Skip to main content
. 2021 Oct 28;10:e66273. doi: 10.7554/eLife.66273

Appendix 1—table 3. : Description of the network model used in the correlation-driven learning task (4.7).

A model summary
Populations 2
Topology
Connectivity Feedforward with fixed connection probability
Neuron model Leaky integrate-and-fire (LIF) with exponential post-synaptic currents
Plasticity Reward-driven
Measurements Spikes
B populations
Name Elements Size
Input Spike generators with pre-defined spike trains (see 4.5) N
Output LIF neuron 1
C connectivity
Source Target Pattern
Input Output Fixed pairwise connection probability p; synaptic delay d; random initial weights from 𝒩(0,σw2)
D neuron model
Type LIF neuron with exponential post-synaptic currents
Subthreshold dynamics du(t)dt=-u(t)-ELτm+Is(t)Cm if not refractory
u(t)=ur else Is(t)=i,kwke-(t-tik)/τsΘ(t-tik), k: neuron index, i: spike index
Spiking Stochastic spike generation via inhomogeneous Poisson process with intensity ϕ(u)=ρe(u-uth)/Δu; reset of u to ur after spike emission and refractory period of τr
E synapse model
Plasticity Reward-driven with episodic update (Equation 2, Equation 3)
Other Each synapse stores an eligibility trace (Equation 22)
F simulation parameters
Populations N=50
Connectivity p=0.8,σw=103pA
Neuron model ρ=0.01Hz,Δu=0.2mV,EL=70mV,ur=70mV,uth=55mV,τm=10ms,Cm=250pF,τr=2ms,τs=2ms
Synapse model η=10,τM=500ms,d=1ms
Input M=30,r=6Hz,T=500ms,ntraining=500,nexp=10
Other h=0.01ms,R{-1,1},mr=100
G CGP parameters
Population μ=8,pmutation=0.05
Genome ninputs=2,noutputs=1,nrows=1,ncolumns=5,lmax=5
Primitives Add, Sub, Mul, Div, Pow, Const(1.0)
EA λ=8,nbreeding=8,ntournament=1
Other maxgenerations=2000,minimalfitness=10.0