Skip to main content
. 2021 Oct 15;11:699127. doi: 10.3389/fonc.2021.699127

Table 3.

Parameters associated with breast cancer diagnosis in multivariable logistic regression analysis.

Variables Multivariable logistic regression analysis Variables Multivariable logistic regression analysis
OR (95% CI) p-value OR (95% CI) p-value
T1 0.0006 (0.0000, inf.) 0.5819 Margin
ΔT1% 1.9469 (1.2334,3.0732) 0.0042* Circumscribed 0.2167 (0.0593,0.7927) 0.0208*
T2 0.7766 (0.6597,0.9142) 0.0024* Irregular Ref. 1.0
T2+ NA NA Spiculated
ΔT2% 1.8690 (0.9008,3.8777) 0.0930 Internal Enhancement Pattern
ADC 0.0001 (0.0001,0.0009) 0.0012* Homogeneous 0.1613 (0.0262,0.9915) 0.0489*
Age 1.0618 (1.0072,1.1193) 0.0257* Heterogeneous Ref. 1.0
BMI 1.2956 (1.0471,1.6030) 0.0171* Rim enhancement 1.1719 (0.2643,5.1959) 0.88346
Menopausal State Dark Internal Septations 0.0000 (0.0000, inf.) 0.9945
Pre 0.2529 (0.0721,0.8868) 0.0317* FGT
Post Ref. 1.0 Fat 3.8683 (0.2505,59.7455) 0.3327
CA153 Scattered Fibroglandular Tissue Ref. 1.0
Negative Ref. 1.0 Heterogeneous Fibroglandular Tissue 0.4836 (0.0878,2.6630) 0.4039
Positive Inf. (0.0000,inf.) 0.9925 Extreme Fibroglandular Tissue 0.7191 (0.1308,3.9545) 0.7045

OR, odds ratio; CI, confidence interval; NA, not available. These variables were eliminated in the multivariable logistic regression model, so the OR and p-values were not available. *p < 0.05.

BMI, body mass index; TIC, time–signal intensity curve; CEA, Carcinoembryonic antigen; ADC, apparent diffusion coefficient; Ref, reference; Inf, infinite.