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Abstract

Objective: Generalized linear models (GLMs) such as logistic and Poisson regression are 

among the most common statistical methods for modeling binary and count outcomes. Though 

single-coefficient tests (odds ratios, incidence rate ratios) are the most common way to test 

predictor-outcome relations in these models, they provide limited information on the magnitude 

and nature of relations with outcomes. We assert that this is largely because they do not describe 

direct relations with quantities of interest (QoIs) such as probabilities and counts. Shifting focus to 

QoIs makes several nuances of GLMs more apparent.

Method: To bolster interpretability of these models, we provide a tutorial on logistic and Poisson 

regression and suggestions for enhancements to current reporting practices for predictor-outcome 

relations in GLMs.

Results: We first highlight differences in interpretation between traditional linear models 

and GLMs, and describe common misconceptions of GLMs. In particular, we highlight that 

link functions A) introduce non-constant relations between predictors and outcomes and B) 

make predictor-QoI relations dependent on other covariates. Each of these properties causes 

interpretation of GLM coefficients to diverge from interpretations of linear models. Next, we argue 

for a more central focus on QoIs (probabilities and counts). Finally, we propose and provide 

graphics and tables, with sample R code, for enhancing presentation and interpretation of QoIs.

Conclusions: By improving present practices in the reporting of predictor-outcome relations 

in GLMs, we hope to maximize the amount of actionable information generated by statistical 

analyses and provide a tool for building a cumulative science of substance use disorders.
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Public Health Significance: We propose several enhancements to current reporting practices 

for statistical analyses of binary outcomes (e.g., psychiatric diagnoses) and count outcomes (e.g., 

number of alcoholic drinks consumed). We encourage researchers to interpret results in terms 

of quantities of interest (probabilities for binary models, counts for count models) and provide 

a tutorial and R code for implementing these analyses. Doing so can provide richer information 

about a statistical analysis, make study results easier for research consumers to understand, and 

facilitate comparison of results across studies.
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Many outcomes in addictions research have a discrete set of possible values; these outcomes 

might be either present or absent (e.g., a psychiatric diagnosis, a behavior) or they might 

be a count of discrete events (e.g., recent stressful life events, alcoholic drinks consumed). 

There is growing recognition that these outcomes are not accurately modeled by traditional 

linear regression, which has led to increased use of generalized linear models (GLMs) 

to accommodate the distributions characteristic of binary and count outcomes (Atkins, 

Baldwin, Zheng, Gallop, & Neighbors, 2013; Coxe, West, & Aiken, 2009; Neal & Simons, 

2007). The most well-known GLMs in addictions research are logistic regression for binary 

data and Poisson regression for count data. Despite the broad accessibility of GLM methods 

via widespread software packages to model nonlinear data, software packages and online 

resources provide only basic guidance on reporting and interpreting parameter estimates 

from these models. In the current work, we aimed to highlight shortcomings of current 

practices for interpreting results of GLMs and to propose improvements to these practices.

The most commonly-reported quantity from a GLM is a transformed coefficient such as an 

odds ratio (OR) or an incidence rate ratio (IRR). The magnitude of the OR or IRR is often 

presented as representing the strength of association between a predictor and an outcome. 

However, commonly-taught heuristics for understanding these values are imprecise and can 

be misleading even in very common scenarios (Cummings, 2016; Schwartz, 2003; Persoskie 

& Ferrer, 2017; Andrade, 2015). The potential for misinterpretation stems largely from the 

fact that transformed coefficients in GLMs cannot be interpreted in the same manner as 

coefficients in traditional linear models.

Generalized Linear Models vs. Traditional Linear Regression

The central reason that current reporting practices for GLMs fall short is that when modeling 

binary or count outcomes, interpretation of individual model parameters is not analogous 

to the interpretation of traditional linear regression models. For the sake of clarity, we 

define traditional linear regression as a regression model that fits the expected value of an 

outcome to a linear function of substantive predictors, with no product or polynomial terms, 

assuming constant error variance. In traditional linear regression, model coefficients have a 

straightforward interpretation: for a 1-unit increase in a given predictor x, the conditional 

expectation of Y increases by β units, regardless of the levels of other covariates.
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To highlight the differences between traditional linear regression and GLMs, we contrast 

the presentation of traditional linear model results with GLM results. A published study of 

adolescent drug use by the senior author (K. M. King & Chassin, 2008) reported both a 

traditional linear regression result and a GLM result. The authors reported a linear relation: 

…stressful life events at Time 2 predicted increases in...Time 3 externalizing (B = .10, p < 
.01). Whereas B represents a standardized coefficient in this paper, in the table beside it, 

an unstandardized coefficient of b = .02 is reported. A plain-language interpretation of this 

finding is that for each additional stressful life event, an individual’s externalizing score is 

estimated to increase by .02 points on average. Along with the intercept of the externalizing 

score, this interpretation is sufficient to characterize the relation between stressful life events 

and externalizing symptoms. This interpretation holds at any level along the continuum of 

stressful life events, and at all levels of other covariates.

Drawing from traditional linear regression practices, researchers tend to interpret a single 

regression coefficient in a GLM as a test of their research hypothesis: that is, the relation 

between a predictor and an outcome, controlling for all other covariates in the model. 

Take the following example of a typical interpretation of a GLM coefficient from the 

aforementioned study by the senior author: Along with family history of alcohol use 
disorder (OR = 2.07), the direct effects of Time 3 externalizing symptoms on drug 
dependence were significant and positive (B = 0.88, p < .001; OR = 3.55). A standard 

interpretation of the effect of externalizing symptoms might be that for a one-unit increase 

in externalizing symptoms, we expect the odds of drug dependence to be 3.55 times higher. 

Given the above information, the investigators state correctly that there is a positive relation 

between externalizing symptoms and drug dependence; but how should one contextualize 

and interpret this relation? What is the probability of a particular adolescent being diagnosed 

with drug dependence at follow-up? How much higher is that probability for an adolescent 

who has a family history of alcohol use disorder? Although the GLM fit by the authors can 

provide answers to these questions, they remain unanswerable for readers when provided 

only with the information above.

This is because there are several fundamental difficulties with converting an odds ratio of 

3.55 into a plain-language interpretation in the same fashion as linear models. The clearest 

difficulty is that an odds ratio of 3.55 does not imply that the predicted probability of a 

drug use disorder increases by a factor of 3.55 for a change in externalizing symptoms. 

For GLMs, single coefficients do not directly describe relations with probabilities (note the 

introduction of the term odds), and heuristic understandings of single coefficients such as 

odds ratios can be misleading, as mentioned above. As an added complexity (which we 

explore in-depth in a later section), the impact of any one predictor in a GLM on an outcome 

A) is not constant and B) depends on the levels of all other predictors in the model. Given 

these properties, binary and count models require additional steps to draw out interpretable 

findings.

The Case for Presenting Quantities of Interest

One method for drawing out interpretable findings in spite of these complexities is to 

focus on Quantities of Interest (QoIs) in reporting GLM findings. As introduced by G. 
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King, Tomz, and Wittenberg (2000), QoIs are broadly defined as the empirical quantities 

that research questions concern, which researchers choose based on substantive knowledge 

and prior research. On a broad level, transformed coefficients represent relations between 

predictors and mathematically convenient quantities that are not QoIs. While it is sometimes 

of interest to understand the relation between a predictor and, for example, the log-odds 

of an outcome, our work defines QoIs as those quantities which map onto colloquial 

understandings of alcohol and drug use outcomes. We specifically define probabilities (e.g., 

the probability of having a drug use disorder) as the relevant QoI for binary outcome models, 

and expected counts (e.g., the number of drug-using days in the past week) as the relevant 

QoI for count outcome models. In traditional linear models, interpretation of predictor-QoI 

relations is straightforward because there is a linear relation between the model coefficients 

and the QoI; coefficients from traditional linear models represent constant increases or 

decreases in the QoI. When models include a link function to address probability or count 

QoIs, there is no longer a direct linear relation between model coefficients and the QoI. 

Instead, model coefficients represent the relation between a predictor and a transformed 

version of the QoI. Even when we account for this transformation by exponentiating model 

coefficients, these quantities still do not represent changes in QoIs for changes in predictors. 

Shifting focus to QoIs has the potential to minimize the burden on readers who are currently 

forced to calculate their way through models in order to understand relations between 

predictors and QoIs. Moreover, established methods exist for converting results to the scale 

of the QoI, which can render results interpretable even to non-experts, and can be made 

available to substantive researchers without additional intensive statistical training.

Current Generalized Linear Model Reporting Practices

We reviewed the current state of GLM reporting practices to understand the extent to which 

researchers report QoIs vs. transformed coefficients. Though we derive these transformed 

coefficients in more depth later, we briefly describe the OR and IRR here. For binary 

outcome models, the most commonly reported metric of the predictor-QoI association is 

an OR. The odds of an event is the ratio of the probability of an event occurring to the 

probability of the event not occurring π
1 − π , and the OR describes the change in odds 

for a change in a predictor; it is a ratio of ratios. For count models, the most commonly-

reported statistic is the IRR, which involves the number of events predicted to occur per unit 

time, referred to as the incidence rate (λ). The IRR represents a multiplicative increase or 

decrease in the incidence rate based on a change in the predictor. Practically, both of these 

metrics are calculated by exponentiating the coefficient for the predictor in question, exp(β). 

As we will discuss in detail below, neither of these metrics is related to a constant change in 

the QoI. However, it is exceedingly rare that addiction researchers transform model results 

back into the QoI they set out to understand.

In a literature search of 52 articles selected randomly from five highly-cited journals from 

the addiction and psychology fields from 2007 to 2017, only 5% of articles interpreted 

results in terms of a QoI.1 Most articles (69%) only described the GLM coefficient in terms 

of significance and direction, with no interpretation of the strength of the relation (e.g., x 
was positively related to Y, p < .05). About a quarter (27%) of coded articles interpreted the 
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coefficient in question as a percentage increase in either the odds or the incidence rate (e.g., 

the odds of Y was 25% higher for those with risk factor x). Though there are many reasons 

for including or omitting model information in an empirical article, there is clearly room for 

including more information that might help readers contextualize findings from parameter 

estimates.

The Current Study

In order for results to be compared with one another across studies and eventually integrated 

into a cumulative science, we propose several attainable improvements to current practices 

in reporting and interpretation of GLMs for binary and count outcomes. In the current 

article, we aimed to 1) present a brief tutorial on common GLM methods in addiction 

research, and in doing so highlight common misconceptions about predictor-QoI relations 

in binary and count models, 2) provide guidelines for effective communication of binary 

and count model findings, and 3) present examples using real and simulated data along with 

sample R code.

A Brief Tutorial on Generalized Linear Models

The Case for using Generalized Linear Models

GLMs were developed primarily because imposing a direct linear relation between a 

predictor x and the expectation of an outcome Y in a statistical model is not always 

appropriate. When traditional linear models are used to fit outcome data generated by 

a nonlinear process, traditional regression assumptions of linearity and homoscedasticity 

can be violated. Fitting a traditional linear regression model to binary outcome data, for 

example, introduces dependence between the variance of the residuals and the expected 

value, violating the assumption of homoscedasticity (Cohen, Cohen, West, & Aiken, 2013). 

Violating these assumptions can lead to bias in standard errors (and therefore p values), 

as well as loss of statistical power (Atkins & Gallop, 2007; G. King, 1988). Recent work 

has called for more widespread use of the GLM to address these violations by formalizing 

implicit assumptions about the data generation process (Hilbe, 2011; G. King et al., 2000; 

Atkins & Gallop, 2007).

The defining feature of GLMs is the presence of a link function which can specify 

a nonlinear relation between a set of predictors and the conditional expectation of the 

outcome. The shape of the nonlinear relation depends on the link function chosen. 

By specifying a link function between the outcome and the model parameters, model 

assumptions may be made to fit the data much more closely, allowing for more accurate 

estimation of predictor-QoI relations (Aiken, Mistler, Coxe, & West, 2015). To facilitate the 

use of GLMs, resources such as tutorials (Atkins & Gallop, 2007; Atkins et al., 2013) and 

1Literature search was conducted using a similar approach to Brambor, Clark, and Golder (2006). Search terms included “binary OR 
logistic OR negative binomial OR hurdle OR zero-inflated OR zero inflated“ AND “regression”. Articles were coded from Addictive 
Behaviors, Psychology of Addictive Behaviors, Journal of Consulting and Clinical Psychology, Journal of Abnormal Psychology, and 
Psychological Assessment. We planned to include the first 50 articles that met search criteria. The majority of articles matching search 
criteria were logistic regression analyses (75%), with the remainder comprising Poisson, negative binomial, zero-inflated negative 
binomial, zero-inflated Poisson, and quasi-Poisson.
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software packages have become widely accessible (R Core Team, 2013; Muthén & Muthén, 

2016; StataCorp, 2019; IBM Corp, 2017). Though conducting GLMs for binary and count 

data has become a common practice, statistical methods training in graduate programs is 

limited, and innovations in statistical methods are often not widely disseminated to current 

practitioners (Aiken, West, Sechrest, & Reno, 1990; Aiken, West, & Millsap, 2008; K. M. 

King, Pullmann, Lyon, Dorsey, & Lewis, 2019). We provide a brief tutorial here, primarily 

in order to emphasize issues in interpreting GLMs that are not present for traditional linear 

models. We limit our focus to the three most widespread models, logistic regression for 

binary outcomes and Poisson and negative binomial for count outcomes, though several 

others are sometimes used in the empirical literature as well (probit for binary outcomes, 

beta-binomial, quasi-Poisson, zero-inflated, and hurdle models for counts). We do so to 

introduce these concepts for models most relevant in addictions research, though we note 

that many of the concerns we describe here apply similarly to these other GLM approaches.

The Logic of Generalized Linear Models

To explain the logic of GLMs, we begin by recalling the equation for traditional linear 

regression using a single predictor:

E[Y ∣ x] = β0 + β1x, (1)

Here, β0 is the intercept, β1 is the coefficient on x, and E[Y ∣ x] is the expected value 

of an outcome Y given the predictor x. Compare the equation above with the following 

mathematical formulation for a one-predictor GLM:

g(E[Y ∣ x]) = β0 + β1x . (2)

Above, g(·) is the link function (any invertible function) that relates predictors linearly to 

a transformed version of our QoI. In this sense, g(·) allows the predictors to relate to this 

quantity in a linear fashion similar to Equation 1. However, this similarity to Equation 1 can 

cause confusion when understanding results of GLMs. In Equation 2, it is easy to lose sight 

of the idea that the quantity g(E[Y ∣ x]) is not typically our QoI (i.e. E[Y ∣ x]), but rather a 

transformation of this quantity that permits the model to be estimated conveniently using 

a linear framework. For example, E[Y ∣ x] might be a probability, while g(E[Y ∣ x]) would 

represent a logit value. Although we can state that each one unit increase in x corresponds 

with a β1 unit increase in g(E[Y ∣ x]), additional steps must be taken to recover the direct 

relation between x and the QoI (i.e. E[Y ∣ x]).

To do so, one must “back-transform” the model using an inverse link function, which 

typically reflects some nonlinear transformation of the coefficients produced by the model. 

We can express this inverse link function as:

E[Y ∣ x] = g−1 β0 + β1x . (3)

This flexible approach enables analysts to describe relations with a broad range of outcome 

variables. In all but the identity link case2, this involves applying a nonlinear transformation 

to the regression coefficients to obtain estimates in the scale of QoIs.
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One way to conceptualize this distinction is that the estimated model describes how 

the predictors relate linearly to a continuous tendency or quantity, whereas the inverse 

link function maps this continuous tendency onto possible values in the space of QoIs. 

Thus, the link function formalizes our assumptions about the process that generates our 

data. For the sake of explanation, we take our running example of logistic regression. In 

logistic regression, we assume that whether an event occurs or not is in fact due to a 

continuous quantity representing levels of a continuous trait, and that values above a certain 

threshold result in an event occurring. Figure 1 demonstrates this relation graphically. In the 

aforementioned example, an individual’s tendency toward drug use disorder (a theoretical 

continuous quantity) due to greater externalizing symptoms might determine whether he/she 

receives a diagnosis of drug use disorder (a binary outcome). In observing whether an 

individual has received a diagnosis, we do not observe the “true” continuous level of 

disorder. However, we can assume that what we have measured about this individual (e.g., 

level of externalizing problems) would relate to his/her underlying level of drug use disorder, 

and thus to whether he/she meets criteria for the disorder. Finally, we can use the logit 

function to transform the expected level of the “level of disorder” into a probability of drug 

use disorder diagnosis. Thus, in a sense, GLM coefficients can be thought of as representing 

a nonlinear relation between a predictor and an expected outcome via a continuous variable.

In the sections that follow, we explore the two GLMs most commonly used in research on 

substance use disorders, explaining the logic of each model and highlighting two properties 

of these models that make interpretation of these models diverge from interpretation of 

traditional linear models. The formal reasons for this divergence are that typically-reported 

transformed versions of parameters, such as ORs and IRRs, A) do not represent constant 

changes in QoIs, and B) do not take into account that any particular predictor-QoI relation 

in a GLM is conditional on the levels of other covariates. By conditional, we mean that 

predictors in the same model are functionally dependent on one another in the context of 

their relation with an outcome: that is, the relation between any predictor xj and the outcome 

depends on the level of any other predictor xk (and vice versa). Referring back to our 

previous example, property A indicates that one’s probability of drug use diagnosis does 

not change by a constant value across the range of externalizing problems, whereas property 

B means that the strength of the externalizing-drug use disorder relation differs based on 

whether a person has a parent with an alcohol use disorder. Though predictor-QoI relations 

in a traditional linear regression context are described as the independent contribution of 

a single variable in a multivariate equation, these relations in GLMs are not conditionally 

independent from one another as they are in traditional linear regression. Thus, the impact 

of a predictor xj on the expected value of the outcome varies based on the level of any other 

predictor xk in the same model (Tsai & Gill, 2013; McCabe, Halvorson, King, Cao, & Kim, 

under review). In the sections that follow, we work through the most common GLMs in the 

study of drug and alcohol use disorders with two goals: to review and build intuition on the 

models themselves and to explicate properties A and B for each class of models.

2Linear models can also be estimated in a general linear model framework; in this case, an identity function serves as the link function 
- that is, since the regression equation is already equal to the expected value of Y in the linear regression case, the transformation is 
analogous to multiplying by one. We use the term GLM to refer specifically to those models with a link function that is not the identity 
link.
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Binary Outcome Models

Binary outcome models are used to predict whether an outcome is likely to occur based 

on a set of predictors. The QoI researchers tend to be most interested in is the predicted 

probability of an occurrence (e.g., of a disease) for individuals with a set of characteristics. 

More specifically, many research questions focus on how strongly the change in a predictor 

affects the probability of an outcome occurring. For the sake of explanation, we will 

consider a hypothetical study with the same variables as the K. M. King and Chassin (2008) 

example in the second paragraph of the Introduction.

The Logistic Model

The logistic regression model relates predictors to the probability of an event occurring, 

and is formulated with a logit-link. Logistic regression is the most commonly used model 

of binary outcomes in the social sciences.3 Our hypothetical study aims to predict the 

probability of a drug use disorder diagnosis from an individual’s level of externalizing 

problems. As the target QoI is a probability, we give E[Y ∣ x] the label π: The function ln 
π

1 − π  is referred to as the logit function.

logit(π) = ln π
1 − π = β0 + β1x . (4)

To obtain π, we apply the inverse of the logit function (also known as the logistic function, 
1

1 + exp( − x)) to each side of the equation:

π = logit−1 β0 + β1x = 1
1 + exp − β0 + β1x . (5)

To describe the simplest mathematical relation between a one-unit change in x (externalizing 

problems) and a corresponding change in the probability of drug use disorder, we expand 

the logit function for ease of derivation. Suppose we wish to write Equation 5 for a specific 

value of x we will call a. We can express πa = E[Y ∣ x = a] and odds(a) =
πa

1 − πa
. Notice that 

β1 is equivalent to taking the difference in log-odds for a 1-unit change in x.

ln πa + 1
1 − πa + 1

− ln πa
1 − πa

= β0 + β1(a + 1) − β0 + β1a
= β0 + β1a + β1 − β0 − β1a
= β1 .

(6)

3Probit models are another solution for the problem of modeling binary outcome variables. Instead of using a logit-link, the probit 
model uses the cumulative distribution function of the standard normal distribution. Probit models are rarely used in addiction 
research, in part because exponentiated model coefficients do not have as intuitive an interpretation as odds ratios do (Cohen et al., 
2013). A literature search of articles in the PsycINFO database since 2010 for “probit regression” and “logistic regression” yielded 
178 articles citing probit regression and 37,838 articles citing logistic regression. In practice, probit models also give very similar 
estimates as logistic models. As such, we do not develop the probit model further.
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Using this finding, we can see how a 1-unit change in x affects the odds of an event 

occurring:

β1 = ln πa + 1
1 − πa + 1

− ln πa
1 − πa

= ln(odds(a + 1)) − ln(odds(a))
= ln odds(a + 1)

odds(a)
exp β1 = odds(a + 1)

odds(a) = odds ratio (OR) .

(7)

In the context of logistic regression, the odds ratio describes the relation between the 

odds of an outcome for a given predictor value versus the odds of the outcome when 

incrementing the predictor by one.4 In contrast, another metric of the strength of a predictor-

QoI relation might be the ratio of the probability of an outcome for one predictor value to 

the corresponding probability for incrementing the predictor; this value is called the rate 

ratio. An odds ratio is said to be a close approximation for the rate ratio when probabilities 

are very small (Hosmer & Lemeshow, 2000). By this heuristic, an odds ratio of 2.0 for a 

base rate of 1% would mean that for each increase in x, the probability of Y doubles from 

1% to 2% to 4%, and so on. In some research domains, this is a tenable assumption: in the 

study of rare medical conditions, base rates are small and thus odds ratios approximate a 

percentage increase in probability well. In research on alcohol and drug use, this is often 

an unreasonable assumption: an adult who drinks socially might have a 60% chance of 

drinking on a given Friday. As base rates increase, the odds ratio increasingly overestimates 

the percentage increase in probability (Zhang & Yu, 1998). Even in low-base-rate situations, 

it is difficult to argue that reporting the odds ratio is preferable if the rate ratio is calculable. 

Thus, presented in isolation (i.e., without the magnitude of probabilities), an odds ratio 

provides minimal information regarding change in the magnitude of a predicted probability.

The nonlinearity introduced by the logit function has two consequences: A) increases in 

the QoI of probability are not constant, and B) predictor-QoI relations in a multivariate 

model are conditional on the levels of all other predictors. Since the logit-link function is 

nonlinear – predictors relate to probabilities through a logarithmic function - the increase in 

the probability of an event for a 1-unit increase in xj is not constant across the range of xj. 

Therefore no single number directly describes the change in probability for a change in xj 

for all xj. The logit-link function used in logistic regression also introduces conditionality of 

predictor-QoI relations to the model.

Until now, we have considered only one-predictor models; however, it is rare in empirical 

research to examine single-predictor models. Most often, researchers are interested in the 

simultaneous relations of several predictors to an outcome, or at the very least, controlling 

for some covariates in quantifying a single predictor-QoI relationship. Including multiple 

4In the current work we consider the case of continuous or ordinal predictors. The interpretation we discuss holds for interpreting 
dummy-coded nominal predictors (i.e., interpreting a change from 0 to 1); however, analysis of nominal predictor data comes with 
other coding subtleties that we do not address in the current work. For an in-depth discussion of nominal predictors, see Cohen et al. 
(2013)
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predictors introduces complexity even in the traditional linear model: each relation is now 

interpreted in the context of controlling for the levels of all other predictors. Moreover, 

product terms or nonlinear relations can quickly complicate model interpretation. GLMs add 

another layer of complexity to multivariate research in that property B (conditionality of 

predictor-QoI relations) applies as well. Even so, we argue that a focus on QoIs can lend rich 

information both on the general utility of a model and on the relative impacts of predictors in 

complex models.

This conditional nature is depicted in Figure 2, for which the top panel shows the 

expected value for several types of models across levels of a continuous predictor x1 and a 

categorical predictor x2. x1 consists of draws from a standard normal distribution and x2 is 

a dichotomous dummy variable with a 50% chance of being a 1. Graphically, if the relation 

of x1 on Y is independent of x2, then the slope of x1 when x2 = 0 should be parallel to 

the slope of x1 when x2 = 1. In the left-hand linear graph, for example, we see that these 

two relations are indeed independent, as demonstrated by the lines being parallel. However, 

for the logistic and Poisson examples, the curve of each line makes it visually clear that a 

one-unit increase in x1 does not lead to a constant increase in Y. The bottom panel of Figure 

2 illustrates this even more directly by displaying the differences in expected value between 

x2 = 1 and x2 = 0, across the range of x1. For traditional linear regression, whether x1 is 

large or small, the difference between the expected values when x2 = 0 and x2 = 1 is the 

same value (0.95). By contrast, first difference values varied markedly in the logistic and 

Poisson cases. For logistic regression, the first difference is smallest when x1 approaches its 

maximum or minimum value, and is largest when x1 is close to its own mean. In the Poisson 

example, the first difference across values of x2 grows increasingly larger as x1 increases due 

to the exponential nature of the model.5 Thus, even though product terms are not specified, 

predictor-QoI relations in logistic regression (and Poisson regression) are conditional on 

levels of other predictors.

Count Models

The Poisson Model

Poisson models are the basic model used to characterize count distributions, and are based 

on the idea that the likelihood of any single event occurring is constant per unit time. 

Modifying our hypothetical study slightly, let’s say we are now interested in predicting 

the number of drug using days in the past week from externalizing problems. The Poisson 

model for count outcomes is formulated as follows. The link function for Poisson regression 

is a logarithm function:

5These differences are related to the nature of each link function. In the logistic case, we note that this occurs in part because 
probabilities are constrained to values between 0 and 1. As certain predictors shift the probability toward these limits (e.g., as x 
assumes especially high or low values), other predictors have less range to shift the probability further due to “compression” against 
the 0 or 1 limit (Berry, DeMeritt, & Esarey, 2010). Hence, a prominent effect of extreme values of one predictor on the probability 
of Y leaves little room for first differences in another predictor to impact the probability further. In the Poisson example, we note 
similarly that the exponential nature of the model suggests that any single-unit effect a predictor has on the count will compound more 
quickly as the predicted count increases. Thus, if increasing two predictors each have a positive effect on the count of Y, the first 
difference of each will be larger as the other increases.
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ln(E[Y ∣ x]) = β0 + β1x, (8)

and the expected count from the model is commonly given the label λ:

ln(λ) = β0 + β1x . (9)

To obtain estimated counts, we use the inverse of the logarithm function (the exponential 

function) to connect β values to the expected count:

λ = ln−1 β0 + β1x = exp β0 + β1x . (10)

The strength of a predictor’s impact on model-expected counts is typically described via an 

incidence rate ratio. Let λa = E[Y ∣ x = a] and a be a value of x. Similar to logistic models, β1 

is equivalent to taking the difference in the log of expected counts for a 1-unit change in x.

ln λa + 1 − ln λa = β0 + β1(a + 1) − β0 + β1a
= β0 + β1a + β1 − β0 − β1a
= β1 .

(11)

From here we can see how a 1-unit change in x affects the ratio of expected counts:

β1 = ln λa + 1 − ln λa

= ln λa + 1
λa

exp β1 = λa + 1
λa

= incidence rate ratio (IRR) .
(12)

The IRR thus describes the proportional change in incidence rate when increasing x by one 

unit (e.g., the multiplicative change in number of days of drug use predicted for an increase 

in externalizing).

Similar to the logit-link function, since the log-link function is not linear, the increase in 

expected count for a 1-unit increase in x is also not linear (see Figure 2). In the case of 

multiple predictors, Figure 2 shows as well that the effect of a predictor x2 on the expected 

count is conditional on x1, noting that across the range of x1, the effect of x2 becomes larger 

in this case. The non-parallelism of the lines representing x2 = 1 and x2 = 0, as well as the 

non-constant differences in the bottom panels, show this conditional nature.

Poisson models assume that for a given time period, there is a given expected count of 

events λ such that we expect λ events to occur during that time period, with a variance of λ:

Var(Y ∣ x) = λ . (13)

Though the use of a single parameter (λ) makes Poisson models straightforward to estimate, 

the assumption that the mean number of events is identical to the variance of the number 

of events is in practice often untenable. To address this shortcoming of Poisson models, 
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negative binomial models were developed to allow for the variance of the expected count to 

exceed the mean.

The Negative Binomial Model

The negative binomial model is a generalization of the Poisson model, in which an 

extra parameter is added to account for a variance that exceeds the mean (often referred 

to as overdispersion). Poisson models fit to count data very often output a variance 

estimate that is much lower than the conditional variance of the outcome. Though several 

parameterizations of this model exist, one such formulation (NB2) is used in most software 

GLM implementations and is a mixture of Poisson distributions where λ is drawn from a 

gamma distribution (Hilbe, 2011).

In spite of the underlying gamma distribution, the mean model of the negative binomial 

distribution is identical to that of a Poisson distribution: a single parameter, λ, describes the 

expected count. The variance of the distribution, however, is allowed to vary as a function of 

the mean:

Var(Y ∣ x) = λ + 1
r λ2, (14)

where r is an overdispersion parameter. As r approaches infinity, the negative binomial 

model reduces to the Poisson model.

Because the negative binomial model is a generalization of the Poisson model, the properties 

of non-constant first differences and conditionality of predictor-QoI relations continue to 

apply to negative binomial regression.

Recommendations for Reporting Generalized Linear Model Results

In light of the shortcomings of single coefficients, and the properties of A) non-constant 

first differences and B) conditionality of predictor-QoI relations, there is room for 

improvement in the presentation of GLM results. In the following section, we propose 

several improvements upon current best practices for presenting predictor-QoI relations in 

binary and count models.

To illustrate suggested reporting for models, we simulated 500 observations with a binary 

response variable (Y) and two weakly correlated (r = −.10) continuous linear predictors of 

Y, x1 and x2. Both x1 and x2 are normally distributed with a mean of 0 and a variance of 1. 

Observed values of Y are generated from a binomial distribution, where logit E Y ∣ x1, x2  is 

a linear combination of predictor values, in this case,

logit E Y ∣ x1, x2 = β0 + β1x1 + β2x2, (15)

where β0 = 0, β1 = −2, and β2 = 1. Running a logistic regression, we estimate the parameters 

(see Table 1). We use this model and these data as a running example through the remainder 

of this section. Data and code to generate examples below are publicly available at https://

github.com/mhalvo/glm_interpret.
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Graphical Presentation of Results

Presenting results graphically allows readers to quickly grasp and develop intuition about 

a scientific finding, and can display many dimensions of information simultaneously 

(Tufte, 2001). This may be especially helpful in the case of GLMs, as effects cannot be 

informatively boiled down to a single parameter, as in traditional linear regression. An odds 

ratio of 2.0, for example, could have infinite two-dimensional graphical representations 

depending on base rates and other covariates, whereas a traditional linear regression 

coefficient of 2.0 will always define a line with a certain slope. However, graphics of GLM 

effects are rarely found in the literature. Few articles (12%) from the surveyed literature 

mentioned earlier included any graphical representation of findings, and even fewer (10%) 

included any graphic on the scale of QoIs.

To make results easier to understand, we recommend 1) that results of GLM models 

should be presented graphically in terms of QoIs, and 2) that covariate values should be 

chosen thoughtfully and reported clearly. Requiring readers to perform mental algebra or 

other mathematical transformations places unnecessary burden on readers and distracts from 

interpretation of substantive findings (G. King et al., 2000; Tufte, 2001). Presenting model 

results graphically can obviate the need for research consumers to have a deep understanding 

of particular statistical methods in order to understand answers to research questions. Thus, 

plotting model-expected outcome values across different levels of predictors may help 

facilitate intuition and represent complex nonlinear relations in an intuitive manner that 

scientists and practitioners alike can understand.

Creating these graphics can be accomplished by 1) fitting models as usual, 2) choosing 

covariate values at which to probe the model and plugging these values into models to 

generate point estimates, and 3) creating confidence intervals around these expected values. 

The first two steps are readily accomplished using available software functions, and we 

accomplish the third step using a bootstrapping approach. Although many readers may 

be familiar with bootstrapping approaches to testing mediation (MacKinnon, Fairchild, & 

Fritz, 2007), bootstrapping represents a broad range of resampling methods that have many 

applications. Here, we used a non-parametric bootstrap approach (Raykov, 1998; Preacher 

& Selig, 2012) to generate a sampling distribution of model parameters, from which we 

generated confidence intervals for expected values. In brief, the non-parametric bootstrap 

resamples the data with replacement to generate a distribution of plausible alternate datasets. 

The same model is fit for each dataset, resulting in slightly different coefficients for each. 

Hypothetical predictor values are then entered into these plausible models, and QoIs are 

estimated. The 2.5th and 97.5th percentiles of these QoI estimates create a confidence 

interval around the point estimate. For example, if 10,000 models were estimated, and 

estimates of the outcome were rank-ordered, the 250th and the 9,750th estimates would 

define the lower and upper bound of a 95% confidence interval. Although other methods 

exist for incorporating uncertainty into model estimates (e.g., the delta method, using the 

asymptotic covariance matrix to generate estimates), the bootstrap approach is consistent 

with the work of G. King et al. (2000) and has the advantage of being generalizable to 

a wide range of models, including those with link functions that are not monotonic. We 
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provide example R code for generating estimates and graphics online on the aforementioned 

GitHub site.

For our simulated example, the relation between x1 and the probability of Y, controlling 

for x2, is depicted in Figure 3. Inspection of Figure 3 immediately makes clear that as x1 

increases, the probability of Y decreases. Moreover, Figure 3 shows that the effect of x2 on 

the probability of Y is smaller for high and low values of x1 and larger at intermediate values 

of x1. Figure 3 also allows readers to obtain a rough estimate of the probability of Y at any 

value of x1 for either low or high x2. Though graphics can be very informative, they can 

only contain so much information before they begin to appear overly busy. Thus, we propose 

supplementing graphics with tables that highlight expected QoIs at various covariate values.

Tables that Highlight Covariates and Quantities of Interest

Another solution to the paucity of information communicated by transformed coefficients 

is to present tables of QoI values at combinations of covariates and focal predictors that 

are substantively interesting (see Table 2 for an example). Fitted models are readily able to 

output direct model-based predictions of these QoIs, and bootstrapping confidence intervals 

around these predictions is straightforward to implement. Presenting these tables in terms of 

QoIs can enable readers to compare changes in a focal predictor at multiple levels of other 

covariates. We propose that researchers should choose their covariate values thoughtfully 

and describe QoIs at several levels of covariates of interest.

Even given a focus on QoIs, currently-used tables can provide a broad estimate of magnitude 

and direction of an effect, and can be useful to reference when building successive models. 

We do not believe these tables should be discarded; however, in addition to these broad 

estimates of strength of effect, presenting several model-based estimates allows other 

researchers to understand effect sizes in terms of QoIs and to compare results across studies 

with similar outcome measures. Despite the advantages of graphical approaches, they can be 

difficult to glean individual estimates from; thus, tables and graphics can complement each 

other and allow the researcher to effectively communicate a scientific story.

Returning to our simulated-data example, we report the probability of Y at low, mean, 

and high levels of both x1 and x2 in Table 2. The information in Table 2 supplements 

the graphical information from Figure 3 by probing at an additional level of x2. Even 

in our simple model, this additional information allows Figure 3 to remain clean and 

interpretable. These probed values can also allow researchers to highlight salient or 

substantively-important contrasts, or to probe at covariate values which aren’t represented in 

a graphic.

Informative in-Text Reporting

Given the enhanced granularity of information available from the graphics and tables 

described above, additional in-text explanation can allow researchers to make the results of 

their models clear and concrete to readers. In particular, reporting QoIs at specific covariate 

levels can give enough information for readers with substantive knowledge to contextualize 

results.
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For our running example, we might describe the model results as follows: The probability of 

Y decreased across the range of x1 (from .84 at 1 SD below x1’s mean to .16 at 1 SD above 

x1’s mean), holding x2 at its mean. While the probability of Y was generally higher for 

higher values of x2, changes in the probability of Y for a given change in x2 differed across 

levels of x1 (see Table 2). For observations low on x1, the change in the probability of Y 
for a change in x2 from mean to high was 9 percentage points (84. to .93). For observations 

high on x1, the change in the probability of Y for a change in x2 from mean to high was 17 

percentage points (.16 to .33).

Results of a Count Model: An Empirical Example from a Published Study

Next, we turn to an empirical example using data from an unpublished study of alcohol 

and impulsive personality traits. We fit a Poisson model predicting the number of negative 

alcohol-related consequences in the past year. Data were collected from 491 college students 

(mean age 19.3; 56.4% female; 55.0% Caucasian; 33.2% Asian/Pacific Islander) enrolled 

in lower-level courses at a university in the Pacific Northwest. Participants completed a 

computerized survey and received course extra credit. The study was reviewed and approved 

by the university’s Institutional Review Board, and permission to share de-identified data 

was obtained from the university human subjects division. Our hypothetical research 

question concerns the impact of positive urgency (the tendency to act on impulse when 

experiencing positive emotion) on consequences resulting from alcohol use, controlling for 

gender.

Positive urgency, premeditation, and sensation seeking are each impulsive personality traits 

from the UPPS-P measure of impulsive personality traits (Lynam, Smith, Whiteside, & 

Cyders, 2006). Each scale was a mean score of 12 items, with item anchors of 1=Disagree 

Strongly to 4=Agree Strongly. Individuals high on positive urgency report acting rashly 

when experiencing extreme positive emotion; those high on premeditation report planning 

ahead more often; and those high on sensation seeking report seeking out risky or 

intensely pleasurable experiences more often. Negative alcohol consequences included self-

reported past-year behavioral consequences of alcohol use such as hangovers, blackouts, 

missed classes, or interpersonal conflict, and higher numbers represent a greater count of 

consequences (Hurlburt & Sher, 1992; Mallett, Bachrach, & Turrisi, 2008). Gender was 

self-reported by participants. A sample results section, following our own recommendations, 

might read as follows:

Results.—Positive urgency was positively related to the count of alcohol consequences 

experienced in the past year, such that each one-unit increase in positive urgency was 

associated with a 38% increase in the rate of alcohol consequences (IRR = 1.38, 95% CI 

= [1.31, 1.45]) controlling for planning and gender (see Table 3). As seen in Figure 4, the 

predicted count of consequences increased more rapidly on the high end of the positive 

urgency scale than it does at the low end of the scale. Whereas an increase in positive 

urgency from 1 to 2 was associated with an increase of 2.1 consequences for men (1.7 for 

women), an increase in positive urgency from 3 to 4 was associated with an increase of 3.9 

consequences for men (3.2 for women). Overall, women experienced 18% fewer alcohol 

consequences than men (IRR = 0.82, 95% CI = [0.75, 0.88]). Table 4 shows the expected 
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level of alcohol consequences across levels of gender and positive urgency; the reader is 

encouraged to examine the table to understand the effect of positive urgency on alcohol 

consequences, accounting for gender.

Despite no product term being specified, the difference between the estimated number 

of alcohol consequences for men and women was greater at higher values of positive 

urgency. At the lowest level of positive urgency, men reported approximately 5.5 alcohol 

consequences (4.5 for women) in the past year, whereas at the highest level of positive 

urgency, men reported approximately 14.2 alcohol consequences (11.6 for women). Despite 

a greater estimated difference at the high end of positive urgency, estimates were more 

uncertain at higher levels of positive urgency than they were at low levels of positive 

urgency, as indicated by the widening of confidence intervals of estimates at the high end of 

positive urgency. Although the IRR for gender was significantly different from 1, Figure 4 

indicates that the difference in alcohol consequences based on gender was relatively small 

compared to uncertainty in these estimates.

Discussion

Current practices in reporting results of GLM models leave room for improvement. To 

address this issue, we proposed methods (with R code) for presenting findings in terms of 

QoIs, using graphics and tables that are straightforward to interpret. Given the volume of 

scientific papers that researchers and practitioners of addiction science consume, any efforts 

that authors can put towards presenting results clearly and in terms of a straightforward 

research question are likely to be well-received. G. King et al. (2000) advocated for the 

use of QoIs, emphasizing that the findings of our statistical models can and should be 

understandable by non-experts. We further expect that if a research study can provide 

straightforward, actionable information, its likelihood of influencing policy and practice 

should increase. We acknowledge that getting to plain-language interpretations for GLMs 

does requires additional analytical work; as such, we aimed in this paper to facilitate 

this additional lift by bolstering understanding of GLMs and presenting software tools for 

reporting results.

Reporting results in terms of QoIs not only lessens the mental burden on readers, but 

it also uncovers some of the nuances of GLMs that are not captured by exponentiated 

coefficients. Viewing a figure makes immediately clear the impact of non-constant predictor-

QoI relations and conditionality of predictor-QoI relations, but does not impose them as 

a barrier to interpretation. Rather, doing so allows readers to extract information on QoIs 

without additional calculation. Although we recognize the additional burden that generating 

new graphics and tables may place on researchers, we believe that doing so will enhance 

the range and number of readers who might grasp and implement findings. In addition to 

the simulated and empirical examples presented in this manuscript, we have applied our 

approach in recent empirical work (K. M. King et al., 2020), and hope that our general 

approach might be adopted, scrutinized, and refined by other scholars.

Though we believe our approach has potential for improving present practices in reporting 

GLM results, it also comes with some limitations. We narrowed our focus in the current 
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work to the most common GLM types, which led us to exclude several classes of models, 

including hybrid count models that account for excess zeroes such as zero-inflated and 

hurdle models. Certain GLM model complexities were deemed beyond the scope of 

this paper, but are addressed elsewhere, such as addressing nonlinear predictors (Kim & 

McCabe, under review) and interaction effects in GLMs (McCabe et al., under review). 

As we propose displaying bootstrapped confidence intervals rather than displaying raw 

data, researchers should be careful when using this approach not to extrapolate beyond the 

range of observed data or interpolate at predictor values that are not observed. The current 

methods are only implemented in R at present. Future work might make these types of 

methods available to a broader range of data analysts by implementing them in graphical 

user interface-based applications.

Models of count and binary data can be a source of rich interpretation; however, current 

approaches to reporting limit the ability of readers to interpret available results. We aimed 

to highlight shortcomings of current approaches to GLMs, to build intuition on GLMs and 

their results, and to recommend thoughtful tabular and graphical presentation of results. In 

doing so, we aimed to present tools for creating results sections in the style that we propose. 

By focusing on QoIs, research practictioners can present scientific findings with greater 

clarity and precision without increasing burden on readers. Moreover, extracting concrete 

predictions from models in terms of QoIs allows for a common quantitative language which 

is critical for cumulative psychological science. With QoIs as a common metric, efforts can 

be made to compare results from disparate studies. Our hope is that by enhancing current 

reporting standards for GLM models, the findings of complex analyses might be made more 

understandable, more generalizable, and more impactful.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Demonstration of logistic link function mapping a continuous trait into probability space (0 

to 1).

Note: Ext = externalizing problems. Figure 1 depicts the relation between a continuous trait 

representing drug use disorder symptoms and the probability of drug use disorder from a 

logistic regression model. The continuous trait is a linear function of externalizing problems 

in this example. The value of this continuous trait is entered into the logistic function 
1

1 + exp( − x) , which maps these x values to y values between 0 and 1. Although these data 

are simulated, hypothetical labels are provided to match the running example.
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Figure 2. 
Expected values and first differences for linear, logistic, and Poisson regression models with 

two predictors.

Note: Y-axis units in all graphs represent QoIs. x1 was simulated as a standardized 

continuous predictor and x2 as a dummy-coded predictor with P(x2)=0.50. In traditional 

linear regression, QoI is the expected level of Y. In logistic regression, QoI is the probability 

of Y occurring. In Poisson regresion, QoI is the count of events. The top panel shows 

expected QoI values plotted across x1 and x2, while the bottom panel shows the differences 

in expected value between x2 = 1 and x2 = 0 (the difference between categories given x2 is a 

dummy variable).
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Figure 3. 
Probability of Y by x1 and x2 for simulated data example.

Note: Shaded regions represent 95% bootstrapped confidence intervals for expected values.
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Figure 4. 
Expected count of alcohol consequences by positive urgency and gender.

Note: Shaded regions represent 95% bootstrapped confidence intervals for expected values.
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Table 1

Logistic regression model for simulated binary outcome data with two continuous predictors.

Coefficient Std. Error OR [95% CI]

intercept −0.01 0.12

x 1 −.1.65 0.16 0.19 [0.14, 0.26]

x 2 0.96 0.14 2.61 [2.02, 3.44]

Observations 500

Note: OR = odds ratio.
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Table 2

The probability of Y across levels of x1 and x2.

x 2

x 1 Low (−1) Mean High (+1)

Low (−1) .66 [.57, .75] .84 [.78, .89] .93 [.89, .96]

Mean .27 [.21, .33] .50 [.44, .56] .72 [.65, .79]

High (+1) .07 [.04, .10] .16 [.11, .21] .33 [.24, .43]

Note: Values in square brackets are bootstrapped 95% confidence intervals.
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Table 3:

Poisson regression model of negative alcohol consequences.

Coefficient Std. Error IRR [95% CI]

intercept 2.10 0.16

Gender (1=female) −0.20 0.04 0.82 [0.75, 0.88]

Positive Urgency 0.32 0.03 1.38 [1.31, 1.45]

Planning −0.27 0.03 0.76 [0.72, 0.81]

Sensation Seeking 0.15 0.03 1.17 [1.11, 1.22]

Observations 423

Note: IRR = incidence rate ratio.
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Table 4:

Expected count of alcohol consequences across levels of gender and positive urgency.

Gender

Positive Urgency Female Male

1 - Disagree Strongly 4.45 [3.78, 5.16] 5.45 [4.62, 6.36]

2 - Disagree Somewhat 6.12 [5.25, 7.04] 7.51 [6.44, 8.63]

3 - Agree Somewhat 8.43 [6.58, 10.56] 10.33 [8.07, 12.84]

4 - Agree Strongly 11.60 [7.98, 16.20] 14.23 [9.77, 19.80]

Note: values in square brackets are bootstrapped 95% confidence intervals.
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