Skip to main content
. 2021 Oct 28;10:e66273. doi: 10.7554/eLife.66273

Appendix 1—table 2. Description of the network model used in the error-driven learning task (4.6).

A model summary
Populations 3
Topology
Connectivity Feedforward with all-to-all connections
Neuron model Leaky integrate-and-fire (LIF) with exponential post-synaptic currents
Plasticity Error-driven
Measurements Spikes, membrane potentials
B populations
Name Elements Size
Input Spike generators with pre-defined spike trains (see 4.6) N
Teacher LIF neuron 1
Student LIF neuron 1
C connectivity
Source Target Pattern
Input Teacher All-to-all; synaptic delay d; random weights w𝒰[wmin,wmax]; weights randomly shifted by wshift on each trial
Input Student All-to-all; synaptic delay d; fixed initial weights w0
D neuron model
Type LIF neuron with exponential post-synaptic currents
Subthreshold dynamics du(t)dt=-u(t)-ELτm+Is(t)CmIs(t)=i,kJke-(t-tik)/τsΘ(t-tik)k: neuron index, i: spike index
Spiking Stochastic spike generation via inhomogeneous Poisson process with intensity ϕ(u)=ρe(u-uth)/Δu; no reset after spike emission
E synapse model
Plasticity Error-driven with continuous update (Equation 7, Equation 9)
F simulation parameters
Populations N=5
Connectivity wmin=-20,wmax=20,wshift{-15,15},w0=5
Neuron model ρ=0.2Hz,Δu=1.0mV,EL=-70mV,uth=-55mV,τm=10ms,Cm=250pF,τs=2ms
Synapse model η=1.7,d=1ms,τI=100.0ms
Input rmin=150Hz,rmax=850Hz,T=10,000ms,nexp=15
Other h=0.01ms,δt=5ms
G CGP parameters
Population μ=4,pmutation=0.045
Genome ninputs=3,noutputs=1,nrows=1,ncolumns=12,lmax=12
Primitives Add, Sub, Mul, Div, Const(1.0)
EA λ=4,nbreeding=4,ntournament=1
Other maxgenerations=1000,minimalfitness=0.0