TABLE 2.
Five-fold cross-validation of the performance of the algorithms in the total dataset.
|
AUC
(95% CI) |
Accuracy
(95% CI) |
Specificity
(95% CI) |
Sensitivity
(95% CI) |
||||
|
| |||||||
| Algorithm I | 0.995 (0.993, 0.996) |
0.973 (0.969, 0.977) |
0.981 (0.978, 0.985) |
0.939 (0.933, 0.945) |
|||
|
| |||||||
| Macro-AUC |
Accuracy
(95% CI) |
Quadratic-weighted kappa
(95% CI) |
|||||
|
| |||||||
| Algorithm II | 0.979 (0.972, 0.985) |
0.967 (0.963, 0.971) |
0.988 (0.986, 0.990) |
||||
|
| |||||||
|
Image classification
|
ROI detection and lesion localization
|
||||||
| Classification |
Accuracy
(95% CI) |
Specificity
(95% CI) |
Sensitivity
(95% CI) |
Recall | Precision | F1-score | |
|
| |||||||
| Algorithm III | CNV | 0.970 (0.966, 0.974) |
0.970 (0.966, 0.974) |
0.973 (0.969, 0.977) |
0.916 | 0.789 | 0.848 |
| Fuchs | 0.971 (0.967, 0.975) |
0.971 (0.967, 0.975) |
0.978 (0.975, 0.982) |
0.915 | 0.864 | 0.889 | |
| LC | 0.994 (0.992, 0.995) |
0.995 (0.993, 0.996) |
0.684 (0.672, 0.695) |
0.724 | 0.656 | 0.688 | |
|
| |||||||
|
Accuracy
(95% CI) |
Sensitivity
(95% CI) |
Specificity
(95% CI) |
Precision
(95% CI) |
||||
|
| |||||||
| Model-1 | 0.973 (0.969, 0.977) |
0.939 (0.933, 0.945) |
0.981 (0.978, 0.985) |
0.926 (0.920, 0.933) |
|||
| Model-2 | 0.984 (0.981, 0.987) |
0.946 (0.941, 0.952) |
0.992 (0.990, 0.995) |
0.967 (0.963, 0.972) |
|||