Table 9.
Comparing F1-score of traditional models (Thai sentences dataset) with focusing POS tags (N+Adj+Det: NAD).
Rang of N-gram |
|||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Micro -score |
Macro -score |
||||||||||||||||||
Dataset/Model | Unigram |
|
|
Bigram | Trigram | Unigram |
|
|
Bigram | Trigram | |||||||||
Original | MNB | 0.6425 | 0.6704 | 0.6592 | 0.6648 | 0.5419 | 0.6375 | 0.6726 | 0.6585 | 0.6652 | 0.5344 | ||||||||
SVM | 0.7374 | 0.7318 | 0.7318 | 0.6592 | 0.5363 | 0.7394 | 0.7361 | 0.7331 | 0.6583 | 0.5289 | |||||||||
LR | 0.7095 | 0.7039 | 0.6927 | 0.6760 | 0.5307 | 0.7062 | 0.7007 | 0.6898 | 0.6758 | 0.5229 | |||||||||
+all POS Tags | MNB | 0.6760 | 0.6872 | 0.6480 | 0.6927 | 0.6089 | 0.6673 | 0.6827 | 0.6408 | 0.6855 | 0.5959 | ||||||||
SVM | 0.7430 | 0.7374 | 0.7263 | 0.7095 | 0.6201 | 0.7430 | 0.7395 | 0.7253 | 0.7075 | 0.6088 | |||||||||
LR | 0.7207 | 0.7318 | 0.6816 | 0.6760 | 0.5866 | 0.7188 | 0.7319 | 0.6741 | 0.6703 | 0.5681 | |||||||||
+focusing Tags | MNB | 0.6872 | 0.6872 | 0.7039 | 0.6927 | 0.6034 | 0.6809 | 0.6809 | 0.6954 | 0.6885 | 0.5856 | ||||||||
SVM | 0.7374 | 0.7374 | 0.7486 | 0.7263 | 0.6201 | 0.7382 | 0.7382 | 0.7503 | 0.7257 | 0.6055 | |||||||||
LR | 0.7598 | 0.7598 | 0.7095 | 0.6704 | 0.5866 | 0.7599 | 0.7599 | 0.7088 | 0.6695 | 0.5684 | |||||||||
+focusing Words | MNB | 0.6318 | 0.6536 | 0.6536 | 0.6425 | 0.5307 | 0.6320 | 0.6541 | 0.6534 | 0.6410 | 0.5247 | ||||||||
SVM | 0.6983 | 0.6760 | 0.6704 | 0.6369 | 0.5307 | 0.7001 | 0.6752 | 0.6688 | 0.6358 | 0.5247 | |||||||||
LR | 0.6872 | 0.6760 | 0.6536 | 0.6257 | 0.5251 | 0.6835 | 0.6746 | 0.6505 | 0.6208 | 0.5177 |