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Abstract

The purpose of this study is to investigate feasibility of estimating the specific absorption rate 

(SAR) in MRI in real time. To this goal, SAR maps are predicted from 3T- and 7T-simulated 

magnetic resonance (MR) images in 10 realistic human body models via a convolutional neural 

network. Two-dimensional (2-D) U-Net architectures with varying contraction layers and different 

convolutional filters were designed to estimate the SAR distribution in realistic body models. 

Sim4Life (ZMT, Switzerland) was used to create simulated anatomical images and SAR maps 

at 3T and 7T imaging frequencies for Duke, Ella, Charlie, and Pregnant Women (at 3, 7, and 9 

month gestational stages) body models. Mean squared error (MSE) was used as the cost function 

and the structural similarity index (SSIM) was reported. A 2-D U-Net with 4 contracting (and 

4 expanding) layers and 64 convolutional filters at the initial stage showed the best compromise 

to estimate SAR distributions. Adam optimizer outperformed stochastic gradient descent (SGD) 

for all cases with an average SSIM of 90.5∓3.6 % and an average MSE of 0.7∓0.6% for head 

images at 7T, and an SSIM of >85.1∓6.2 % and an MSE of 0.4∓0.4% for 3T body imaging. 

Algorithms estimated the SAR maps for 224×224 slices under 30 ms. The proposed methodology 

shows promise to predict real-time SAR in clinical imaging settings without using extra mapping 

techniques or patient-specific calibrations.
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I. INTRODUCTION

Modern neuroscience relies on understanding the brain in health and disease. Thus, the 

availability of technology that can significantly increase the spatial resolution and sensitivity 

achievable with magnetic resonance (MR) neuroimaging at the current used field strength of 

3T and emerging ultra-high field (UHF) strengths of 7T and higher, consistent with safety, 

would offer the potential to advance our understanding of brain structure and function by 

enabling investigations with greater specificity and granularity [1].

A key limitation to the high potential of UHF magnetic resonance imaging (MRI) in 

neuroscience research and clinical or diagnostic applications [2, 3] is the safety concern 

related to the nonuniform deposition of radiofrequency (RF) power in the body [4], 

quantified by the specific absorption rate (SAR), which can lead to dangerous tissue heating 

and damage [5]. Not only does the average SAR possess a quadratic dependence on the 

static magnetic field strength (B0) [6], increasing 4-fold from 3T to 7T, but due to the higher 

Larmor frequency and thus shortened in-tissue wavelength, it also exhibits a spatial variation 

that can lead to “local SAR” patterns or “hotspots” of focused high RF power deposition and 

localized tissue heating [7–13]. This results in significant SAR nonuniformity at anatomical 

dimensions similar to the brain at 7T (wavelength ~11 cm in tissue) as well as the body at 

3T (wavelength ~26 cm in tissue) [14].

Moreover, parallel transmit (pTx) technology with multiple independent transmit RF 

channels [15–17] is now common in UHF applications and can lead to even stronger 

hotspots because of potential constructive interference of the electric fields [18, 19].

While a small portion of UHF MRI has received Food and Drug Administration (FDA) 

approval [20, 21], most clinical imaging has been performed at 3T to date. This is because 

substantial safety and technological hurdles still need to be surmounted before the potential 

benefits of higher sensitivity and spatial resolution can be fully realized. Specifically, there is 

a lack of technology that can measure local SAR due to anatomical and positional variations 

between patients, and between transmit coils. Current technology is not equipped to measure 

spatially varying local SAR; the only quantity that can be determined in vivo is the overall 

average, or global, SAR, delivered to the entire anatomy under investigation.

Local SAR variation is highly difficult to predict due to anatomical and positional variations 

between patients, as well as variations in transmit coils. Many institutions use a conservative 

estimate of the peak local SAR via its ratio to the measurable global SAR; typically, ~20:1 

[19], thereby severely limiting the applied transmit power and thus the imaging performance 

achievable by UHF MRI, in particular resolution and/or scan time. This critical barrier is one 

of the main reasons 7T has not yet reached the patient in its full capacity and holds back its 

success as an extremely powerful imaging modality with unprecedented ability to decipher 

fine structures.

MR thermometry as an alternative approach suffers from a coarse temperature resolution 

[22]. The advent of artificial intelligence (AI) and machine learning in MRI [23–36] has 

opened up new avenues for the prediction of various imaging characteristics, among them 
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the recent prediction of local SAR in prostate imaging [37–39], as well as the prediction of 

temperature rise in the brain for 33 different tissue types [40].

In this paper, we expand these pioneering techniques by use of a comprehensive training 

set of anatomical models and predict local SAR both at the 3T and 7T field strengths, 

for a large variety of landmarks and thus imaging anatomies. We propose MRSaiFE [41–

43], which is eventually expected to become an AI-based, exam-integrated, MRI safety 

prediction software facilitating the safe generation of 3T and 7T images. In this work, we 

demonstrate proof of concept and feasibility for MRSaiFE using a database of 10 human 

body models. The algorithm is trained and evaluated for use at (1) 3T body dimensions and 

(2) 7T brain dimensions – significant SAR non-uniformity can occur at both field strengths 

and provides good basis to train the network on a variety of scenarios. Our results suggest 

SAR-monitoring with >90% structural similarity index (SSIM) [44] and <1% mean squared 

error (MSE) for high resolution imaging at UHF.

II. METHODS

A. DATA GENERATION

The input data for this study were acquired from Sim4Life simulations (ZMT, Zurich, 

Switzerland) using Virtual Population (IT’IS, Zurich, Switzerland) body models (Figure 1). 

Figure 2 shows an illustration of the proposed neural network. An anatomical image is used 

as the input to a neural network and predicts a SAR map in image form at the output.

The anatomical input image that would come from an MRI scanner in a real experiment 

was approximated by using black/white images of the body models. Image data sets were 

synthesized for 1 mm anatomical resolution and down sampled to 224 × 224 × 224 pixels 

for a field of view (FoV) of 30 cm × 30 cm × 30 cm for head imaging (1.3 mm isotropic 

resolution) and for a FoV of 60 cm × 60 cm × 60 cm for body imaging (2.7 mm isotropic 

resolution). In order to encode landmark information as part of a neural network with a 

single input and output image, these anatomical images were weighted by the normalized 

B1
+ field of the unloaded RF coils [42].

For 3T body MRI SAR prediction, a 16-rung body coil model (65 cm diameter, 67 cm 

length) made for a standard bore size of 60 cm was used in conjunction with the body 

models Ella (26y, body mass index (BMI) 21.6 kg/m2), Duke (34y, BMI 22.4 kg/m2), and 

pregnant women at gestational stages of 3, 7, and 9 months (26y, BMI not available). 

Duke was positioned at 225 different imaging landmarks spanning ∓40 mm, ∓60 mm, and 

+60/−100 mm along the x-, y-, and z- axes (axial: xy-plane, coronal: yz-plane, sagittal: 

xz-plane). Similarly, Ella and the pregnant women were positioned at 125 different imaging 

landmarks varying between ∓40 mm in x- and y-axes, and ∓200 mm in z-axis. The 1-gram 

averaged peak local SAR outputs were evaluated for 1 W of simulated input power and 

coronal SAR slices were extracted. Here, the iterations where the body models intersected 

with the coil, and slices containing no information, were discarded from the dataset. This 

resulted in a set of 67,861 input anatomical and 67,861 output SAR images at 3T.
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For 7T head MRI SAR prediction, a 16-rung birdcage head coil model (30 cm diameter, 

25 cm length) was used with the body models Ella (26y female, BMI 21.6 kg/m2), Charlie 

(8w female, weight 4.3 kg, BMI not available), and pregnant women at different gestational 

stages (3, 7, and 9 months, 26y, BMI not available). All models were positioned at the same 

imaging landmarks within the coil ranging from ∓20 mm in x- and y-axes, and ∓60 mm in 

z-axis. Input anatomical image and output SAR image generation followed the same steps as 

for the 3T analysis, resulting in in a set of 52,806 input anatomical and 52,806 output SAR 

images at 7T.

The data were split into three categories for each body model separately with an 

approximate ratio of 80, 10, and 10% for training, validation, and testing, respectively. A 

summary of the dataset is provided in Table 1. Algorithms were trained and tested for each 

body model separately.

B. NEURAL NETWORK ARCHITECTURE

A 2D U-Net architecture [45] estimated SAR maps (y) of a given MRI image (x) by learning 

a transformation, y=f(x), between the two. Here, y is the simulated SAR map of a given 

slice, which was also used as the ground truth (GT).

We implemented a set of U-Net architectures using a cascade of 2D convolutional filters 

(Figure 2). Convolutional layers were paired with nonlinear rectified linear unit (reLU) 

activation functions [46], batch normalization [47], and He initialization [48]. The input 

image size was set to 224 × 224 pixels, zero padding was used for convolutions, and the 

output was cropped to the size of the input image. In order to analyze the effect of different 

hyperparameters on the network performance, we designed 3 U-Nets with varying number 

of contraction (encoder) and expansion (decoder) layers, using different filter feature map 

lengths (n) and learning rates (LR). The first, second, and third architectures used 2, 4, and 

6 encoder and decoder stages, respectively (Figure 2. A, B, and C). Each stage contained 2 

cascaded convolutional filters [36] with the first layer feature map lengths varied from 32 to 

256 and orders of 2 (i.e., n= 32, 64, 128, and 256). These filter lengths decreased to 16 and 

32 for the 6-stage network due to limited memory. The feature maps of the first layers were 

incremented by a factor of 2 for the subsequent encoding stages and decremented by a factor 

of 2 for the consequent decoding stages. All networks used 3×3 convolution filters, a 1×1 

stride length, 2×2 max pooling, and up-convolutions. The final layer of each architecture 

included 1×1 convolutional filters with a sigmoid activation function.

C. TRAINING AND VALIDATION

We used a 3T body imaging data set generated by using Ella with the 3 different 

U-Net configurations to determine the best performing architecture and optimized the 

hyperparameters using SSIM, MSE, and training time per image as performance metrics.

Many deep learning image processing algorithms use MSE and SSIM as a basis 

of comparison between the ground truth and predicted images. The most traditional 

comparison uses the MSE and represents the cumulative mean squared error between ground 

truth and predicted images. The SSIM is often used in addition to measure the perceived 

change in structural information from ground truth to prediction. Given our need to predict 
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anatomical outlines and SAR hotspots, this metric is a good indicator of general structural 

correctness of the predicted image.

Training was performed using adaptive moment estimation (Adam)[49] and stochastic 

gradient descent (SGD) [50] optimizers with constant exponential decay rates and 

momentum values (i.e., β1=0.90, β2=0.99, and ε=10−7 for Adam, as well as a 

momentum=0.9 for SGD). To optimize the hyperparameters, the MSE between the 

simulated and predicted SAR maps was minimized on the validation dataset by using (1).

MSE = 1/N * Σ y − y 2 (1)

Here N is the total number of pixels in the images. A dynamic learning rate (LR) approach 

was used with initial LRs of 10−3, 10−4, 10−5, and 10−6, and these rates were decreased to 

80% at every 5th epoch. The maximum number of epochs was set to 200, and the best model 

was determined and saved using the Keras and Tensorflow backends (Google, Mountain 

View, CA). All training algorithms were run twice for validation purposes, and the batch 

size for training, validation, and test datasets was set to 1. All algorithms were run on an 

NVIDIA Titan RTX (NVIDIA, Santa Clara, CA) Graphics Processing Unit (GPU).

D. TESTING

Testing was performed on the testing datasets prepared for each body model. Quantitative 

image comparisons were performed between the GT images (simulated SAR) and the 

predicted SAR maps using MSE. In addition, SSIM was evaluated to provide a perceptual 

image quality comparison.

We also introduced a hotspot analysis by masking the images only using the pixels that fell 

within a percentage of highest local SAR values. We evaluated the similarity in location 

between ground truth and prediction by use of SSIM between ground truth and predicted 

hotspots. We also evaluated the maximum SAR values for all hotspots and calculated the 

relative error between prediction and ground truth.

III. RESULTS

A. HYPERPARAMETER ANALYSIS

SSIM results and the training time of the 3 U-Nets for different hyperparameters are given 

in Figure 3 (Adam) for 3T body MRI. Increasing the learning rate of the 2-stage network 

(Figure 3A) from 10−6 to a higher level (e.g., 10−3) increased the average SSIM from 

68.9∓17.6% to 81.1∓4.8%. LRs chosen over a range from 10−3 to 10−5 resulted in similar 

SSIM. Additionally, increasing the feature map length from 32 to 64 improved the SSIM 

from 77.3∓1.2% to 81.7∓1.0%. The use of 128-layer feature maps led to the highest 

variation in SSIM (i.e., ∓23.2%) among all LRs and feature map sizes for all body models. 

Increasing the feature map length from 16 to 256 increased the time required to train each 

slice from 8 to 80 ms with limited improvement in SSIM.
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The architecture containing 4 stages exhibited more variation for different LRs and feature 

map lengths (Figure 3B). The use of 32 convolution filter layers at the initial stage generated 

the lowest SSIM (i.e., 65.4∓3.5%), which clearly demonstrates the importance of the length 

of the feature map at the initial layer. The best average SSIM, i.e., 83.0∓9.4%, was reached 

when the LR was 10−5. Although changing the initial layer feature map length from 64 

to 256 increased the capacity of the network, it improved the average SSIM only slightly 

(i.e., 79.9∓10.2% to 85.4∓5.1%) but decreased the dependence on hyperparameter variations 

significantly (i.e., the variation of SSIM decreased from 10.2% to 5.1%). Additionally, the 

training time for the 256-layer feature map was increased by a factor >2 compared to 128 

layers. Thus, among the investigated 4-stage U-Net architectures, the use of either 64 or 128 

feature maps at the initial stage produced the best trade-off for all LRs.

The results for the 6-stage U-Net architecture are reported in Figure 3C. Using 32 feature 

map layers at the initial stage improved the average SSIM to 70.3∓2.0% compared to 

the case with 16 layers (i.e., 51.0∓4.0%), again highlighting the importance of the initial 

layer size. This result was also slightly improved compared to the 4-stage U-Net (i.e., 

65.4∓3.5%), emphasizing the merely incremental contribution of higher number of stages 

for this problem. Similarly, although the number of layers and networks capacity is much 

higher than in the 2-stage architecture, the 6-stage network with 32 feature maps (SSIM = 

70.3∓2.0%) was not able to outperform the 2-stage architecture with 64 feature maps (SSIM 

= 81.7∓4.6%).

In summary, the initial layer feature map length was a key factor contributing to model 

performance and led us to the selection of a 4-stage U-Net architecture with 64 initial layer 

convolutional filters, using a LR of 10−5.

B. PERFORMANCE EVALUATION OF DIFFERENT BODY MODELS AND OPTIMIZERS

We used the optimized 4-stage U-Net architecture to analyze performance metrics for 

different body models and different field strengths (Figure 4).

Adam outperformed SGD for all body models and all field strengths according to SSIM 

metrics (Figure 4). For 3T body SAR prediction (top row), an average SSIM of 85.1∓6.2% 

and an average MSE of 0.4∓0.4% was observed (Adam), as opposed to an SSIM of 

69.3∓4.5% and an MSE of 0.5∓0.4% (SGD). Specifically, for Ella, we observed an SSIM 

of 87.9∓8.0% and an MSE of 0.2∓0.2%. At the same field strength for Duke, we observed 

91.0∓3.7% SSIM and 0.3∓0.2% MSE. Similarly, SSIM of 81.9∓4.9%, 81.9∓7.8%, and 

82.7∓6.6% were obtained for the 3-, 7-, and 9-month pregnant women, respectively. An 

average MSE of 0.5% with a standard deviation of <0.5% was observed for the pregnant 

women.

In the 7T brain SAR prediction (Figure 4, bottom row), we observed similar performance 

for all body models, with an average SSIM of 90.5∓3.6% and an average MSE of 0.7∓0.6% 

(Adam), compared to an SSIM of 81.4∓2.6% and an MSE of 0.5∓0.5% (SGD). The higher 

spatial resolution of the 7T data (i.e., isotropic pixel size of ~1.33 mm compared to 2.67 mm 

at 3T) resulted in improved SSIM and MSE. For the baby body model Charlie, an SSIM of 

92.2∓1.7% and an MSE of 0.8∓0.5% was achieved. Similarly, SSIM results of 91.3∓3.6%, 
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84.1∓5.8%, 92.5∓3.6%, and 92.6∓3.4% were obtained for Ella as well as the 3-, 7-, and 

9-month pregnant women, respectively.

C. HOTSPOT ANALYSIS

Visual representation showed good agreement of ground truth and predicted hotspots in 

10 subjects (Figure 5 and 6, hotspot columns). Using the top 15% of local SAR values, 

we obtained a mean SSIM of 97.3%±2.5% denoting good agreement on hotspot locations, 

as well as a relative mean error of 1.5%±1.1% of maximum SAR values when the SAR 

map was normalized to the mean of the ground truth. This corresponds to normalizing the 

predicted SAR map to the, measurable, global SAR at the time of the patient exam. Mean 

errors without normalization were found to be 11%, still reasonable given the small training 

dataset. An added underestimation constraint that will be part of the full MRSaiFE algorithm 

is proposed in the discussion and is expected to help with hotspot prediction accuracy.

D. PERCEPTUAL IMAGE QUALITY ANALYSIS

Representative 3T body imaging slices randomly selected from each body model are 

depicted in Figure 5. Qualitatively, the 4-stage U-Net designed in this work successfully 

estimated the SAR distributions for the given slices.

Similarly, a selection of slices and performance metrics for 7T head imaging are depicted in 

Figure 6. A representative anatomical input image for Ella with very fine detail is shown and 

yielded a predicted SAR with low spatial detail as expected from the GT SAR simulation 

(top row). The proposed U-Net successfully (i.e., with 93.7% SSIM and with 0.6% MSE) 

estimated this distribution. Similarly, a slice taken from Charlie simulations with low 

anatomical detail (second row) was used. The U-Net architecture successfully estimated 

its SAR distribution with a SSIM of 91.0% and an MSE of 0.1%. For the high-resolution 

head imaging simulations conducted on the 3 pregnant body models (rows 3, 4, and 5), the 

proposed U-Net yielded an SSIM of ≥93%. Regardless of the spatial information encoded in 

the anatomical input slices, the 4-stage U-Net architecture successfully recovered the SAR 

maps of the corresponding slices.

IV. DISCUSSION

The U-Net architecture is assumed to be one of the workhorses of biomedical image 

segmentation and classification. In its optimization for the purposes of our application, we 

found that the number of convolutional filters at the input layer is tremendously important 

for overall network performance. From the MRI perspective, the spatial and intensity 

information encoded in the MR image is limited compared to electrooptical images used 

in daily life. This is mainly due to lower spatial resolution (i.e., ~1 mm) and lower image 

sizes (e.g., 256×256 pixels) in MRI. As a result, the overall network complexity of the 

U-Net has to be adapted to estimate SAR maps without overfitting or underfitting. In this 

work, we found that using a 4-stage U-Net structure with 64 or 128 convolutional filters 

at the initial stage results in optimal performance and reasonable training time. Additional 

stages without a concurrent increase in the number of filters at the first layer did not improve 

performance due to the information loss incurred at the first layer.
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It was also seen in Figure 4 that the prediction using whole-body anatomies yielded higher 

inter-subject standard deviations compared to head sized imaging. This could be attributed to 

the higher variation of anatomical image detail at the input level.

The relatively small database used in this proof-of-concept study in conjunction with the 

excellent agreement between predicted SAR and simulated SAR suggested that a large-scale 

SAR database along with experimental verification would lead to small SAR errors for a 

future real-time implementation of MRSaiFE.

One of the limitations in this work is the use of MRI-like anatomical input images. The final 

algorithm when used at the console will use an acquired MR image. In order to estimate 

whether the algorithm performs similarly we will develop our algorithm further using 

simulated MR images from the MRI scanner simulator platform (SYSSIM) [51] offered by 

Sim4Life.

Future work beyond this proof-of-concept stage will include the use of experimental in vivo 

and in vitro thermometry data. For patient safety reasons, we will use an underestimation 

bound of no greater than 5% as our metric to ensure that the actual SAR never significantly 

exceeds predicted SAR. To this goal, we will add a weighted L1-norm term that introduces a 

slight overestimation, weighting the difference between ground truth and generator output.

In this application, a 3D convolutional neural network could prove useful and will be tested 

as part of future work because heating from neighboring slices could prove important for 

training performance. We will therefore analyze the performance of both 3D networks and 

choose the network that provides the best training performance.

Overall, MRSaiFE could eventually provide UHF MRI with consistent tissue heating 

monitoring for use as a safe, practical, and non-invasive mainstream tool for clinical 

understanding, diagnostics, monitoring, and treatment guidance at sub-mm resolution. In 

practice, the existing conservative SAR margins of 20:1 could become exchangeable with 

optimized, patient-specific margins, and will free up valuable transmit power that can be 

used towards better sensitivity, resolution, or scan time.

This work could also significantly impact the safety of scanning patients with medical 

implants. Implants present a great cause for tissue heating concerns [29, 52, 53]. The tissue 

heating incurred from implants can be introduced by modifying the predicted SAR map 

via the implant trajectory and transfer function [54]. This ultimately would result in such 

patients being able to undergo MRI exams more routinely, and not only in critical situations 

or not at all.

The expansion of the technique to parallel transmission is straightforward: the SAR map 

from each channel can be predicted separately and superimposes linearly to form the total 

SAR. These maps can then be used in real-time SAR monitoring directly, or as an input 

metric in SAR-aware pTx pulse design.

The advent of even higher field strengths such as 9.4T and 10.5T, for human MRI has 

brought about even greater scrutiny, and valid concerns about patient safety [30, 55]. The 
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spatial SAR variations and average global SAR are increased compared to 7T, and MRSaiFE 

can be of great use in bringing these technologies to clinical practice.

The effects of B0 inhomogeneities on SAR are negligible due to their very small magnitude 

compared to the B1 inhomogeneities (variations on the order of 10−6 for B0 vs 101 for B1) 

and are thus not included in this tool.

In hyperthermia, tissue heating is directed at specific tissue regions with the goal of 

ablation. UHF MRI, with its intrinsic short wavelength and state-of-the-art parallel transmit 

capability, can be used to tailor these heating hotspots by tailoring local SAR. MRSaiFE 

offers the potential to enable targeted treatment planning in MR hyperthermia for cancer and 

other diseases in the long term.

V. CONCLUSION

We developed a proof of concept for MRSaiFE, which is an AI-based, exam-integrated, 

real-time MRI safety prediction software tool that facilitates the safe generation of UHF 

MRI images by means of accurate local SAR-monitoring at sub-W/kg levels with less than 

1% MSE error. We trained the software, with a small database of images, to perform a 

feasibility study and have achieved successful proof of concept for both the 3T and 7T 

field strengths. SAR maps were predicted with a residual MSE of <1% for both 7T head 

imaging and 3T body imaging. A SSIM of >90% for 7T head imaging and >80% for 3T 

body imaging was also achieved.
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FIGURE 1. 
Data were generated with Sim4Life (ZMT, Zurich, Switzerland). (A) Body coil is used for 

3T body imaging. Since there is no body coil available at 7T, a head coil (D) is used for 

7T imaging. Positions of the realistic body models were translated in (B) x direction, (C) y 

direction, and (E) z direction.

GOKYAR et al. Page 16

IEEE Access. Author manuscript; available in PMC 2021 October 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 2. 
2-D U-Net architectures used in this study. (A) 2 stages, (B) 4 stages, and (C) 6 stages of 

encoder layers were implemented. Length of feature vectors was defined by n and varied 

between 32 to 256 as powers of 2. Increasing n improved the network capacity, with costs of 

increased memory requirements, and longer training and testing durations.
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FIGURE 3. 
Performance comparison of three U-Nets due to different hyperparameters and time budget. 

All structures were trained and tested on the same realistic body model (Ella) for 3T body 

imaging. SSIM of (A) 2-stage, (B) 4-stage, and (C) 6-stage U-Nets are depicted. (D) Time 

to train each image showed exponential increase among different U-Nets. Increasing the 

length of feature maps (n) showed linear increase on training time for the same network up 

to n=128.
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FIGURE 4. 
Inter-subject performance analysis of the 4-stage U-Net with 64 convolutional filters at the 

initial layer. Adam optimizer worked better than SGD in terms of SSIM for all scenarios. 

(Top Row) For 3T Body SAR prediction, an average SSIM of 85.1∓6.2% and an average 

MSE of 0.4∓0.4% was observed (Adam), as opposed to an SSIM of 69.3∓4.5% and an MSE 

of 0.5∓0.4% (SGD). (Bottom Row) In the 7T brain SAR prediction, we observed an average 

SSIM of 90.5∓3.6% and an average MSE of 0.7∓0.6% (Adam), compared to an SSIM of 

81.4∓2.6% and an MSE of 0.5∓0.5% (SGD). The higher spatial resolution of the 7T data 

(i.e., isotropic pixel size of ~1.33 mm compared to 2.67 mm at 3T) resulted in improved 

SSIM and MSE.
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FIGURE 5. 
A selection of slices for Ella, Duke, and Pregnant Women of different gestational stages at 

3T body imaging. Despite very high variation of SAR maps and input images, the proposed 

4-stage U-Net architecture successfully recovered the distribution with better than 80% 

average SSIM and less than 0.5% average MSE for all body models.

GOKYAR et al. Page 20

IEEE Access. Author manuscript; available in PMC 2021 October 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 6. 
A selection of slices for different body models at 7T. 4-stage U-Net architecture successfully 

recovers the SAR distribution for all body models (SSIM >91%, MSE<0.5%). It is seen 

that the spatial information provided by the input images also carried to estimation results 

without any memorization.
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Table 1.

Dataset generated in this study.

Field
Strength

Body
Model Total # Images Training Validation Testing

3T

Ella 10,340 8272 1034 1034

Duke 16,766 13332 1616 1818

Preg3M 11,070 8820 1080 1170

Preg7M 14,605 11684 1397 1524

Preg9M 15,080 12035 1450 1595

7T

Ella 12,600 10080 1296 1224

Charlie 12,075 9660 1242 1173

Preg3M 12,702 10147 1241 1314

Preg7M 7,548 6052 748 748

Preg9M 7,881 6319 781 781

TOTAL 120,667 88,129 10,851 11,347
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