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Oncogene-mediated metabolic gene signature predicts
breast cancer outcome
Merve Aslan1,6, En-Chi Hsu 1,6, Fernando J. Garcia-Marques 1, Abel Bermudez1, Shiqin Liu1, Michelle Shen1, Meredith West2,
Chiyuan Amy Zhang2, Meghan A. Rice1, James D. Brooks 2, Robert West3, Sharon J. Pitteri 1, Balázs Győrffy4,5 and
Tanya Stoyanova 1✉

Breast cancer remains the second most lethal cancer among women in the United States and triple-negative breast cancer is the
most aggressive subtype with limited treatment options. Trop2, a cell membrane glycoprotein, is overexpressed in almost all
epithelial cancers. In this study, we demonstrate that Trop2 is overexpressed in triple-negative breast cancer (TNBC), and
downregulation of Trop2 delays TNBC cell and tumor growth supporting the oncogenic role of Trop2 in breast cancer. Through
proteomic profiling, we discovered a metabolic signature comprised of TALDO1, GPI, LDHA, SHMT2, and ADK proteins that were
downregulated in Trop2-depleted breast cancer tumors. The identified oncogene-mediated metabolic gene signature is
significantly upregulated in TNBC patients across multiple RNA-expression clinical datasets. Our study further reveals that the
metabolic gene signature reliably predicts poor survival of breast cancer patients with early stages of the disease. Taken together,
our study identified a new five-gene metabolic signature as an accurate predictor of breast cancer outcome.
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INTRODUCTION
Breast cancer is the most common noncutaneous cancer among
women and the second leading cause of cancer-associated deaths
in women in the United States1. Triple-negative breast cancer
(TNBC) is the most aggressive subtype of breast cancer,
characterized by lack of estrogen receptor (ER), progesterone
receptor (PR), or human epidermal growth receptor type 2 (HER2)
expression. TNBC is associated with a higher rate of distant
metastases, resistance to current therapies, and poor survival2–4.
To adapt to a nutrient-poor tumor microenvironment, by

alterations in oncogenes and tumor suppressors cancer cells have
the capacity to reprogram their metabolism via modulating key
metabolic enzymes5. Metabolic reprogramming has been identi-
fied as a hallmark of cancer6,7. It is well established that highly
proliferative cancer cells prefer glycolysis to produce energy even
when the oxygen level is adequate for oxidative phosphorylation,
also known as the “Warburg effect”8–10. Metabolic rewiring of
cancer cells enables them to derive adequate energy and
macromolecules for anabolic reactions even in nutrient-poor
environments. TNBC is characterized by intensive glucose
consumption, lower oxygen uptake, and elevated glycolysis
compared to other breast cancer types as a result of highly
elevated glycolytic enzymes and transporters11–13. TNBC also
expresses a glycolytic gene signature with upregulated c-myc, a
transcription factor orchestrating gene expression changes in
molecular reprogramming14,15. Chemotherapy resistance may also
be acquired through metabolic reprogramming of cancer cells16.
Tumor-associated calcium signal transducer 2 (TACSTD2), also

known as a human trophoblastic cell surface antigen 2 (Trop-2,
Trop2), is a transmembrane glycoprotein and an emerging
candidate for targeted cancer therapies due to its overexpression
in various epithelial cancers and its association with tumor

metastasis and poor prognosis across multiple epithelial can-
cers17–22. Trop2 is overexpressed in breast cancer and in more
than 85% of TNBC tumors2,23. High Trop2 levels are associated
with poor survival in invasive ductal breast cancer patients, and
membrane-localized Trop2 is an unfavorable prognostic marker
for breast cancer patients24–26. Anti-Trop2 antibody–drug con-
jugate, Trodelvy (Sacituzumab govitecan-hziy) was recently
approved by the FDA for treatment of metastatic refractory TNBC
patients who have received at least two prior therapies2.
Here, we demonstrate that protein levels of Trop2 are highly

elevated in breast cancer patients and downregulation of Trop2
by gene deletion or gene silencing significantly impairs TNBC cell
growth and colony formation in vitro, and tumor growth in vivo.
Likewise, Trop2 overexpression induces breast cancer cell growth,
further highlighting the oncogenic role of Trop2 in the growth of
TNBC. To delineate cellular changes mediated by Trop2, we
evaluated global protein changes upon modulation of Trop2.
Proteomic profiling of TNBC tumors with decreased levels of Trop2
via knockdown strategies revealed that several known oncogenic
proteins and a metabolic cluster of proteins composed of TALDO1,
GPI, LDHA, SHMT2, and ADK are significantly decreased. Con-
sistent with this result, the expression levels of the identified
oncogenes and five metabolic genes (TALDO1, GPI, LDHA, SHMT2,
and ADK) are elevated in TNBC patients when compared to ER+
patient samples across multiple clinical datasets. More impor-
tantly, the identified five-gene (5-gene) metabolic signature
predicts poor survival in patients with early-stage breast cancer.
The 5-gene metabolic signature (TALDO1, GPI, LDHA, SHMT2, and
ADK) correlates with poor overall and disease-free survival in 12
different mRNA expression clinical datasets. Collectively, these
findings demonstrate that the oncogene-mediated 5-gene
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metabolic signature is a powerful marker for aggressive breast
cancer and a predictor for inferior breast cancer survival.

RESULTS
Trop2 is elevated in TNBC patients
To evaluate Trop2 protein levels in independent patient cohorts,
we analyzed Trop2 protein levels by immunohistochemistry (IHC)
in ER+, HER2+, and TNBC samples using a tissue microarray (TMA)
(Fig. 1a, b). The TMA contained 22 ER+ HER2−, 35 HER2+ (27
HER2+ ER−, and 8 HER2+ ER+), and 28 TNBC samples (Fig. 1a, b).
High levels of Trop2, assessed by Trop2 intensity of IHC staining,
occurred in 50% of ER+, 74% of HER2+, and 93% of TNBC samples
(Fig. 1b). These results demonstrate that a high percentage of
patients with TNBC have elevated levels of Trop2.

Trop2 regulates TNBC tumor growth in vitro and in vivo
To test the functional role of Trop2 in TNBC, we introduced TROP2
gene deletion via CRISPR/Cas9 in HCC1806 TNBC cells that
endogenously express Trop2 (Trop2-gRNA-1, Trop2-gRNA-2)
(Fig. 2a). Loss of Trop2 significantly suppressed TNBC cell growth
assessed by colony formation and proliferation assays (Fig. 2b, c
and Supplementary Fig. 1a). To further confirm the oncogenic role
of Trop2 in TNBC, we generated Trop2 knockdown HCC1806 TNBC
cells using small hairpin RNA (shRNA) targeting Trop2 (Fig. 2d).
Downregulation of Trop2 significantly impaired colony-forming
ability and proliferation of HCC1806 TNBC cells (Fig. 2e, f and
Supplementary Fig. 1b). Furthermore, downregulation of Trop2
dramatically decreased the invasion ability of the highly

aggressive HCC1806 TNBC cell line measured by three dimen-
sional (3-D) Matrigel drop invasion assay (Fig. 2g).
The functional role of Trop2 in breast cancer is further

reinforced by a gain of function studies. Trop2 was overexpressed
via lentiviral transduction in an ER+ breast cancer cell line, MCF7,
characterized by low levels of endogenous Trop2 (Fig. 2h). Trop2
overexpression significantly increased the colony formation ability
of MCF7 cells providing further evidence of Trop2 acting as an
oncogene in breast cancer (Fig. 2i).
The oncogenic role of Trop2 in breast cancer was further tested

in vivo (Fig. 2j, k and Supplementary Fig. 1c, d). HCC1806 TNBC
cells with downregulation of Trop2 or TROP2 gene deletion were
subcutaneously implanted into the lateral flanks of female NSG
mice, and tumor volumes were measured every three days.
Downregulation or loss of Trop2 in HCC1806 TNBC cells led to a
significant delay in tumor growth and a decrease in tumor weight
(Fig. 2j, k and Supplementary Fig. 1c, d). Collectively, these results
demonstrate the oncogenic role of Trop2 in breast cancer.

Proteomic profiling reveals an oncogene-mediated metabolic
signature in TNBC
To delineate global protein changes mediated by Trop2 oncogene
in TNBC, we performed liquid chromatography with tandem mass
spectrometry (LC–MS/MS) proteomic profiling of tumor samples
from HCC1806 shCtrl and shTrop2 xenografts (Fig. 3a, b,
Supplementary Fig. 2 and Supplementary Table 1). Proteins that
had more than five peptide counts and were downregulated more
than twofold with P < 0.01 were included for further analysis.
Functional protein association networks of 64 downregulated
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Fig. 1 Trop2 is highly expressed in breast cancer. a Representative images of Trop2 staining intensity scores. Trop2 staining intensity is
scored from 0 to 3. Scale bar represents 250 µm (upper panel) and 50 µm (lower panel). b Trop2 IHC staining on TMA including ER+ (n= 22),
HER2+ (n= 35), and TNBC (n= 28) tissue samples. Representative images of ER+, HER2+, and TNBC samples (left) and Trop2 staining intensity
distribution in ER+, HER2+, TNBC samples as percentages are demonstrated (right). Scale bar represents 250 and 50 µm for upper and lower
panels. The statistical significance of the differences between population proportions was calculated by the normal distribution N (0,1) of the
Z-score. Error bars represent standard deviation (SD). *P < 0.05, ***P < 0.001.
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proteins were analyzed using STRING (https://string-db.org/) and
were diagramed by Cytoscape software (Fig. 3c, d and Supple-
mentary Fig. 3)27,28. Transaldolase 1 (TALDO1) and Transgelin 2
(TAGLN2) were the most significantly downregulated proteins in
Trop2 knockdown HCC1806 tumors when compared to shCtrl

(Fig. 3b). In addition, there were six significantly decreased
oncogenes in Trop2 knockdown tumors including TAGLN2,
NOLC1, HSP90AB1, HDGF, MCM5, and NCL (Fig. 3c).
Since TALDO1 is a metabolic protein and TAGLN2 is an

oncogene, we further analyzed other metabolic and oncogenic
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proteins that were decreased upon Trop2 modulation (Fig. 3b, c).
Interestingly, through functional network analysis, we identified a
TALDO1-associated metabolic cluster of 13 proteins (TALDO1, GPI,
SHMT2, LDHA, ADK, PRDX2, P4HB, PKM, FASN, GOT2, CAT,
ALDH3A2, and AKR1C1) that were decreased in Trop2 knockdown
tumors (Fig. 3c, d and Supplementary Fig. 3). The proteins in the
TALDO1-associated metabolic cluster were enriched in various
metabolic processes such as carbon metabolism, carboxylic acid,
and nucleotide metabolic processes (Fig. 3c, d). Since nicotina-
mide adenine dinucleotide phosphate (NADPH) is synthesized by
pentose phosphate pathway (PPP) and TALDO1 is a rate-limiting
enzyme of PPP, we quantified NADPH levels in HCC1806 control
and Trop2 knockdown cells as previously described29 (Fig. 3e).
Consistent with the decrease in TALDO1 levels, we identified that
NADPH has significantly decreased in Trop2 knockdown HCC1806
TNBC cells, suggesting the loss of Trop2 leads to a decrease in
TALDO1 and NADPH levels (Fig. 3e). We further validated the
expression levels of the top five proteins of the metabolic cluster,
TALDO1, GPI, LDHA, SHMT2, and ADK, in HCC1806 xenografts. In
line with the proteomics results, the top five decreased proteins in
the metabolic cluster, TALDO1, GPI, LDHA, SHMT2, and ADK, were
significantly decreased in HCC1806 xenografts upon Trop2
knockdown by IHC staining (Fig. 3f). These findings suggest that
Trop2 may mediate metabolic reprogramming together with the
induction of oncogenic proteins in TNBC.

Oncogene-mediated metabolic gene signature is enriched in
TNBC patients
To analyze the clinical relevance of Trop2 oncogene-mediated
proteome changes, 13 proteins that belonged to the TALDO1-
associated metabolic cluster were further narrowed down to 7
metabolic proteins (TALDO1, GPI, SHMT2, LDHA, ADK, PRDX2, and
CAT) based on the cut off of p value < 0.0005, fold change > 2 of
the proteomic analysis (Supplementary Fig. 3). We evaluated
transcript levels of TALDO1, GPI, SHMT2, LDHA, ADK, PRDX2, and
CAT metabolic genes as well as the six oncogenes (TAGLN2,
NOLC1, HSP90AB1, HDGF, MCM5, and NCL) in the METABRIC
dataset (Fig. 4a and Supplementary Fig. 3). Transcript levels of five
of the seven metabolic genes (TALDO1, GPI, SHMT2, LDHA, and
ADK: 5-gene metabolic signature) and six oncogenes: TAGLN2,
NOLC1, HSP90AB1, HDGF, MCM5, and NCL, were elevated in TNBC
patients when compared to patients with ER+ breast cancer
(Fig. 4 and Supplementary Figs. 3–5). TALDO1, GPI, SHMT2, and
LDHA mRNA levels were higher in TNBC patient samples when
compared to ER+ patient samples in three additional

independent patient cohorts (Fig. 4 and Supplementary Fig. 5).
ADK transcript levels were also significantly elevated in TNBC
patients in the METABRIC cohort which has the largest sample size
of the four datasets (Fig. 4). In the METABRIC cohort, the mRNA
levels of the five individual metabolic genes and six oncogenes
were higher in TNBC patients compared to either ER+ or HER2+
patients (Supplementary Fig. 4). Since the Trop2 protein levels do
not correlate with the mRNA levels in patient datasets, Trop2 was
not included in the mRNA analysis.

Five-gene metabolic signature predicts poor outcome and
worse overall survival in early-stage breast cancer
We further investigated the correlation of the 5-gene metabolic
signature, summarized as a table from STRING analysis (Fig. 5a),
with clinical outcomes to test whether this signature was
associated with overall survival in early-stage breast cancer. mRNA
expression levels of the 5-gene metabolic signature were analyzed
in breast cancer patients with tumor stages I–III from the
METABRIC dataset (Fig. 5b). We first categorized the patients
based on the 5-gene metabolic signature expression levels and
identified the lowest tertile (T3) in the low expression group versus
high expression group encompassing the highest tertile (T1) and
compared the overall survival of the identified groups in each
tumor stage (Fig. 5B). Elevated levels of the 5-gene metabolic
signature (T1) were associated with poor overall survival in stage I
and stage II breast cancer (Fig. 5b), indicating the 5-gene
metabolic signature may contain valuable prognostic information
in early-stage breast cancer. Since the 5-gene signature is higher
in TNBC, we analyzed outcomes in the defined molecular subtypes
of breast cancer in METABRIC by sub-grouping patients into ER+,
HER2+, and TNBC subtypes of breast cancer. For each of the
molecular subtypes, the highest tertile of expression for the
5-gene metabolic signature (T1) was associated with poor overall
survival (Fig. 5c). Furthermore, high expression of the 5-gene
metabolic signature was associated with poor outcome in ER+
breast cancers in the E-MTAB-365 dataset, confirming that its
prognostic value is not due to its association with TNBC
(Supplementary Fig. 6).

5-gene metabolic signature predicts worse overall and
disease-free survival in breast cancer patients
Next, we analyzed the correlation of the 5-gene metabolic
signature with disease outcome in 12 independent mRNA
expression breast cancer cohorts with long-term clinical follow-

Fig. 2 Trop2 regulates TNBC cell and tumor growth in vitro and in vivo. a Trop2 levels in HCC1806 control (CTL-gRNA-#1 and CTL-gRNA-#2),
Trop2 gene deletion (Trop2-gRNA-#1 and Trop2-gRNA-#2), and parental cell lines were evaluated by western blot. The two blots were derived
from the same experiment and were processed in parallel. The whole blots are shown in Supplementary Fig. 11a. b Colony formation assay of
HCC1806 control and Trop2-gRNA-#1 cell lines. Representative images of wells after harvesting and staining with crystal violet (left) and
quantification of percent area (right) are shown. The scale bar is 1 cm. Error bars represent SD. c Proliferation assay of HCC1806 control and
Trop2-gRNA-#1 cells are presented as fold change over Day 0. Quantification measures cell count. d Trop2 levels in HCC1806 shCTL, and Trop2
knockdown cells (shTrop2#1, shTrop2#2, and shTrop2#3) were measured by western blot. The two blots were derived from the same
experiment and were processed in parallel. The whole blots are included in Supplementary Fig. 11b. e Colony formation assays of
HCC1806 shCTL and shTrop2#2 cells. Representative images of harvested wells stained with crystal violet (left) and the quantification of
percent area (right) are shown. Scale bars represent 1 cm. Error bars represent SD. f Proliferation assay of HCC1806 shCTL and shTrop2#2 and
cells, demonstrated as fold change based on the cell number of individual cell lines at Day 0. Quantification measures cell count and it is
shown as fold change over Day 0. Error bars represent SD. g 3-D Matrigel drop invasion assay of HCC1806 shCTL and shTrop2#2.
Representative images of the cells invaded area outside the drop (left), and quantification of percent invasion area relative to the shCTL (right)
are demonstrated. Scale bars represent 250 µm. Error bars represent SD. h Trop2 protein levels in MCF7 cells stably expressing RFP or Trop2
and RFP were measured by western blot. The two blots were derived from the same experiment and were processed in parallel. The whole
blots are shown in Supplementary Fig. 11c. i Colony formation assay of MCF7-RFP and MCF7-Trop2-OV. Representative images of harvested
wells stained with crystal violet (left) and quantification of percent area (right) are shown. Scale bars represent 1 cm. Error bars represent SD. j
Tumor volumes of HCC1806 shCTL (n= 10) and shTrop2#2 (n= 10) subcutaneously implanted xenografts in female NSG mice (left). Volumes
measured every three days with calipers and quantified (length × width × height)/2. Tumor images at the experimental endpoint are shown
(right). Error bars represent standard error (SE). k End of study tumor weights was measured and plotted (right). Scale bars represent 1 cm.
Error bars represent SE. *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001 are derived from two-tailed Student’s t test.
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up were investigated by Kaplan-Meier analysis (Fig. 6). As seen in
METABRIC, the tertile with high expression of the 5-gene
metabolic signature (T1) in TCGA was associated with significantly
worse overall survival when compared to the lowest (T3) (Fig. 6).
High 5-gene metabolic signature (T1) also predicted worse

disease-free survival in ten additional independent clinical cohorts
of breast cancer patients (Fig. 6 and Supplementary Fig. 7 with
complete T1–T3 plots). Furthermore, using median expression
ranking of the 5-gene metabolic signature, patients who had
higher expression levels of the 5-gene metabolic signature had
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shorter overall survival and shorter time to recurrence in nine
different mRNA expression cohorts of breast cancer patients
(Supplementary Fig. 8). In addition, elevated median and tertile
expression levels of four out of the five genes in the 5-gene
metabolic signature, TALDO1, GPI, LDHA, and SHMT2 may provide
benefit as individual prognostic predictors in breast cancer
(Supplementary Fig. 9). Moreover, transcript levels for each gene
alone compared to the five genes together showed that
upregulation of the five metabolic genes together was a more
powerful prognostic marker in 12 independent mRNA expression
cohorts of breast cancer patients (Supplementary Fig. 10). Taken
together, these findings describe a new 5-gene metabolic
signature potentially mediated by oncogenic alterations in breast
cancer. Most importantly, elevated intratumoral mRNA of 5-gene
metabolic signature predicts worse disease outcomes at an early
tumor stage of breast cancer.

DISCUSSION
Trop2 is elevated across epithelial cancers and commonly acts as an
oncogene that promotes tumor growth and metastasis18,19,30–42.
Consistent with these findings, here we demonstrate that Trop2
protein levels are elevated in TNBC when compared to ER+ and
HER2+ patients. Furthermore, TROP2 gene deletion and gene
silencing suppressed TNBC cell growth in vitro and in vivo. Our
findings suggest that Trop2 is a critical determinant of TNBC tumor
growth. To gain insights into the global protein changes induced by
Trop2, we further analyzed changes in protein levels upon
modulation of Trop2. TROP2 downregulation decreased the expres-
sion of TALDO1 associated metabolic clusters of proteins and a
number of known oncogenic proteins. The analysis of four different
clinical data sets revealed that expression levels of the identified 5
metabolic genes (TALDO1, GPI, LDHA, SHMT2, and ADK) and
oncogenes (TAGLN2, NOLC1, HSP90AB1, HDGF, MCM5, and NCL)
were consistently elevated in TNBC patients compared to the ER+
patients.
Among the genes in our discovered 5-gene metabolic signature

are genes involved in breast cancer. TALDO1 is a rate-limiting
enzyme of a non-oxidative branch of PPP and is found elevated in
numerous cancers43,44. TALDO1 induces tumorigenesis amid
oxidative stress by generating NADPH and ribose-5-phosphate
that are essential for fatty acid and nucleic acid synthesis45.
Glucose-6-phosphate isomerase (GPI) is the second glycolytic
enzyme that drives the conversion of glucose-6-phosphate to
fructose-6-phosphate46. It is also overexpressed in cancer by
c-myc and HIF-1 induction resulting in glycolytic cancer pheno-
type47. Lactate dehydrogenase A (LDHA) is the enzyme in the final
step of glycolysis that converts pyruvate to lactate in the
cytoplasm46. LDHA is also elevated in TNBC, as are other glycolytic
enzymes as a result of c-myc activity48. Interestingly, it is already
shown that Trop2 overexpression induces c-myc expression

through beta-catenin signaling42. Mitochondrial serine hydroxyl-
methyltransferase 2 (SHMT2), which has a role in the conversion of
serine to glycine in the serine–glycine synthesis pathway, is
significantly upregulated in breast cancer49. Moreover, increased
SHMT2 correlates with poor disease outcomes mostly in ER-
negative breast cancer49. Adenosine kinase (ADK) is also a key
metabolic enzyme in the removal of adenosine that is tightly
regulated in healthy cells. Adenosine signaling is associated with
breast carcinoma and it is identified that downregulation of ADK
decreases proliferation, migration, and invasion of TNBC cells,
suggesting a functional role of ADK in TNBC50. Our study identified
a new 5-gene metabolic signature (comprising of TALDO1, GPI,
LDHA, SHMT2, and ADK) that is a more powerful prognostic
marker than any of the single genes alone. Collectively, the
identified 5-gene metabolic signature is related to oncogenic
metabolism in breast cancer, and increased levels of the 5-gene
metabolic signature correlate with tumor aggressiveness. Con-
sidering the well-established oncogenic role of Trop2 in various
cancers including breast cancer, our studies suggest that Trop2
may potentially lead to an oncogene-mediated metabolic
reprogramming in TNBC by regulating a group of metabolic
genes and oncogenes.
Here, we demonstrate that elevated levels of 5-gene metabolic

signature correlate with poor overall survival in early-stage breast
cancer. Additionally, breast cancer patients with high expression
levels of the 5-gene metabolic signature have worse overall and
disease-free survival in 12 different mRNA expression clinical
datasets of breast cancer patients. Furthermore, higher levels of
the 5-gene metabolic signature collectively correlate with poor
outcomes of breast cancer. Our study suggests that the 5-gene
metabolic signature may represent a powerful tool for prognostic
prediction in breast cancer. The defined 5-gene metabolic
signature would be applicable for patients to assess the
intratumoral expression levels of the identified 5-gene metabolic
signature at the point of biopsy or surgery for outcome prediction.
Most importantly, the 5-gene metabolic signature may serve as a
valuable prognostic tool for breast cancer patients for the early
stage of the disease.

METHODS
Patient tissue samples
The TMA was purchased from Biomax (BR1505c) including 150 breast
invasive ductal carcinoma cores from 75 different patients with duplicate
cores per patient. The TMA had information regarding the clinical stages
and IHC results of ER, PR, and HER2 hormone receptors. Patient samples
were categorized based on their hormone receptor expression levels. Each
case had two different cores that were blindly scored and averaged for
Trop2 staining intensity. Ten out of 75 patient samples had different
hormone receptor levels in each patient core. TMA has total n= 22 ER+
HER2−, n= 35 HER2+ (27 HER2+ ER−, and 8 HER2+ ER+), and n= 28
TNBC cases. The intensity of Trop2 staining was blindly scored from 0 up to

Fig. 3 Trop2 knockdown modulates a set of metabolic proteins and known oncogenes in TNBC. HCC1806 shCTL and shTrop2 xenograft
tumors (n= 2 per group) were analyzed in triplicate by liquid chromatography–tandem mass spectrometry (LC–MS/MS). a Volcano plot
illustrating the increased and decreased proteins and dotted lines indicating P value < 0.01 and fold change > 2-fold. Blue represents
decreased proteins; red represents increased proteins. b Heatmap demonstrating protein fold changes upon modulation of Trop2 (n= 64, fold
change > 2, and P value < 0.01). Known oncogenic proteins (light blue), and metabolism-related proteins (dark blue, with stars) are indicated.
In the heat map blue indicates decreased proteins; red indicates increased proteins. c Functional network analysis of decreased proteins upon
Trop2 knockdown was performed by STRING (https://string-db.org/)71 and drawn with Cytoscape software 3.7.2.28 with yFiles Organic Layout.
Proteins that belong to functional networks are shown. Top downregulated protein, TALDO1, is used to identify the associated metabolic
cluster (* first neighbors of TALDO1). Known oncogenic proteins are noted with light blue circles, and the metabolic cluster is indicated in dark
blue circles. The line thickness provides the strength of data support from the STRING database. The node size indicates neighborhood
connectivity, and the node color represents betweenness centrality, which was generated from statistics of network analysis with Cytoscape
software. d Functional enrichment analysis is summarized as a bar graph with false discovery rate (FDR) of Trop2 downregulated proteins in
the Gene Ontology (GO). e NADPH quantification of HCC1806 shCTL, shTrop2#2, and shTrop2#3 cell lines. Relative luminescence represents
the NADPH amount that is measured by NADP/NADPH-GloTM assay. Error bars represent SD, ***P < 0.001 derived from two-tailed Student’s t
test. f IHC staining for Trop2, TALDO1, GPI, LDHA, SHMT2, and ADK in HCC1806 shCTL and shTrop2 xenografts. Scale bar represents 20 µm.
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3 as shown in Fig. 1a. The average intensity of staining between the two
cores was calculated and shown from 0 to 1.5 is negative/weak, equal and
more than 1.5, and less than 2.5 is moderate, equal and more than 2.5 is
strong. Trop2 staining intensity distribution of ER+, HER2+, and TNBC
samples were plotted as percentages of the samples.

Cell lines and culture
MCF7 was a kind gift from Dr. James Brooks’s laboratory at Stanford
University (Palo Alto, CA). HCC1806 cells were purchased from ATCC. Cells
were grown in RPMI supplemented with 10% fetal bovine serum, 1%
penicillin/streptomycin, and 1% Glutamax. Cell culture was performed in a
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Fig. 4 Five-gene metabolic signature is enriched in TNBC patients when compared to ER+ breast cancer patients. a–d Heatmap displaying
mRNA levels of Trop2 associated 5-gene metabolic signature (TALDO1, GPI, SHMT2, LDHA, and ADK) and known oncogenes (TAGLN2, NOLC1,
HSP90AB1, HDGF, MCM5, and NCL) in breast cancer patient samples (upper panel). The red color indicates a higher z-score whereas blue
represents a lower z-score. Individual gene expression levels (TALDO1, GPI, SHMT2, LDHA, and ADK) are presented as dot plots (lower panel).
The mRNA levels of the identified 5-gene metabolic signature in METABRIC 57 and TCGA (Firehose Legacy) clinical datasets are obtained from
cBioPortal for Cancer Genomics (https://www.cbioportal.org/)58,59. The mRNA levels of the identified 5-gene metabolic signature in E-MTAB-
365 60 and GSE21653 61 clinical datasets are shown. Error bars represent standard deviation. Adjusted P value was calculated based on
Bonferroni testing in Prism software. **P < 0.01, ***P < 0.001, ****P < 0.0001, and ns not significant.

M. Aslan et al.

7

Published in partnership with the Breast Cancer Research Foundation npj Breast Cancer (2021)   141 

https://www.cbioportal.org/


37 °C incubators with 5% CO2. Warm Trypsin/EDTA (0.25%) was used for
dissociation. All cells were authenticated through the Genetica cell line
testing. Cells were tested for mycoplasma using Lonza Mycoalert Detection
Kit (Lonza).

Generation of control, Trop2 overexpression, or knockdown
cell lines
FUCRW plasmid was a generous gift from Dr. Owen Witte’s laboratory at the
University of California Los Angeles. The FUCRW-Trop2-OV construct
generation was described previously34. Totally, 2 × 105 MCF7 cells were
infected with lentiviruses generated from the FUCRW or FUCRW-Trop2-OV
constructs in a 6-well plate at a multiplicity of infection 5 with polybrene

(10 μg/mL). Infection was confirmed by visualization of RFP positive cells
under a fluorescence microscope 72 h post infection. Totally, 2 × 105 HCC1806
cells were infected with viruses generated from pLKO.1-control scramble
shRNA vector, or pLKO.1-Trop2 shRNA. Infected cells were selected for six days
with puromycin (0.5 μg/mL) and Trop2 protein expression was confirmed with
western blot. shRNA vector was a kind gift from David Sabatini (Addgene
plasmid #1864; http://n2t.net/addgene: 1864; RRID: Addgene_1864). Trop2
pLKO.1 shRNA plasmids TRCN0000056419, target sequence GAGAAAG-
GAACCGAGCTTGTA (named shTrop2#1), TRCN0000056421, target sequence
CGTGGACAACGATGGCCTCTA (named shTrop2#2), and TRCN0000303500,
target sequence CGGCGCAAAGGAGACGTTTAT (named shTrop2#3) were
purchased from Millipore Sigma (St. Louis, MO).

Color KEGG pathway description count in gene set FDR
hsa01100 Metabolic pathways 5 of 1250 1.94E-05
hsa01200 Carbon metabolism 3 of 116 1.96E-05
hsa00030 Pentose phosphate pathway 2 of 30 0.00015
hsa01230 Biosynthesis of amino acids 2 of 72 0.00056
hsa00010 Glycolysis / Gluconeogenesis 2 of 68 0.00056
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Fig. 5 Five-gene metabolic signature predicts poor outcome in early stages of breast cancer independent of breast cancer subtypes.
a Functional network analysis and functional enrichment analysis of five metabolic proteins. Functional network analysis is performed by String
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Fig. 6 Five-gene metabolic signature predicts worse overall and disease-free survival in breast cancer patients. Survival curves (overall
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Generation of control and Trop2 knockout cell lines
The generation of Trop2 knockout stable clone with the guide RNA
sequence: CACCAGCGTGCGGGCGTTCT by CRISPR/Cas9 system was pre-
viously described34. Control double nickase plasmid from Santa Cruz (sc-
437281) was used to generate stable control CTL-gRNA clones #1 and #2.
Transient transfection of the knockout and control guide RNA constructs
was performed using lipofectamine in HCC1806 cells. Cells were diluted to
seed one cell per well in a 96-well plate after puromycin (0.5 μg/mL)
selection for 6 days. Cells were expanded and cultured into two 96-well
plates. Trop2 levels of each clone were detected through flow cytometry
on the first plate by the Guava® easyCyte Flow Cytometer (EMD Millipore).
The selected successful Trop2 knock-out or control gRNA clones generated
by CRISPR/Cas9 were expanded from the second plate for further
experiments.

Colony formation assay
Totally, 400 cells/well for MCF7 and 500 cells/well for HCC1806 cell lines
were plated in 6-well plates in triplicates and cultured for 12 days with
media changing every 3 days. The colonies were fixed with ice-cold
methanol, stained with 0.01% crystal violet, and imaged. The images were
analyzed with ImageJ and the percentage of the area was quantified and
plotted.

Cell proliferation assay
Totally, 1 × 104 cells per well were plated in a 24-well plate in triplicates.
The trypsinized cells were counted on days 2, 4, and 6 using trypan blue
staining. The proliferation rate was plotted as a fold change based on the
seeding cell number.

Matrigel drop 3D invasion assay
Totally, 5 × 104 cells were mixed with 10 μl Matrigel and plated in a 24-well
plate as a single droplet in the middle of a well as it is described
previously34,51–53. After 20 min of incubation at 37 °C, the Matrigel was
solidified, and the media was added. The cells were grown for 6 days, and
the media was changed every 3 days. The cells were imaged with a
stereomicroscope (Leica), and cells that invaded the area outside of the
drop were measured by ImageJ.

Animal studies
All the procedures performed in this study were approved by Stanford
Administrative Panel on Laboratory Animal Care (APLAC), IACUC. For all the
studies, 6–8-week-old female NSG (NOD-SCID-IL2Rγ-null) mice (Jackson
Laboratory) were used and housed at Stanford University animal facilities.
The tumor volumes were calculated based on every third-day measure-
ments of length (L), width (W), and height (H) with the formula: (L ×W × H)/
2. When the average tumor size reached 250mm2 (Supplementary Fig. 1c)
or 500mm2 (in Fig. 2j), tumors were harvested and fixed at 10% formalin at
4 °C overnight. The tumors were processed and embedded in paraffin.

Liquid chromatography and mass spectrometry analysis
Frozen xenograft tissues of two different tumors per group were
homogenized in 800 µL of chilled lysis buffer consisting of 2% sodium
dodecyl sulfate (SDS) (Thermo Fisher Scientific) and 1× protease inhibitor
(Sigma Aldrich). Subsequently, samples were sonicated on ice with a
Branson probe sonicator (Fisher Scientific) with the amplitude set at 40%
for 15 s followed by 30 seconds off, with this cycle repeated three times.
Then, lysate samples were centrifuged at 14,000g for 10 min at 4 °C.
Extracted proteins were quantified by performing a standard bicinchoninic
acid (BCA) protein assay (Thermo Fisher Scientific). Shotgun proteomics
was performed on 25 µg of protein by reducing disulfide bonds with 5 µL
of 200mM tris (2-carboxyethyl) phosphine (TCEP) (Sigma Aldrich) in 100 µL
50mM ammonium bicarbonate (Sigma Aldrich) and incubated at 65 °C for
1.5 h. The resulting free sulfhydryl groups on cysteines were alkylated by
adding 7.5 µL of 200mM iodoacetamide (Across Organics) with incubation
at room temperature in the dark for 1 h. Then, proteins were precipitated
by adding 1mL of cold acetone and stored at −20 °C overnight. The
following morning, precipitated proteins were pelleted by centrifugation
under the same conditions described above. Pelleted proteins were
digested with 1 µg of sequencing grade modified trypsin enzyme
(Promega) in 100 µL of 50mM ammonium bicarbonate buffer solution
followed by incubation at 37 °C overnight without shaking. Tryptic

peptides were dried using a speed vacuum system (LABCONCO) and re-
constituted in 50 µL of 0.1% formic acid in water.
Reconstituted tryptic peptides were separated and analyzed by

reversed-phase liquid chromatography on a Dionex UltiMate 3000 RSLC
nano system coupled to an LTQ Orbitrap Elite mass spectrometer system
(Thermo Fisher Scientific). Three technical replicates for each sample were
performed. 1.5 µg of tryptic peptides were loaded onto a PepMap 100 C18
trap column (Thermo Fisher Scientific) at 5 µL/min for 10min. Then, tryptic
peptides were separated on a 25 cm analytical column (New Objective)
packed with Magic C18 100 Å bedding material (Michrom Bioresources).
The flow rate was held at 0.5 µL/min throughout the gradient. 10 min of
loading time held buffer A (0.1% formic acid in water) and buffer B (0.1%
formic acid in acetonitrile) at 98% and 2%, respectively. Buffer B was slowly
increased to 35% over 100min followed by a swift increase to 85% over
7min with a 5min hold time until returning to the initial condition of 2% in
2min for column equilibration. The eluting peptides were ionized with
1.8 kV nano-ESI source voltage and the top 10 most abundant ions
detected by the mass spectrometer were selected for collision-induced
dissociation. The MS1 mass resolution was set to 60,000 with a mass scan
range from 400 to 1800m/z. The collision energy for MS/MS ion
fragmentation was set to 35 eV, the AGC target set to 3e4, and dynamic
exclusion enabled for 30 s.

Proteomic data analysis
Each resulting LC–MS raw data were searched using Byonic 2.11.0 (Protein
Metrics) twice against the corresponding taxonomy reference Swiss-Prot
database. First, containing the human reference proteome (2017; 20,484
entries), and again using the mouse reference proteome (2017; 17,191
entries). Database searches were performed including trypsin digestion
with a maximum of two missed cleavages, and mass tolerance of precursor
and fragment ions were set to 0.5 Da and 10 ppm, respectively. Fixed
cysteine carbamidomethylation, variable methionine oxidation, and
asparagine deamination were also specified. Peptide identifications were
filtered for a false discovery rate of 1%. Finally, peptides that overlapped in
both human and mouse searches were removed to perform a conservative
analysis of non-homologous only human identified proteins using an in-
house R script, for each of the three technical replicates per experimental
condition (HCC1806 shCTL, and HCC1806 shTrop2#2). Quantitative values
were extracted from MS1 spectra from all resulting peptides using an in-
house R script based on MSnbase package54 after chromatogram
alignment. Using the AUC extracted, a pairwise relative quantification of
each sample against the average of the corresponding controls was
performed and analyzed using Generic Integration Algorithm, applying the
principles of the WSPP model55 using SanXoT package56. Final statistical
analysis was performed using Student’s t test, considering only proteins
having more than 5 peptide counts, having a P value < 0.01, and a fold-
change greater than 2 as significant.

Immunoblotting
The cells were scraped from the plate with 1× phosphate-buffered saline
(PBS) and lysed in RIPA lysis buffer supplemented with phosphatase and
proteinase inhibitors. The protein concentration was measured with BCA
assay, and the samples were denatured after 4× Laemmli buffer addition at
95 °C for 5 min. Samples were loaded and run on Novex Tris-Glycine gels
(Invitrogen) and transferred onto a nitrocellulose membrane. The
membrane was blocked in 5% milk in Tris-buffered saline (TBS) for 1 h at
room temperature and was incubated in the primary antibodies in 1×TBST
containing 0.1% tween-20 overnight at 4 °C. The membrane was washed
and incubated with a secondary antibody (Thermo Fisher Scientific,
PI31432) for 1 h at room temperature in 5% milk in TBS. After subsequent
washing, the chemiluminescent signal was developed using Pierce ECL
Western Blotting Substrate (Thermo Fisher Scientific) on an IVIS Lumina
imager. Anti-Trop2 biotinylated antibody BAF650 (R&D), anti-transaldolase
antibody (H-4) sc-166230, anti- LDH-A antibody (E-9) sc-137243, anti-
mSHMT antibody (F-11) sc-390641, anti-ADK antibody (H-1) sc-514588, and
anti-GPI Antibody (H-10) sc-365066 were used at 1:1000 dilution.

Immunohistochemistry
Formalin-fixed paraffin-embedded tissue slides were deparaffinized by
heating to 65 °C for 1 h and treatment with clarify and then hydrated.
Sodium citrate buffer (10mM/L, pH 6) was applied for all antibodies except
LDHA for the antigen retrieval. 1 mM EDTA with 0.05% Tween 20 (pH 8.0)
was used for LDHA detection. Antigen retrieval buffers were applied in a
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steamer at 95 °C for 20min. Slides were then washed with water and
treated with 3% hydrogen peroxide solution to inhibit endogenous
peroxidase activity for 10min. The tissues were blocked in 2.5% goat
serum in PBS for mouse primary antibodies or 2.5% horse serum in PBS for
rabbit primary antibodies. Primary antibodies were incubated overnight at
4 °C in a humidified chamber. Secondary horseradish peroxidase (HRP)
antibodies (Vector Laboratories) were applied for 1 h after washing and
then the tissues were stained with DAB (Dako Laboratories, Agilent). After
the hematoxylin counterstaining, the tissues were dehydrated, air-dried,
and coverslipped. The TMA images were taken with Hamamatsu
nanozoomer and breast cancer patient tissue slides were imaged under
20× and 63× magnification with a Leica DMI microscope. Anti-Trop2 B9 sc-
376746 (Santa Cruz) antibody was used in 1:100 dilution for TMAs IHC and
anti-human Trop2 biotinylated antibody BAF650 (R&D) in 1:50 dilution was
used for xenograft IHC staining. Antibodies against transaldolase (H-4) sc-
166230, LDH-A (E-9) sc-137243, mSHMT (F-11) sc-390641, and ADK (H-1) sc-
514588 from Santa Cruz Biotechnology, and GPI (#A6916) from ABclonal
were used in 1:100 dilution.

NADPH quantitation
Totally, 5 × 103 cells were seeded per well in a 96-well plate overnight.
Totally, 50 µl of NADP/NADPH-GloTM (Promega) detection reagent was
added into each well that had the cells in 50 µl of media. The reductase in
the detection reagent converted the proluciferin reductase substrate to
luciferin in the presence of NADPH molecules. The plate was incubated for
60min at room temperature and the luminescent signal, which was
proportional to the NADPH amount, was measured by Tecan luminometer.

Acquisition of gene expression and clinical data
The mRNA z-score data, overall survival information, ER/HER2/PR status,
and tumor stages of METABRIC57 and TCGA Firehose Legacy clinical
datasets, which were imported from the original TCGA Data Coordinating
Center via the Broad Firehose (https://gdac.broadinstitute.org/,
doi:10.7908/C11G0KM9) were obtained from cBioPortal for Cancer
Genomics (https://www.cbioportal.org/)58,59. The mRNA raw data and ER/
HER2/PR status in E-MTAB-36560 and GSE2165361 clinical datasets were
used to generate the Kaplan–Meier Plotter (https://kmplot.com/analysis/
index.php?p=service)62 and then normalized to z-score based on the
equation: (raw score− population mean)/population standard deviation.
Heatmaps of mRNA z-score in Fig. 3 were generated via Morpheus (https://
software.broadinstitute.org/morpheus/). Relapse-free survival information
of Kaplan–Meier plots of E-MTAB-365 (n= 426)60, GSE21653 (n= 230)61,
GSE2034 (n= 286)63, GSE20685 (n= 327)64, GSE20711 (n= 88)65,
GSE17705 (n= 196)66, GSE45255 (n= 94)67, GSE1456 (n= 159)68,
GSE3494 (n= 249)69, GSE12276 (n= 204)70 were collected from
Kaplan–Meier Plotter (https://kmplot.com/analysis/index.php?p=service)62

and then Log Rank Test of survival analysis was performed in Prism
software. N numbers indicate the number of patients with the follow-up
survival data available of the datasets.

Patient cohorts. METABRIC includes 1355 ER+ and 299 TNBC samples,
TCGA contains 806 ER+, and 115 TNBC samples, E-MTAB-365 includes 312
ER+ and 52 TNBC samples and GSE21653 includes 132 ER+ and 85 TNBC
samples. The mRNA z-scores for the indicated genes from the clinical
datasets were downloaded and heatmaps were generated as a comparison
of ER+ breast cancer and TNBC.

Statistical analysis
The differences between population proportions were calculated by z-
score test for two population proportions. In vitro and in vivo functional
assays unless otherwise mentioned were analyzed by a two-tailed
Student’s t test. An adjusted P value of gene expression levels between
ER+ subtype versus TNBC subtype was calculated based on Bonferroni
testing in Prism software. Survival analysis was calculated based on Log-
Rank (Mantel–Cox) Test in Prism software.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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