observed in Fig. 3. On the other hand, performance of all type I, and II networks 

only slightly decrease: their DICE measurements are all above 80%.

Second, it is interesting to find that the performance of multi-modality networks based 

on low-quality images is on the same level or even higher than the performance of 

single-modality networks based on original images, as indicated by the arrows in Fig. 6. 

The observation indicates that multi-modal imaging can be useful in low-image quality 

settings (such as low-dose scans), as its analytic performance is far less impacted by the 

degraded image quality. Fig. 7 shows an example consisting of the results from three single 

modality networks (on original image) and one Type-II fusion network (on low-quality 

image). Networks based on PET as a single modality cannot define correct tumor boundaries 

while at the same time they generate false positives outside the tumor region. Networks 

based on single CT and T2 MRI can delineate the rough tumor boundaries but with either 

false positive outliers (Fig. 5c, from T2) or incorrect boundary definition (Fig. 7b, from 

CT). On the other hand, the performance of a multi-modal fusion network on the same 
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subject is clearly superior (Fig. 7d), although it was trained and tested on noised images 

(as visualized in the background). Further examination of multi-modal fusion network 

performance on low-quality images with different noise magnitudes shows that on low-to

mid noise magnitudes (k=0.5/1), the performance of multi-modal fusion networks is similar 

to performance on original clean images. Specifically, for k=0.5 (i.e. standard deviation 

of Gaussian noise is almost half of the image intensity), there is no significant difference 

(p<0.05) between the segmentation result on original and noised images for each subject. At 

higher noise magnitudes (k=2), the model performance deteriorates to below 80% (0.62% 

for Type-I, 75% for Type-II and 52% for Type-III fusion networks), which is worse than the 

single-modality performance on T2 images.

Third, among different fusion strategies, fusion networks of Type-I and II perform largely 

the same per the statistics, both on original images and on low-quality noised images. 

While Type-III networks with random forest have consistently worse performance. It is 

important to find it performs the worst among the three strategies, as it is commonly applied 

in multi-modal image studies. Finally, with regard to the computational complexity which 

affects training and testing time as well as hardware cost, and the ease of implementation, 

networks with earlier fusion (Type-I) are superior for their simplicity in model structure.

C. Performance comparison using different modality combinations

Based on the observations on model performance difference between multi-modal and 

single-modal networks and the detailed investigation of the label maps from network 

results, we have found that additional imaging modalities can offer new information to the 

segmentation task even with lowered image quality. Yet it is still unclear how (and whether) 

different modalities contribute to the multi-modality network. In other words, if little or 

no performance increase is consistently observed from a certain combination of imaging 

modalities compared with its single-modality counterpart, then we can conclude that the 

extra modality is not contributing to the segmentation task. To this end, we trained and 

tested the multi-modal fusion networks on additional combinations of imaging modalities 

as introduced in the methods section. Statistics of the performance of these networks are 

summarized in Fig. 8.

From Fig. 8, it can be observed that a fusion network based on PET+T2 has similar but 

lowered performance compared to a fusion network based on PET+CT+T2, showing CT 

has a limited contribution to the segmentation. More importantly, a fusion network based 

on PET+CT has significantly (p<0.05) higher performance than single-modality networks on 

PET or CT for Type-I and Type-II fusion strategies, indicating that a low-contrast imaging 

modality (such as CT) can significantly improve the segmentation accuracy for functional 

imaging (PET). To further illustrate this, Fig. 9 is an example case of segmentation 

from a single-modality network based on T2 images, a multi-modality network based on 

T2+PET images and a multi-modality network based on T2+PET+CT images. By gradually 

adding extra modalities, the resulting tumor region segmentation is showed corresponding 

improvements: a single-modality T2 network can delineate a rough boundary of the tumor 

but also generates false positives in the bottom left corner due to the confusing boundaries 

of the anatomical structures. This error is then corrected by utilizing functional information 
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from PET images (where such anatomical deviations show little contrast) to form a multi

modal fusion network (Fig. 9b). By incorporating CT images, the segmentation boundary is 

further smoothed, achieving the best possible performance.

IV. CONCLUSION AND DISCUSSION

Based on the network performance comparison, we empirically demonstrate several 

findings. First, comparison results between multimodality and single modality networks 

in section III-A and III-B show that multi-modal fusion networks perform better than 

single-modal networks. More interestingly, fusion networks based on synthetic low-quality 

images perform better than single-modality networks on high-quality images, at certain 

noise levels. This finding brings in new evidence for the benefit of multi-modal imaging in 

medical applications in which one of the modalities can only provide images with limited 

quality, such as screening or low-dose scans. It is then a better option to utilize more than 

one modality for better analytics.

Second, comparison results of fusion strategies in section III-A shows that for the task 

of tumor region segmentation using CNN, performing fusion within the network (at the 

convolutional layer or fully connected layer) is better than outside the network (at network 

output through voting), even when the voting weights are learned by using sophisticated 

classification algorithms such as random forest. As voting is commonly used by multi-modal 

analytics, this conclusion could provide empirical guidance for the corresponding model 

design (e.g. consider an integrated multi-modal framework through registration rather than 

voting).

Third, modality combination results in section III-C show that multi-modal fusion networks 

can take advantage of the additional anatomic or physiological characterizations provided by 

different modalities, even if the extra modality can only provide limited contrast in the target 

region. This conclusion is in accordance with “weak learnability” in the field of ensemble 

learning [44], indicating that as long as a learner (or source of information, as the imaging 

modality in this context) can perform slightly better than random guessing, it can be added 

into a learning system to improve its performance.

Although we have only tested the framework on a single dataset using one set of simple 

network structures, most of the current conclusions we draw from the empirical results are 

not dependent upon the exact data used. We are aiming to test more network structures 

including end-to-end semantic segmentation networks, on datasets with more types of 

modalities in future work.

In addition, as fully convolutional neural network such as U-Net [45] has been widely 

used in medical image analysis especially semantic segmentation, we performed the same 

segmentation task using U-Net based on Type-I fusion scheme. Structure of U-Net used 

in this work consists of 4 convolution layers for encoding and 4 deconvolution layers for 

decoding, in accordance with input image size (128×128). Other model parameters and 

implementation details can be found in our previous work [46]. Comparison between the 

segmentation result from U-Net-based and CNN-based fusion networks (all Type-I) shows 
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that these two methods achieved very similar performance, with relative difference<0.5%. 

This result shows that with the same fusion scheme, actual performance is similar for 

different segmentation methods (e.g. between patch-based and encoder-decoder-based 

methods). Further, it shows that fusion schemes introduced in this work is not dependent 

on the implementation of segmentation, thus it can serve as a general design rule for 

multi-modal image segmentation.

Our algorithmic architecture (three fusion strategies) only covers supervised, classification

purposed methods. Yet we also note that there exist unsupervised methods in medical image 

analysis such as gradient flow-based methods for image segmentation [47], as well as well

established deformable image registration algorithms [48]. These unsupervised methods can 

also be applied to multi-modal images, while their fusion schemes can be studied by an 

extension of the current framework.

While the empirical study is performed on a well-registered image dataset, we recognize 

that registration across different imaging modalities is a vital part of any fusion model. 

All three types multi-modal fusion networks used in this study assumes good voxel-level 

correspondence, while erroneous registration across different modalities in an incoming 

patient can lead to dramatically decreased prediction performance within the misaligned 

region, depending on the number of modalities affected by the misalignment and its severity. 

This limitation has inspired us for a plan to develop an integrated framework consisting of 

iterative segmentation and registration through alternative optimization, with shared multi

modal image features.
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Fig. 1. 
Multi-modal images on the same position from a randomly-selected subject. (a): PET; (b): 

CT; (c): T1; (d): T2. The image size of this subject is 133×148. Red line is the contour 

of ground truth from manual annotation. Two yellow boxes illustrate the size of patches 

(28×28) used as the input for CNN. The center pixel of one patch is within the tumor region 

and another patch outside the tumor region.
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Fig. 2. 
Illustration of the structure for (a) Type-I fusion networks, (b) Type-II fusion network and 

(c) Type-III fusion network. The yellow arrows indicate the fusion location
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Fig. 3. 
Sample multi-modal image before and after adding Gaussian noise: (a) Ground truth shown 

as red contour overlaid on PET image, (b) CT image (c) T2 image. After adding noise, (d) 

PET image, (e) CT image and (f) T2 image. The magnitude factor k equals to 1.
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Fig. 4. 
Box chart for the statistics (median, first/third quartile and the min/max) of the DICE 

coefficient across 50 subjects. Each box corresponds to one specific type of network trained 

and tested on one specific combination of modalities. For example, the first box from the left 

shows the prediction statistics of Type-I fusion network trained and tested on images from 

PET, CT and T1-weighted MR imaging modalities.
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Fig. 5. 
(a) Ground truth shown as red contour line overlaid on T2-weighted MR image. (b) 

Result from Type-II fusion network based on PET+CT+T1. (c) Result from single-modality 

network based on T2. (d-f) Results from single-modality network based on PET, CT and T1, 

respectively. (g) 3D surface visualization of the ground truth. (h) 3D surface visualization of 

the result from Type-III fusion network based on PET+CT+T1. (i) 3D surface visualization 

of the result from single-modality network based on T2.
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Fig. 6. 
Box chart for the statistics (median, first/third quartile and the min/max) of the DICE 

coefficient across 50 subjects. Red box stands for networks trained and tested on original 

clean images, blue box stands for networks based on synthetic noised image.
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Fig. 7. 
network result on different modalities. Contour line of the ground truth annotation (red line) 

and network performance (yellow line) (a) single PET network on PET image (b) single CT 

network on CT image (c) single T2 network on T2 image (d) fused noisy PET/CT T2 image 

on noisy T2. (e)-(h) 3D surface visualization of the segmentation results in (a)-(d).
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Fig. 8. 
Box chart for the statistics (median, first/third quartile and the min/max) of the DICE 

coefficient across 50 subjects. Red box stands for network train and test on type I network, 

blue box stands for type II network and green stands for type III. Performance of single

modality network are shown as grey boxes to the left for reference.
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Fig. 9. 
Contour line of the ground truth annotation (red line) and segmentation result (yellow 

line): (a) Single-Modality network on T2 (b) Multi-modality network on T2+PET (Type

I) (c) Multi-Modalities network on T2+PET+CT. (d)-(f) 3D surface visualization of the 

segmentation results in (a)-(c).
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