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ABSTRACT Intrinsically disordered proteins and protein regions make up a substantial fraction of many proteomes in which
they play a wide variety of essential roles. A critical first step in understanding the role of disordered protein regions in biological
function is to identify those disordered regions correctly. Computational methods for disorder prediction have emerged as a core
set of tools to guide experiments, interpret results, and develop hypotheses. Given the multiple different predictors available,
consensus scores have emerged as a popular approach to mitigate biases or limitations of any single method. Consensus
scores integrate the outcome of multiple independent disorder predictors and provide a per-residue value that reflects the num-
ber of tools that predict a residue to be disordered. Although consensus scores help mitigate the inherent problems of using any
single disorder predictor, they are computationally expensive to generate. They also necessitate the installation of multiple
different software tools, which can be prohibitively difficult. To address this challenge, we developed a deep-learning-based pre-
dictor of consensus disorder scores. Our predictor, metapredict, utilizes a bidirectional recurrent neural network trained on the
consensus disorder scores from 12 proteomes. By benchmarking metapredict using two orthogonal approaches, we found that
metapredict is among the most accurate disorder predictors currently available. Metapredict is also remarkably fast, enabling
proteome-scale disorder prediction in minutes. Importantly, metapredict is a fully open source and is distributed as a Python
package, a collection of command-line tools, and a web server, maximizing the potential practical utility of the predictor. We
believe metapredict offers a convenient, accessible, accurate, and high-performance predictor for single-proteins and
proteomes alike.
SIGNIFICANCE Intrinsically disordered regions are found across all kingdoms of life, in which they play a variety of
essential roles. Being able to accurately and quickly identify disordered regions in proteins using just the amino acid
sequence is critical for the appropriate design and interpretation of experiments. Despite this, performing large-scale
disorder prediction on thousands of sequences is challenging using extant disorder predictors due to various difficulties,
including general installation and computational requirements. We have developed an accurate, high-performance, and
easy-to-use predictor of protein disorder and structure. Our predictor, metapredict, was designed for both proteome-scale
analysis and individual sequence predictions alike. Metapredict is implemented as a collection of local tools and an online
web server and is appropriate for both seasoned computational biologists and novices alike.
INTRODUCTION

Although it is often convenient to consider proteins as nano-
scopic molecular machines, such a description betrays many
of their functionally critical features (1–3). As an extreme
example, intrinsically disordered proteins and protein re-
gions (collectively referred to as IDRs) do not adopt a fixed
three-dimensional conformation (4–8). Instead, IDRs exist
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in an ensemble of different conformations that are in ex-
change with one another (9–11). Despite the absence of a
well-defined structured state, IDRs are integral to many
important biological processes (12,13). As a result, there
is a growing appreciation for the importance of disordered
regions across the three kingdoms of life (6,12,14,15).

A key first step in exploring the role of disorder in biolog-
ical function is the identification of disordered regions.
Although IDRs can be formally identified by various bio-
physical methods (including nuclear magnetic resonance
spectroscopy, circular dichroism, or single-molecule spec-
troscopy), these techniques can be challenging and are
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The metapredict disorder predictor
generally low throughput (16–18). As implied by the name,
the ‘‘intrinsically’’ disordered nature of IDRs reflects the
fact that these protein regions are unable to fold into a
well-defined tertiary structure in isolation. This is in contrast
to folded regions, which under appropriate solution condi-
tions adopt macroscopically similar three-dimensional
structures (19–21). The complexities of metastability in pro-
tein folding notwithstanding, this definition implies that this
intrinsic ability to fold (or not fold) is encoded by the pri-
mary amino acid sequence (22–24). As such, it should be
possible to delineate between folded and disordered regions
based solely on amino acid sequence.

The prediction of protein disorder from amino acid
sequencehas receivedconsiderableattention forover20years,
driven by pioneering early work by Dunker et al. (6–8,25,26).
Since those original bioinformatics tools, a wide range of dis-
order predictors have emerged (27–30). Accurate disorder
predictors offer an approach to guide experimental design,
interpret data, and build testable hypotheses. As such, the
application of disorder predictors to assess predicted protein
structure has become a relatively standard type of analysis,
although the specific predictor used varies depending on avail-
ability, simplicity, and scope of the question.

There are currently many disorder predictors that apply
different approaches to predict protein disorder. These range
from statistical approaches based on structural data from the
protein data bank, to biophysical methods that consider local
‘‘foldability,’’ to machine learning-based algorithms trained
on experimentally determined disordered sequences (31–
38). However, using any individual predictor can be problem-
atic; each predictor has specific biases and weaknesses in its
capacity to accurately predict protein disorder, which can
introduce systematic biases into large-scale disorder assess-
ment (39). As such, an alternative strategy in which many
different predictors are combined to offer a consensus disorder
score has emerged as a popular alternative to relying on any
specific predictor (40–44). Consensus scores report the frac-
tion of independent disorder predictors that would predict a
given residue as disordered: for example, a score of 0.5 reports
that 50% of predictors predict that residue to be disordered.

Although using consensus scores mitigates the limitations
of any single predictor, calculating consensus scores is
computationally expensive and necessitates the installation
of multiple distinct software packages. To alleviate this
challenge, consensus disorder scores can be precomputed
and held in online-accessible databases (42,45–47).
Although precomputed scores are an invaluable resource
to the scientific community their application is limited to
a small subset of possible sequences. Furthermore, obtain-
ing, managing, and analyzing large datasets of precomputed
consensus predictions can be a daunting task, especially if
only a subset of sequences are of interest.

To address these challenges, we have developed a fast, ac-
curate, and simple-to-use deep learning-based disorder pre-
dictor trained on precomputed consensus scores from a
range of organisms. Our resulting predictor, metapredict,
is platform agnostic, simple to install, and usable as a
Python module, a stand-alone command-line tool, or as a
stand-alone web server. Metapredict accurately reproduces
consensus disorder scores and is sufficiently fast such that
for most bioinformatics pipelines, precomputation of disor-
der is no longer necessary, and disorder can be computed in
real-time as analysis is performed. In addition to consensus
disorder prediction, metapredict also provides structure con-
fidence scores based on AlphaFold2-derived predictions of
folding propensity, a related but complementary mode of
sequence annotation. Metapredict can be installed in sec-
onds, is incredibly lightweight, and has no specific hardware
requirements. Taken together, metapredict is a high-perfor-
mance and easy-to-use disorder predictor appropriate for
computational novices to seasoned bioinformaticians alike.
MATERIALS AND METHODS

Training metapredict using PARROT

To create metapredict, we used PARROT (Protein Analysis using RecuRrent

neural networks On Training data), a general-purpose deep learning toolkit

developed for mapping between sequence annotations and sequence (48).

PARROT was used to train a bidirectional recurrent neural network with

long short-term memory (LSTM) on the disorder consensus scores from the

MobiDB database for each residue for all of the proteins in 12 proteomes

(see Supporting materials and methods for details) (Fig. 1) (48–50). The eight

disorder predictors used to generate the consensus scores in the MobiDB data-

basewere IUPred short (34), IUPred long (34), ESpiritz (DisProt, NMR, and x

ray) (31), DisEMBL 465 (28), DisEMBL hot loops (28), and GlobPlot (51). In

total, metapredict was trained using almost 300,000 individual protein se-

quences. ForAlphaFold2-basedpredictions, the per-residuepredicted local dif-

ference test (pLDDT) score from21differentproteomeswere usedas input (see

Supporting materials and methods for details) (52,53). The pLDDT score re-

flects the confidence AlphaFold2 has in the local structure prediction.

Recurrent neural networks are well-suited for protein sequence machine

learning tasks due to their ability to directly parse sequences of variable

length without modification (54). Bidirectionality is a common modifica-

tion of recurrent neutral networks and is particularly relevant in the context

of sequence-based prediction because it ensures that the entire local

sequence (both N- and C-terminal) is accounted for when making the dis-

order prediction of a particular residue. Finally, LSTM networks are another

common modification of recurrent neutral networks that have seen wide-

spread adoption in machine learning tasks because of their improved ability

to retain long-range information over the course of training (50). Conse-

quently, bidirectional LSTMs have emerged as a powerful class of deep

learning model for sequence-based predictions (48,55–57).

To determine the optimal threshold to delineate disordered and ordered re-

gions, we systematically varied the cutoff score used to classify IDRs (Figs.

S4–S8). This analysis revealed that a broad range of cutoffs (between 0.2

and 0.4) gave approximately equivalent performance, such that a cutoff of

0.3 offered a good balance between true positives and false negatives. As

such, IDRs identified by metapredict with the default setting can be treated

as relatively high-confidence, at the expense of missing some cryptic disor-

dered regions.
Usage and features

Metapredict is offered in three distinct formats (Fig. S9). As a download-

able package, it can be used either via a set of command-line tools or as
Biophysical Journal 120, 4312–4319, October 19, 2021 4313



FIGURE 1 Overview of metapredict. Consensus scores are taken from 420,660 proteins distributed across 12 proteomes. Metapredict was developed by

training a bidirectional recurrent neural network (BRNN) on this data, leading to a set of network weights that allow the prediction of any possible consensus

sequence score.

Emenecker et al.
a Python module. Command-line predictions include functionality to

directly predict disorder from a UniProt accession, save disorder scores

as a text file, and predict disorder for multiple sequences within an FASTA

file. The Python module includes the ability to predict per-residue

consensus disorder scores or delineate continuous IDRs. Complete docu-

mentation is available at http://metapredict.readthedocs.io/. In addition,

we offer a web server appropriate for individual protein sequences, which

is available at http://metapredict.net.
Performance

On all hardware tested (which included a laptop from 2012), metapredict

obtained prediction rates of �7000–12,000 residues per second (see Sup-

porting materials and methods for further details). A single 300-residue pro-

tein takes �25 ms, and the human proteome (20,396 sequences) takes

�21 min. Importantly and unlike some other predictors, the computational

cost scales linearly with sequence length (Fig. S6) (58).
RESULTS

Evaluating metapredict accuracy in comparison
to existing predictors

Given the large number of protein disorder predictors avail-
able, multiple groups have investigated different approaches
to measure their accuracy (27,59–61). Here, we used metrics
from two recent studies, allowing us to compare directly
with many previously evaluated predictors.

We first evaluated metapredict using the protocol devel-
oped for the Critical Assessment of Protein Intrinsic Disor-
der experiment (CAID; 652 sequences). CAID is a biennial
event in which a large set of protein disorder predictors are
assessed using a standardized dataset and standardized met-
rics (27). CAID uses a curated dataset of 646 proteins from
DisProt, a database of experimentally validated disordered
regions (62). As such, evaluation using CAID’s standards
offers a convenient route to benchmark metapredict against
the state of the art.

In keeping with the assessments developed by CAID, we
evaluated metapredict in its capacity to predict disorder
across two distinct datasets (DisProt, DisProt-Protein Data-
base (PDB)) as well as its ability to identify fully disordered
4314 Biophysical Journal 120, 4312–4319, October 19, 2021
proteins (27). Although DisProt contains only true positive
disordered regions, DisProt-PDB contains true positive and
true negative regions, making it more appropriate for robust
validation of discriminatory predictors (27). To maintain
consistency with CAID, we used the F1-score (defined as
the maximum harmonic mean between precision and recall
across all threshold values; Eq. S3) to compare metapredict
against other predictors (27). The F1-score of metapredict
in the analysis of the DisProt dataset ranked 12th highest
out of the 38 predictors originally assessed (Fig. 2 A).

DisProt contains protein subregions that have been experi-
mentally validated as disordered. However, as noted in the
original study, it is possible, if not likely, that there are other
subregions from those same proteins which, although not yet
annotated as such, are in fact disordered (27). The DisProt-
PDBdataset addresses this limitationand includes only protein
regions that are unambiguously annotated as either disordered
or ordered based on extant experimental data (27). In exam-
ining the performance of metapredict in predicting disorder
on theDisProt-PDBdataset, we found thatmetapredict ranked
11th among all of the disorder predictors assessed (Fig. 2 B).

The last analysis that we carried out from the CAID
experiment was the capacity of metapredict to identify fully
disordered proteins. In this context, the CAID experiment
considers something to be a fully disordered protein if the
disorder predictor predicts 95% or more residues to be disor-
dered (27). Metapredict ranked third out of the disorder pre-
dictors examined in its capacity to identify fully disordered
proteins (Fig. 2 C).

In addition to assessing metapredict via the CAID dataset,
we also evaluated metapredict using the chemical shift z-
score for assessing order/disorder, an alternative metric
that provides a per-residue continuous value that experimen-
tally quantifies disorder (see Supporting materials and
methods for more details) (61). Similar to the CAID-based
assessment, metapredict ranked on average eighth out of
23 predictors (Fig. S1).

Although our assessment thus far is consistent with prior
metrics, we worried that it lacked clear interpretability with

http://metapredict.readthedocs.io/
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FIGURE 2 Evaluation of metapredict using CAID experiments. (A) F1-score for various predictors in examining their accuracy in predicting protein dis-

order from the DisProt dataset. (B) F1-scores for various predictors in examining their accuracy in predicting protein disorder from the DisProt-PDB dataset.

(C) F1-scores for various predictors in predicting fully disordered proteins in the DisProt dataset. Values for all predictors in (A)–(C) with the exception of

those for metapredict (orange bar) were obtained from (27).

The metapredict disorder predictor
respect to what these measures of accuracy mean for real
protein sequences. To address this, we re-evaluated the
CAID-derived predictions to compute an accuracy score
that reflects the number of residues correctly predicted as
folded or disordered per 100, using a Disprot-PDB-like
dataset with any ambiguous residues excluded. Fig. 3 A
shows the resulting assessment and reveals that although
the general order obtained from other methods is preserved
(as expected), the difference between the best predictor and
metapredict is on average two residues per 100.
Evaluating metapredict execution time in
comparison to existing predictors

Next, we considered how long metapredict takes to predict
disorder compared with other predictors. AUCpreD was one
of the top-performing disorder predictors, and compared to
several other top predictors was relatively easy to install. We
evaluated the computational cost per-residue using the com-
mand-line version of metapredict. The time for AUCpreD-
based disorder prediction scaled linearly with sequence
length with �0.3 s per residue (e.g., a 2151-residue protein
takes �14 min) (Fig. S2). In contrast, no metapredict
sequence took more than 0.9 s. In fact, for single-sequence
predictions, the main determinant of metapredict time was
the time to load the trained network file (�0.6 s) that,
when predicting an FASTA file with multiple sequences,
is a fixed and negligible computational cost. When this
was accounted for, metapredict takes �0.02 s for a 300-res-
idue protein (Fig. S8).

The CAID competition quantified execution times for 32
predictors using standardized hardware, providing a
rigorous and complete assessment of relative performance.
By scaling our hardware based on the CAID execution
time scores for AUCPreD, we were able to compare the ac-
curacy and qualitative execution time of metapredict against
all 32 predictors for the full CAID assessment (Fig. 3 B).
Although metapredict was�2 residues per 100 less accurate
than the top-performing predictor, it took �40 s to predict
disorder for the full CAID dataset, compared with approxi-
mately one month. We tentatively suggest this difference in
execution time compensates for difference in accuracy
(Fig. S10).
Prediction of AlphaFold2 pLDDT prediction

In addition to direct disorder prediction and in response to
the release of AlphaFold2-derived structure predictions for
multiple proteomes, we developed a predictor for the per-
residue confidence scores derived from the AlphaFold2
Biophysical Journal 120, 4312–4319, October 19, 2021 4315
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FIGURE 3 Accuracy and performance of metapredict. (A) Rank order of predictors in terms of number of correct residues per 100, assessed using true

positive and true negative only (Disprot-PDB dataset). (B) Relative execution time for all predictors as evaluated in CAID over 652 independent sequences.

Metapredict emerges as the third fastest predictor with a relative average loss in accuracy of two residues per 100 compared with the state-of-the-art (see also

Fig. S11.)
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dataset (see Supporting materials and methods for more de-
tails) (52,53). Formally, these scores reflect a pLDDT, such
that metapredict offers a predicted prediction (i.e., a pre-
dicted pLDDT score) (Fig. 4 A). Given the acquisition of
structure can be considered the inverse of disorder, we
expect (and observe) an anticorrelation between predicted
structure confidence and disorder (Fig. 4 B; Fig. S3). We
provide this feature as a complementary tool to aid in the
interpretation of disorder scores, a feature that we anticipate
will be useful when assessing ambiguous regions.
DISCUSSION

IDRs play vital roles in various biological processes (12,13).
An essential first step in the investigation of IDR function
reflects the ability to identify IDRs within a protein
sequence. Consensus disorder scores represent an attractive
means by which to obtain high confidence disorder predic-
tions that do not suffer from inaccuracies due to the limita-
tions of any single-disorder predictor. However, calculating
disorder probabilities from many different predictors to
generate a consensus score is cumbersome, technically chal-
lenging, and computationally expensive. To address this, we
developed metapredict, a simple to use protein disorder pre-
dictor that accurately reproduces consensus disorder scores.
Although other consensus metapredictors do exist, web-
based access to these can be on the order of minutes-to-
hours per sequence and, where available, local access has
operating-system dependencies making them poorly suited
to cross-platform proteome-scale analysis (41,64,65). As
such, we believe metapredict fills a niche that is currently
unoccupied.

Metapredict makes use of a general approach in machine
learning known as knowledge distillation. In knowledge
distillation, a computationally cheap model is trained on
data generated by one (or more) computationally expensive
4316 Biophysical Journal 120, 4312–4319, October 19, 2021
models, with a limited loss of accuracy (66,67). This
approach entirely detaches metapredict from either the
computational cost or the computational complexity of
other models, minimizing execution time, installation chal-
lenges, and limitations with respect to software or operating
system dependencies.

In comparison with the other disorder predictors, metapre-
dict tended to err on the side of false-negative predictions
(where metapredict predicted something to be ordered when
it was in fact disordered). As such, metapredict appears to
possess a slight bias toward underestimating disorder, such
that IDRs identified bymetapredict can be considered reason-
ably high confidence. Although metapredict is not the most
accurate disorder predictor,we tentatively suggest the average
error of two residues in 100 is relatively small. To aid in delin-
eation between regions that may be ambiguous, the Alpha-
Fold2 predicted structure confidence offers an orthogonal
approach that provides additional discriminatory power.
Features of metapredict

To further aid in the identification of bona fide contiguous
disordered regions, metapredict contains a stand-alone func-
tion for extracting contiguous IDRs based on a threshold
value applied to a smoothed disorder score and several addi-
tional parameters (Figs. S4–S7). For this approach, we again
found a threshold between 0.3 and 0.4 was optimal, and this
method generally outperformed our prior more simple ana-
lyses. However, because other predictors did not use this
approach for domain classification we also chose not to
use it in examining the accuracy of metapredict. Nonethe-
less, this suggests that metapredict can achieve even margin-
ally higher accuracy in identifying IDRs and automates this
procedure for the users, allowing boundaries between IDRs
and folded domains to be automatically identified, greatly
facilitating IDR-ome style analyses of datasets.
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The metapredict disorder predictor
In addition to disorder prediction and in response to the
recent release of AlphaFold2, metapredict offers an addi-
tional predictor of structure trained on AlphaFold2 data.
The implications and application of AlphaFold2-derived
predicted structure is an ongoing topic of investigation for
many groups (68–71). Although the absence of predicted
structure cannot ‘‘necessarily’’ be taken to mean a region
is disordered, there is a strong correlation and good reason
to believe that for proteins in isolation, regions lacking
high-confidence predicted structure may be disordered
(Fig. S3) (52,53). As a final thought, predicting structure
confidence using metapredict takes milliseconds, making
this a potential screening tool for identifying high-confi-
dence sequences of interest which could be investigated us-
ing the full AlphaFold2 methodology.

As a final note, an important feature in the distribution of
software is the ease of installation. Metapredict can be
installed through a single terminal command (‘‘pip install
metapredict’’), all dependencies are automatically included,
and the metapredict package is just 3.8 MBs. This is in
contrast to many other state-of-the-art predictors, which
require large sets of additional tools (each of which must
be separately installed) and hundreds of gigabytes of data-
base files, and provide execution times on the order of mi-
nutes to hours per sequence. We believe metapredict
offers an accurate, convenient, and computationally efficient
approach to de novo disorder prediction.
Code and data availability

The code for metapredict can be found at: https://github.
com/idptools/metapredict. Documentation is available at
https://metapredict.readthedocs.io/. Fully processed se-
quences used for assessment (including sequences and
scores) and code used for this manuscript are provided at
https://github.com/holehouse-lab/supportingdata/. Metapre-
dict can be installed directly from the Python Packaging
Index using pip (i.e., ‘‘pip install metapredict’’).
SUPPORTING MATERIAL

Supporting material can be found online at https://doi.org/10.1016/j.bpj.

2021.08.039.
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