Skip to main content
. 2021 Oct 15;9:719262. doi: 10.3389/fcell.2021.719262

TABLE 2.

Five-fold cross-validation of the performance of the algorithms in the total dataset.

AUC
(95% CI)
Accuracy
(95% CI)
Specificity
(95% CI)
Sensitivity
(95% CI)

Algorithm I 0.995
(0.993, 0.996)
0.973
(0.969, 0.977)
0.981
(0.978, 0.985)
0.939
(0.933, 0.945)

Macro-AUC Accuracy
(95% CI)
Quadratic-weighted kappa
(95% CI)

Algorithm II 0.979
(0.972, 0.985)
0.967
(0.963, 0.971)
0.988
(0.986, 0.990)

Image classification
ROI detection and lesion localization
Classification Accuracy
(95% CI)
Specificity
(95% CI)
Sensitivity
(95% CI)
Recall Precision F1-score

Algorithm III CNV 0.970
(0.966, 0.974)
0.970
(0.966, 0.974)
0.973
(0.969, 0.977)
0.916 0.789 0.848
Fuchs 0.971
(0.967, 0.975)
0.971
(0.967, 0.975)
0.978
(0.975, 0.982)
0.915 0.864 0.889
LC 0.994
(0.992, 0.995)
0.995
(0.993, 0.996)
0.684
(0.672, 0.695)
0.724 0.656 0.688

Accuracy
(95% CI)
Sensitivity
(95% CI)
Specificity
(95% CI)
Precision
(95% CI)

Model-1 0.973
(0.969, 0.977)
0.939
(0.933, 0.945)
0.981
(0.978, 0.985)
0.926
(0.920, 0.933)
Model-2 0.984
(0.981, 0.987)
0.946
(0.941, 0.952)
0.992
(0.990, 0.995)
0.967
(0.963, 0.972)