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A B S T R A C T   

In addition to uncontrolled diabetes and the excess use of corticosteroids, it is believed that other factors may be 
responsible for the recent spurt of COVID-19 associated mucormycosis (CAM). In the present paper it is argued 
that COVID-19 increases the susceptibility of the patients to mucormycosis by augmenting the virulence factors 
of the mucor species, where deficient synthesis of melatonin plays a key role. Melatonin is synthesized from 
tryptophan via the serotonin pathway and melatonin deficiency in COVID-19 arises from the faulty absorption of 
tryptophan from the food because SARS-CoV-2 downregulates angiotensin-converting enzyme-2, the chaperone 
of the transporter of tryptophan. The enhanced fungal virulence in COVID-19 can be mitigated by correcting the 
melatonin deficiency as melatonin can prevent iron acquisition of the mucor species and inhibit their morpho-
logical transition from the yeast to the virulent hyphal form, given the fact that melatonin is an iron chelator, 
calmodulin blocker and inhibitor of myeloperoxidase as well as inhibitor of ferroptosis and pyroptosis. Also, by 
lowering the expression of glucose-regulated protein 78 and by inhibiting the suppression of T-cell immunity, 
melatonin can further increase the resistance of the patients to mucormycosis. Accordingly, clinical trials should 
be carried out on tryptophan supplementation, administration of selective serotonin reuptake inhibitors (to in-
crease serotonin, the precursor of melatonin), and exogenous melatonin to find out how they perform in elim-
inating or reducing the propensity of the coronavirus patients to CAM.   

Introduction 

Mucormycosis (earlier called Zygomycosis) is a potentially fatal 
opportunistic infection caused by the fungi of the order Mucorales, 
which are commonly found in the soil and decomposing organic matters. 
The major risk factors of mucormycosis include uncontrolled diabetes 
mellitus (ketoacidosis and, in general, acidosis of any aetiology), 
immunosuppression, trauma and burn, use of corticosteroids, neu-
tropenia, organ transplantation, multiple blood transfusion, chemo-
therapy and deferoxamine therapy in hemodialysis [1–3]. The higher 
incidence of mucormycosis in India is probably because of the fact that 
around one in six people with diabetes in the world is from India and 
around 82% of mucormycosis patients are diabetic [4–6]. 

Incidentally, a spike in COVID-19 associated mucormycosis (CAM) 
has recently been observed in India and approximately 71% of the global 
cases of CAM are from India [7]. The higher incidence of CAM in India 
has been primarily attributed to uncontrolled diabetes and the sup-
pression of immunity from the excessive use of steroids [5]. Other 
COVID-19 associated fungal infections like aspergillosis and candidiasis 

have also been reported, though in relatively small numbers [8–9]. 
Interestingly, mucor species are dimorphic and exhibit either yeast 

(unicellular) or virulent hyphal (multicellular) form depending upon the 
conditions. Normally, aerobic condition favours the growth in the hy-
phal form [10]. In the invasive hyphal form, the hyphae are attached to 
the endothelium through coupling of glucose-regulated protein (GRP78, 
an endothelial cell receptor) on the host and spore coat homolog (CotH) 
protein on the fungus and eventually, the disease may manifest as rhino- 
orbital, rhino-orbital-cerebral, pulmonary or disseminated mucormy-
cosis [7,11,12]. Mucormycosis infection is characterized by extensive 
angioinvasion leading to vessel thrombosis and tissue necrosis and is 
often presented with black necrotic lesions (that is why mucormycosis is 
popularly known as ‘black fungus’), and the spread and severity of the 
infection are controlled by the virulence factors of the fungi, the factors 
which increase their virulence in the host. One of the major virulence 
factors [1,3,11,13] of the mucor species is the iron acquisition system, 
the system of ‘stealing’ iron from the host, given the fact that iron is an 
essential element for the survival of most of the microbes. Indeed, it has 
been found that fungi undergo apoptosis in iron-deprived conditions 
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[3,13]. Accordingly, the strategy of limiting iron availability to the 
mucor species is an important host defense mechanism (nutritional 
immunity), and serum and other biological fluids are normally fungi-
static but iron addition abolishes this benefit [14]. In humans the pre-
dominant forms of iron present are sequestered/complexed with 
proteins such as transferrin in the circulating fluid (extracellular iron) 
and heme and ferritin in the cells (intracellular iron). A small amount of 
free, redox-active and ligand-exchangeable iron (labile iron pool) also 
exists as a transitory pool to regulate iron metabolism and homeostasis, 
though any excess free iron is rapidly sequestered [1,3,11]. 

Interestingly, fungi have developed three mechanisms [1,3,13–15] of 
iron acquisition from the host for their survival: a) reductive iron up-
take, b) siderophore mediated uptake and c) uptake from heme by heme- 
oxygenase (by degrading heme) or by using hemophores. Reductive iron 
uptake from sequestered ferric iron has three steps - reduction of ferric 
iron to soluble ferrous form by ferric reductase, re-oxidation to the ferric 
form by ferroxidase and transport into the cell by permease. On the other 
hand, siderophores/hemophores are low molecular weight proteins 
which can chelate iron by grabbing it from the protein-bound iron of the 
host as the iron affinity of some siderophores/hemophores can be higher 

Fig. 1. Schematic outline of the hypothesis depicting how COVID-19 makes the patients susceptible to CAM and the restoration of melatonin deficiency in coro-
navirus patients protects them from the deadly menace [CAM → COVID-19 Associated Mucormycosis, GRP 78 → Glucose-Regulated Protein 78 (78 kDa molecular 
weight), ACE2 → Angiotensin-Converting Enzyme 2, SSRI → Selective Serotonin Reuptake Inhibitor, T-cell → Thymus-derived lymphocyte]. 
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than the sequestration affinity of iron in the host. 

Hypothesis 

Given the fact that diabetes is a perennial problem in India and the 
long-term use of steroid is not uncommon as a large number of people 
suffer from arthritis and other chronic inflammatory diseases, it has 
been suggested by some researchers that in addition to uncontrolled 
diabetes and excess use of steroid, other factors like the use of zinc 
supplements, contaminated water in humidifiers, impure oxygen etc. 
may also be responsible for the spike in CAM [5], though the jury is still 
out. 

In the present paper, it is proposed that other than uncontrolled 
diabetes and compromised immunity from steroid use, COVID-19 per se 
augments the virulence of the mucor species, where melatonin defi-
ciency (from reduced synthesis in coronavirus patients) plays a major 
role. It is further argued that by correcting the melatonin deficiency, the 
fungal virulence can be contained and, consequently, the susceptibility 
of the patients to CAM can be eliminated or reduced significantly. 

How does melatonin synthesis dip in COVID-19? 

The formation of melatonin begins with the absorption of tryptophan 
(an essential amino acid) from the food. After absorption, tryptophan is 
first converted to 5-hydroxytryptophan (enzyme: tryptophan hydroxy-
lase), then to serotonin (enzyme: decarboxylase) followed by N-ace-
tylserotonin (enzyme: aralkylamine N-acetyltransferase, AANAT) and 
finally to melatonin (enzyme: acetylserotonin O-methyltransferase, 
ASMT) [16]. Two enzymes (AANAT and ASMT), found primarily in the 
pineal gland, transform serotonin to melatonin (mostly in the darkness) 
and the synthesized melatonin is released from the pineal gland into the 
bloodstream mainly during nighttime. Incidentally, many other 
extrapineal sites like cerebellum, retina, skin, gastrointestinal tract, 
immune cells, thymus, thyroid, bone marrow, liver, spleen, kidney, 
lungs, pancreas, heart and airway epithelia also generate melatonin, 
some even in larger quantities than the pineal gland, though most of the 
extrapineal melatonin is not integrated into the circulation [17,18]. 

Interestingly, in the synthesis of melatonin, the very first step of 
absorption of tryptophan from the food is not so straightforward. The 
uptake of tryptophan needs a transporter B0AT1 (Broad neutral (0) 
Amino acid Transporter 1), where ACE2 (Angiotensin-Converting 
Enzyme 2) performs a key role as a chaperone (a protein that aids in 
proper folding of another protein) for B0AT1 [19]. As SARS-CoV-2 is 
known to downregulate ACE2 by docking on it, the absorption of tryp-
tophan should be significantly reduced in coronavirus patients (Fig. 1). 
Hence, tryptophan deficiency in COVID-19 is expected to give rise to 
serotonin deficiency [20], and consequently, to melatonin deficiency. 

How is the iron acquisition system of mucor species modified in 
COVID-19? 

Iron acquisition system is one of the important virulence factors of 
the mucor species. As iron is an essential material for the fungi, there is a 
competition between the pathogens and the host for the same, and as 
discussed earlier, the host iron is almost completely sequestered and a 
little free iron (labile iron pool) is available for the pathogens, which is 
normally insufficient for their growth and virulence. However, if the 
disease per se increases the free iron level in blood, it becomes easier for 
the pathogens to gain entry into the host and grow. Indeed, COVID-19 
creates such favourable conditions for the growth and invasion of the 
mucor species. 

Though ferritin is known to store iron intracellularly, a small amount 
of ferritin is also available in the serum of healthy subjects, which in-
creases significantly (hyperferritinemia) in inflammation of any etiology 
as an acute phase reactant [21]. The serum ferritin is of light-chain 
variety (molecular weight 19 kDa, in contrast to the intracellular 

heavy-chain variety of molecular weight 21 kDa) and during inflam-
mation, serum ferritin may be produced from hepatocytes, Kupffer cells, 
proximal tubular renal cells and macrophages. Also, exaggerated syn-
thesis or secretion of ferritin has been reported to occur from various 
stimuli like pro-inflammatory cytokines, prostaglandins, reactive oxy-
gen species (ROS), oxidants, growth factors and hypoxia [21]. As 
COVID-19 is a hyperinflammatory disease, high serum ferritin is quite 
common in coronavirus patients [22]. In such inflammatory states, 
mainly three sources take part in elevating the plasma free iron (labile 
plasma iron, LPI). First, during inflammation when low molecular 
weight serum ferritin is formed from high molecular weight intracellular 
ferritin, the latter releases a substantial portion of its inner core iron, 
which increases the free iron level in the blood [21,22]. Second, 
inflammation reduces RBC half-life, which leads to macrophage- 
mediated RBC phagocytosis and eventually, an increase in the free 
iron in the plasma [23,24]. Third, free iron is also generated from 
myeloperoxidase (MPO) heme degradation [23], given the fact that 
MPO, an enzyme primarily released by neutrophils to protect against 
pathogens, is increased during inflammation. Interestingly, the excess 
free iron thus produced can assist in further raising the free iron by 
generating highly reactive hydroxyl radical (HO•) via Fenton reaction 
from H2O2 and Fe2+ and/or via Haber-Weiss reaction from H2O2 and 
superoxide anion (O2

• -) in presence of Fe2+/Fe3+, resulting in the HO•

induced damage of cellular proteins, lipids (lipid peroxidation) and 
nucleic acids [24,25]. The process can lead to ferroptosis, a type of in-
flammatory programmed cell death with accumulation of lipid perox-
ides arising from degradation of lipids in presence of free iron and ROS. 
Ferroptosis in COVID-19 results in aggravation of the inflammation 
[26,27] and, in effect, further generation of inflammation induced free 
iron in the plasma. Hence, in coronavirus patients the labile plasma iron 
increases by various means and the mucor species take advantage of this 
easily available free iron for their growth and virulence. 

How can fixing melatonin deficiency restrict iron uptake by the 
mucor species? 

Melatonin, a multifunctional neuroendocrine hormone, is celebrated 
mainly for its anti-inflammatory (with some useful pro-inflammatory 
characteristics), antioxidant, anti-aging, analgesic, free radical scav-
enging and oncostatic effects [17,18]. Melatonin modifies circadian 
rhythm, mood, sleep, appetite, reproduction, immune responses, cardiac 
functions etc. in receptor independent/receptor dependent pathways 
[17,18,28]. In the present context, melatonin has multiple roles in 
containing the plasma free iron. First, melatonin helps in reducing 
plasma free iron in SARS-CoV-2 patients by chelating excess iron (both 
Fe2+ and Fe3+) as melatonin is an effective metal chelator [29,30]. 
Second, melatonin, being a potent anti-inflammatory agent, can help in 
shrinking the labile iron pool by i) limiting free iron generation from 
myeloperoxidase (MPO) heme destruction during inflammation by 
blocking the enzyme MPO [23] ii) restricting free iron production from 
inflammation induced RBC degradation [23,24] and iii) lowering the 
formation of serum ferritin [31,32] (an acute phase reactant of inflam-
matory processes), which is involved in elevating plasma free iron. 
Melatonin ameliorates inflammation by blocking pro-inflammatory cy-
tokines such as interleukin IL-1β, IL-2, IL-6, tumor necrosis factor-α 
(TNF-α) and interferon-γ (IFN-γ) [16,17,28,33]. Melatonin also restrains 
inflammation by inhibiting prostaglandin synthesis, production of 
adhesion molecules, generation of pro-inflammatory cytokines from li-
popolysaccharides (LPS) and by downregulating cyclooxygenase and 
NLRP3 inflammasome [16,17,28,33]. Inflammasomes, which are 
intracellular multiprotein complexes, act as pattern-recognition re-
ceptors (PRRs) to sense pathogens and are triggered by various stimuli 
like pathogens, endogenous cytokines and damaged cells [33,34]. 
NLRP3 inflammasome mediated activation of nuclear transcription 
factor-kappa B (NF-κB) leads to pyroptosis, a type of programmed cell 
death arising from infection induced activation of inflammasomes and 
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release of pro-inflammatory cytokines [33,34]. Incidentally, in COVID- 
19, pyroptosis gives rise to exaggerated inflammation and melatonin 
can block pyroptosis by antagonizing NF-κB and NLRP3 signaling 
[33,34]. In addition to lowering proinflammatory cytokines and scav-
enging ROS and H2O2 [29], melatonin, being an inhibitor [35] of fer-
roptosis (programmed cell death in presence of lipid peroxides, free iron 
and ROS), can lessen ferroptosis induced inflammation in coronavirus 
patients [27]. Hence, melatonin by chelating excess free iron and by 
ameliorating inflammation in multiple ways can reduce labile plasma 
iron (Fig. 1) and can force the mucor species to starve and, as expected, 
melatonin deficiency in COVID-19 deprives the coronavirus patients of 
the aforesaid benefits and makes them susceptible to mucormycosis. 

In this context, it may be noted that zinc is also an essential nutrient 
for the fungi as zinc is the cofactor of several enzymes. However, in 
CAM, any role of excess zinc in the virulence of the mucor species may 
possibly be ruled out as melatonin deficiency per se leads to the lowering 
of zinc level in blood [36] and indeed, a significant proportion of 
coronavirus patients is zinc deficient and zinc deficiency leads to 
increased severity of the disease [37]. 

How can restoration of melatonin reduce the likelihood of yeast 
to hyphal transition of the fungi? 

Another critical factor in the virulence of mucor species is the 
switching of their mode of growth from the yeast (unicellular) to the 
virulent filamentous hyphal (multicellular) form [3,13]. Calcineurin, an 
important fungal regulator of calcium homeostasis and signaling, is 
responsible for the transition of the mucor species from the yeast to the 
tissue invasive hyphal form [10,13,38]. Calcineurin is a Ca2+ and 
calmodulin-dependent serine/threonine protein phosphatase, where 
calmodulin (calcium-modulated protein) is a sensor protein that trans-
duces calcium signals into appropriate outputs through calmodulin- 
binding proteins (like calcineurin), calmodulin-dependent protein ki-
nases, and histone deacetylases [10,38]. When calcineurin function is 
inhibited, growth shifts to the less virulent yeast form [10,38]. Any 
material that blocks calmodulin is also expected to show antifungal 
activity [38,39]. Incidentally, melatonin is a calmodulin inhibitor [39] 
and hence, can diminish the fungal virulence by restraining the 
morphological transition of mucor species from the yeast to the virulent 
hyphal form (Fig. 1). 

How can the victims of diabetes and patients receiving steroids 
benefit from melatonin? 

It is known that acidic environment helps in the growth of the mucor 
species as acidosis temporarily disrupts the capacity of transferrin to 
bind iron owing to proton mediated dissociation of iron from transferrin 
[12,40] resulting in the generation of free iron. Hence, in uncontrolled 
diabetes, ketoacidosis generates excess free iron and produces the right 
environment for the proliferation of mucor species, where melatonin has 
a prominent role in chelating the free iron and making it unavailable to 
the mucor species. 

Also, the expressions of GRP 78 (endothelial cell receptor on the 
host) and CotH (receptor on the fungal surface) are increased in the 
presence of high glucose and iron, further increasing the propensity of 
diabetic patients to mucormycosis [12,41]. Melatonin provides an 
added advantage to the diabetic patients by lowering the GRP78 
expression [41] and, hence, attenuating the host-fungus coupling 
(Fig. 1). Melatonin also lowers pyroptosis induced endothelial cell 
damage [33] and hence, restricts easy invasion of the mucor species 
through the damaged regions of the endothelial cells. Incidentally, the 
restoration of melatonin level should be more helpful to the diabetic 
patients as they have lower blood melatonin than healthy people [42]. 

Glucocorticoid like dexamethasone is known to suppress immunity 
mainly by inhibiting IL-2 mediated T-cell proliferation. Melatonin has 
been found to enhance T-cell associated immune responses and reduce 

dexamethasone-induced immunosuppression [43]. It has been found 
that T-cells have a major role in developing immunity against fungi [44] 
and hence, the restoration of melatonin level in coronavirus patients is 
expected to lessen the steroid induced immunosuppression as well as 
increase the resistance of the patients to mucormycosis (Fig. 1). 

How to correct melatonin deficiency in SARS-CoV-2 patients 

The preferred way to treat the melatonin deficiency is to restore the 
tryptophan level to normal by supplementation so that the serotonin 
level and consequently, the melatonin level go up [20]. In case of severe 
COVID-19, when there is hardly any absorption of tryptophan, paren-
teral supplementation of tryptophan may be considered. It should be 
noted that in SARS-CoV-2 patients, selective serotonin reuptake in-
hibitors (SSRIs) may not significantly raise the level of serotonin, the 
precursor of melatonin, as SSRIs do not act well when there is trypto-
phan deficiency in the system [20]. On the other hand, exogenous 
melatonin should help in correcting the melatonin deficiency, though 
the serotonin deficiency remains unchanged with other possible conse-
quences [20]. As exogenous melatonin has a short half-life (1–2 h), 
different formulations like extended-release and combined immediate 
and extended-release may be better options for fixing the melatonin 
deficiency [45]. It may be noted that exogenous melatonin is safe and 
some mild side effects like daytime sleepiness, headache, nausea and 
drowsiness have been reported in case of higher doses and extended- 
release formulations [45]. Hence, clinical trials (prophylactic as well 
as therapeutic) of tryptophan supplementation, SSRIs (excluding any 
combination of tryptophan and SSRI to guard against serotonin syn-
drome [20]) and exogenous melatonin should be conducted on coro-
navirus patients to find out how they perform in saving the patients from 
the deadly consequences of mucormycosis. 

In this context, it is worthy to note that exogenous melatonin has 
been touted by many as the silver bullet for COVID-19 and using 
network medicine methodologies along with clinical and multi-omics 
(genomics, proteomics etc.) observations, it has been suggested that 
supplementation with melatonin is associated with 28% reduced like-
lihood (52% for black Americans) of being infected with SARS-CoV-2 
[46]. Melatonin may also attenuate SARS-CoV-2 replication by modi-
fying the growth factor receptor signaling essential for viral prolifera-
tion [47]. Given the high potential of melatonin in reducing the severity 
of COVID-19, at least nine clinical trials (therapeutic and prophylactic) 
of exogenous melatonin on coronavirus patients are under progress 
[48]. Hence, melatonin is expected to play a pivotal role not only in 
reducing the severity of COVID-19, but also in lessening or eliminating 
the susceptibility of the coronavirus patients to mucormycosis. 

Conclusion 

It is suggested that COVID-19 enhances the virulence of mucor spe-
cies and increases the susceptibility of the patients to mucormycosis, 
where melatonin deficiency is a key factor. The deficiency of melatonin 
in COVID-19 arises from impaired absorption of tryptophan (the pre-
cursor of serotonin and melatonin) from the food as ACE2, the chap-
erone of tryptophan transporter B0AT1, is downregulated in coronavirus 
patients. The melatonin deficiency in SARS-CoV-2 patients provides a 
significant advantage to the mucor species in their growth and virulence 
owing to the creation of a milieu favourable for their smooth access to 
iron, an essential nutrient, as well as for their facile transition from the 
yeast to the virulent hyphal form. The iron (labile plasma iron) acqui-
sition of the mucor species can be restricted by correcting the melatonin 
deficiency, as melatonin is a good iron chelator and a potent anti- 
inflammatory agent, which restricts inflammation induced generation 
of free plasma iron. Furthermore, the morphological transition of the 
mucor species from the yeast to the invasive hyphal form is inhibited by 
melatonin, which blocks calmodulin, an important sensor protein 
involved in the transition. In addition, melatonin can further help the 
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diabetic patients by lowering the expression of GRP 78 receptors 
(increased in diabetic patients), which are exploited by the mucor spe-
cies to invade the host cells. Also, the T-cell suppression owing to steroid 
use is blunted by melatonin. Hence, with a view to fixing the melatonin 
deficiency and consequently, eliminating or reducing the susceptibility 
of the patients to CAM, clinical trials (both prophylactic and therapeu-
tic) of tryptophan supplementation, administration of SSRIs, and exog-
enous melatonin should be conducted on SARS-CoV-2 patients to find 
out the best regimen effective against CAM. 
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