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Abstract
The prevalence of diabetes has increased rapidly throughout the world in recent 
years. Currently, approximately 463 million people are living with diabetes, and 
the number has tripled over the last two decades. Here, we describe the global 
epidemiology of diabetes in 2019 and forecast the trends to 2030 and 2045 in 
China, India, USA, and the globally. The gut microbiota plays a major role in 
metabolic diseases, especially diabetes. In this review, we describe the interaction 
between diabetes and gut microbiota in three aspects: probiotics, antidiabetic 
medication, and diet. Recent findings indicate that probiotics, antidiabetic 
medications, or dietary interventions treat diabetes by shifting the gut 
microbiome, particularly by raising beneficial bacteria and reducing harmful 
bacteria. We conclude that targeting the gut microbiota is becoming a novel 
therapeutic strategy for diabetes.
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Core Tip: The current review describes the global epidemiology of diabetes in 2019 and 
forecasted the trends to 2030 and 2045 in China, India, USA, and globally. This review 
also summarizes the interaction between diabetes and the gut microbiota in three 
aspects: probiotics, antidiabetic medications, and diet.
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INTRODUCTION
The global prevalence of diabetes has grown rapidly in recent decades. Diabetes is 
becoming a serious global health threat, and is one of the top 10 leading causes of 
death among adults[1]. The etiology and progression of diabetes are commonly driven 
by genetic and environmental factors. The International Diabetes Federation (IDF) 
estimates that in 2019 there were 463 million cases of diabetes mellitus worldwide and 
approximately 4.2 million adults died from diabetes and its complications[2]. It is 
estimated that approximately 700 million adults will be diagnosed with diabetes by 
2045. Diabetes mellitus is a group of metabolic diseases that cause high blood glucose, 
and primarily includes type 2 diabetes (T2D), type 1 diabetes, prediabetes, and 
gestational diabetes. T2D is the most common type of diabetes and represents approx-
imately 90% of all diabetes patients worldwide[3].

The gut microbiota is a collective term for the intestinal microbial community, 
which plays a crucial role in maintaining health and disease pathogenesis. Recently, 
the gut microbiome has become an emerging research area for diabetes management, 
as gut dysbiosis directly or indirectly participates in diabetes by affecting host 
intestinal barrier functions and metabolic homeostasis[4]. Animal and human studies 
have identified related differences in the composition of the gut microbiota in patients 
with diabetes[5]. In this review, we describe global trends in diabetes in 2019, predict 
the trends to 2030 and 2045, and summarize the latest findings regarding the gut 
microbiota in diabetes.

EPIDEMIOLOGY OF DIABETES
Diabetes is one of the fastest growing global health challenges in the last 40 years, with 
the number of adults living with diabetes rising from 108 million in 1980 to 463.0 
million (368.7–600.6 million) in 2019. This number is projected to reach 578.4 million 
(456.5–747.6 million) in 2030 and 700.2 million (540.7–904.6 million) in 2045. The global 
prevalence of adult diabetes increased from 4.7% in 1980 to 8.3% (6.2%–11.8%) in 2019, 
and is projected to reach 9.2% (6.8%–12.9%) in 2030 and 9.6% (7.1%–13.4%) in 2045[1]. 
Although the common long-term complications in diabetic patients develop gradually, 
they could be disabling or even life-threatening over time[6]. Diabetes is a major cause 
of many diseases, such as eye damage, kidney failure, heart and blood vessel disease, 
neuropathy, Alzheimer’s disease, and lower limb amputation. Global diabetes-related 
health spending continues to grow rapidly as well. It was 760 billion US dollars in 
2019, approximately 10% of total global health spending, and is expected to reach 825 
billion US dollars in 2030 and 845 billion in 2045[7].

China and India were the two countries with the highest number of adult diabetic 
patients in 2019 and are projected to remain so in 2030 and 2045, due to the 
demographic and socioeconomic status factors. The IDF Diabetes Atlas (9th edition 
2019) estimated the number of people with diabetes in China, India, USA, and the 
world in 2019, and projected that by 2030 and 2045 (Figure 1), the number of adults 
living with diabetes in China will increase from 116.4 million (108.6–145.7 million) in 
2019 to 140.5 million (130.3–172.3 million) in 2030, and 147.2 million (134.7–176.2 
million) in 2045. In India, the number of diabetes cases is projected to grow from 77.0 
million (62.4–96.4 million) in 2019 to 101.0 million (81.6–125.6 million) in 2030, and 
134.2 million (108.5–165.7 million) in 2045. The number of adult diabetes cases in the 
USA will increase from 31.0 million (26.7–35.8 million) in 2019, to a projected 34.4 
million (29.7–39.8 million) in 2030 and 36.0 million (31.0–41.6 million) in 2045. Over the 
last 40 years, the number of people with diabetes has quadrupled throughout the 
world. The prevalence of diabetes will increase more rapidly in low-income than in 
high-income countries in the near future[1]. Unmet medical needs related to diabetes 
are a growing global public health problem.

INTERACTION BETWEEN DIABETES AND GUT MICROBIOTA
Observational findings from recent epidemiological, physiological and metabolomic 
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Figure 1 Millions of diabetes cases in 2019 and projections to 2030 and 2045, with projected percentage changes. Data are from the 
International Diabetes Federation Diabetes Atlas (9th edition 2019).

studies, complemented by cellular and animal experiments and clinical trials, it 
appears that microbial communities may contribute to the pathogenesis of a variety of 
common metabolic disorders, including obesity and diabetes, and their complications
[3,8]. Although accumulative evidence suggests that the gut microbiota is a factor 
influencing diabetes, the underlying mechanisms remain unclear. Due to the crosstalk 
between the gut microbiota and host homeostasis, the gut microbiome is thought to 
play a crucial role in obesity and associated metabolic dysfunction[9,10]. The gut 
microbiome has been shown to affect host metabolism, food consumption, body 
weight, and glucose and lipid homeostasis. Gut dysbiosis or altered microbiota 
composition has been detected in obesity and diabetes in human and murine models
[11]. Treatment with probiotics, antidiabetic medications, or dietary interventions can 
orchestrate the gut microbiome, leading to increased probiotic bacteria and decreased 
harmful bacteria, and these changes subsequently contribute to bodyweight loss, 
suppression of inflammation, and maintenance of glucose homeostasis in the host[12]. 
Targeting the gut microbiota is developing into a possible therapeutic strategy for 
diabetes.

Probiotics
Probiotics are living microorganisms that provide health benefits to their host, partic-
ularly the digestive system. Probiotics, such as Akkermansia, Bacteroides, Bifidobacterium 
and Lactobacillus, are currently suggested as novel and potential biotherapeutics in the 
prevention and management of diabetes[13,14]. Oxidative stress is a key player in the 
development of diabetes and diabetes-related complications[15]. Supplementation 
with probiotics and also synbiotics could be beneficial for patients diagnosed with 
diabetes also because these products lower oxidative stress levels[16,17]. Cumulative 
studies have proven the efficacy of probiotics in the treatment of diabetes by 
decreasing fasting glucose and insulin levels in animal models and clinical trials[18].

Akkermansia muciniphila is a species of mucin-degrading bacteria recently found in 
the human gut, and its abundance has been reported to be inversely correlated with 
obesity, T2D and inflammation[19-22]. Administration of A. muciniphila protected 
against high fat diet (HFD)-induced obesity and insulin resistance by suppressing 
inflammation and improving gut barrier function. In addition, a purified protein in the 
outer membrane of A. muciniphila called Amuc-1100 could improve metabolic 
syndrome in obese and diabetic mice through the Toll-like receptor 2 signaling 
pathway[23]. In human clinical trials, supplementation with A. muciniphila compared 
to the placebo improved insulin sensitivity, reduced insulinemia and plasma total 
cholesterol, and decreased body weight in overweight/obese insulin-resistant 
volunteers[24]. In our recent studies, we found that melatonin, a probiotic agent, 
partially improved insulin resistance by increasing the abundance of A. muciniphila in 
HFD-fed mice[25]. A. muciniphila is considered a promising probiotic to improve 
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diabetes and obesity-associated metabolic disorders.
Bacteroides is a common genus associated with the risk of T2D in patients. However, 

the role of Bacteroides in diabetes is controversial. Some studies have shown that the 
abundance of Bacteroides is inversely associated with diabetes risk[26-30], while others 
have reported a positive association in different species[31-33]. This inconsistency may 
be explained by the underlying feedback mechanism of the gut microbiome at 
different stages of the disease or in different animal models. The ratio of Bacteroidetes 
to Firmicutes, previously identified as a marker for metabolic diseases, does not seem 
to be consistently associated with diabetes risk[14]. In animal studies, treatment with 
Bacteroides acidifaciens and Bacteroides uniformis prevents obesity and improves insulin 
susceptibility in diabetic mice[34,35]. These studies suggest that Bacteroides may have a 
beneficial effect on diabetes.

Bifidobacterium, also known as Lactobacillus bifidus, is frequently reported in T2D 
protection studies. Bifidobacterium strains are crucial probiotics in the dairy industry, 
due to their unique function of fermenting carbohydrates via the fructose-6-phosphate 
phosphoketolase pathway[36]. Numerous studies have shown that Bifidobacterium has 
beneficial effects on glucose tolerance in individuals with T2D and diabetic murine 
models[37-39]. Oral administration of Bifidobacterium decreases blood glucose concen-
tration and glycosylated hemoglobin levels, and improves lipid profiles, insulin 
resistance, and antioxidant indexes, through insulin receptor substrate/phosphoin-
ositide 3-kinase/protein kinase B and kelch-like ECH-associated protein 1/nuclear 
factor erythroid 2-related factor 2 signaling pathway in murine diabetic models[40]. 
Bifidobacterium may be a promising probiotic to treat diabetes.

Lactobacillus is the most commonly used probiotic in industry to control food 
fermentation, such as yogurt, cheese, wine, and other fermented foods. Studies of the 
composition of gut microbiota showed some species in this genus were increased in 
T2D patients, such as Lactobacillus acidophilus, Lactobacillus gasseri and Lactobacillus 
salivarius, whereas Lactobacillus amylovorus was decreased in patients with diabetes[41-
43]. Oral supplementation of Lactobacillus, such as Lactobacillus casei, Lactobacillus 
curvatus, L. gasseri, Lactobacillus paracasei, Lactobacillus plantarum, Lactobacillus reuteri, 
Lactobacillus rhamnosus and Lactobacillus sakei, exhibited beneficial effects in diabetic 
mice and individuals with diabetes[44-54]. The antidiabetic mechanism of Lactobacillus 
by inhibiting endotoxin secretion and activating G-protein-coupled receptor 43 
pathway has been reported[55]. The combination of Lactobacillus and Bifidobacterium is 
widely used in clinical practice to synergistically maintain a healthy digestive tract. 
Growing evidence supports that probiotics are a safe and effective treatment strategy 
under certain clinical conditions of diabetes.

Diet
Diet is an essential regulator of the gut microbiome[56]. Interactions between diet and 
gut microbiota have been reported to affect obesity, insulin resistance, and the chronic 
inflammatory response of the host[57]. Here, we mainly summarize the roles of diet in 
the gut microbiome and diabetes.

Diet composition is vital in diabetes development. Diabetes was considered a 
disease of the rich, because of its high prevalence among the rich who access food 
more easily, including flour, sugar, fat and meat[58]. It has been shown that diets with 
high levels of sugar, fat and cholesterol increase the risk of diabetes. These diets cause 
gut dysbiosis and damage the intestinal mucosal barrier that facilitates the 
development of diabetes[59,60]. High-fiber diet is a well-known healthy diet with 
various benefits, such as improving bowel movements, lowering cholesterol, achieving 
a healthy weight, and controlling blood sugar levels. Dietary fibers consist of cellulose, 
resistant starch and dextrin, inulin, lignin, pectin, -glucan, and oligosaccharides. They 
are abundant in whole-grain bread and cereals, legumes, rice, vegetables and fruits, 
and cannot be completely digested or absorbed by the human digestive system[61,62]. 
Dietary fibers play an essential role in maintaining the gut microbiota and gut health, 
as they can be catalyzed and fermented by certain gut microbes and produce beneficial 
metabolites, such as short-chain fatty acids (SCFAs)[63]. In the gut, approximately 95% 
of SCFAs are acetate (C2), propionate (C3), and butyrate (C4)[64]. Studies have shown 
that acetate is mainly produced by bacteria, such as A. muciniphila, Bifidobacterium spp., 
Bacteroides spp., Lactobacillus spp., Prevotella spp., Ruminococcus spp. and Streptococcus 
spp. through the acetyl-coenzyme A pathway[65,66]. Propionate is mainly produced 
by Bacteroides spp., Coprococcus catus, Dialister spp., Megasphaera elsdenii, Phascolarcto-
bacterium succinatutens, Roseburia inulinivorans, Ruminococcus obeum, Salmonella spp. and 
Veillonella spp. through three known pathways, i.e., succinate pathway, acrylate 
pathway, and propanediol pathway[66,67]. Butyrate is produced primarily in Anaero-
stipes caccae, Clostridium leptum, Coprococcus catus, Coprococcus eutactus, Eubacterium 



Xi Y et al. Diabetes and gut microbiota

WJD https://www.wjgnet.com 1697 October 15, 2021 Volume 12 Issue 10

hallii, Eubacterium rectale, Faecalibacterium prausnitzii, and Roseburia spp., by enzymatic 
catalysis, such as butyryl-CoA dehydrogenase, butyryl-CoA transferase, and phospho-
transbutyrylase or butyrate kinase[66,68]. SCFAs are critical modulators in patho-
physiological events of diabetes. They act directly as histone deacetylase inhibitors and 
increase protective glucagon-like peptide-1 secretion[69], which decreases blood 
glucose levels, improves insulin resistance, and suppresses inflammation. Our 
previous studies have shown that dietary lipid adsorbent montmorillonite regulates 
intestinal absorption and gut microbiota, such as increasing SCFAs-producing Blautia 
bacteria, thereby preventing obesity and insulin resistance in HFD-fed murine models
[70,71]. However, dietary effects on the shift of gut microbiota appear to be temporary
[72]. Habitual diets, which have a longer lasting influence on the gut microbiome, may 
be a viable strategy.

Antidiabetic medications 
Metformin is an oral antidiabetic medication. It has been used in the treatment of T2D 
for > 60 years due to its distinct effects on decreasing glucose production and 
increasing insulin sensitivity, as well as its safety profile. Metformin originates from 
Galega officinalis, a natural source of galegine[73]. Traditionally, activation of the AMP-
activated protein kinase signaling pathway in the liver is thought to be the mechanism 
of its antidiabetic effects[74]. Recent findings indicate that metformin also orchestrates 
gut microbiome in mice and humans[43]. Sun et al[33] reported that metformin 
improves hyperglycemia through the gut microbiota-bile acid-intestinal farnesoid X 
receptor (FXR) axis in T2D patients. FXR is an important target in regulating glucose 
and lipid homeostasis. Metformin reduces the level of Bacteroides fragilis in the gut, 
leading to an increase in the FXR antagonist, glycoursodeoxycholic acid. Treatment 
with metformin also increased the abundance of probiotics A. muciniphila and SCFA-
producing microbiota, such as Butyrivibrio, B. bifidum, and Megasphaera in murine and 
human studies[31]. Here, we summarize the role of the gut microbiome in the 
antidiabetic effects of metformin (Figure 2).

Acarbose, an α-glucosidase inhibitor, is an oral prescription medication used to 
control blood glucose in T2D treatment. Acarbose has been reported to alter the 
composition of gut microbiota in patients with T2D, in particular increasing the 
abundance of Bifidobacterium longum and decreasing the level of lipopolysaccharides
[75]. Vildagliptin, a dipeptidyl peptidase 4 inhibitor, is an oral antihyperglycemic 
agent that enhances insulin secretion and suppresses glucagon release. Vildagliptin 
supplementation decreases the level of Oscillibacter and increases the proportion of 
Lactobacillus in HFD-induced mouse models[76]. Sitagliptin, another DPP-4 inhibitor, 
appears to exhibit antidiabetic functions during pregnancy in rats by reducing Lactoba-
cillus spp. and increasing Bifidobacterium spp.[9,77]. Dapagliflozin, a sodium-glucose 
cotransporter-2 inhibitor, is a medication used to treat T2D. Treatment with 
dapagliflozin decreases the ratio of Firmicutes to Bacteroidetes and the abundance of 
Oscillospira, and increases the abundance of A. muciniphila in diabetic murine models
[78,79]. Thiazolidinediones (TZDs) are a class of oral hypoglycemic agents for the 
treatment of T2D[80,81]. TZDs function through the activation of the peroxisome 
proliferator-activated receptor (PPAR) signaling pathway[82,83]. Pioglitazone, a 
member of TZDs, is widely used to treat T2D. It has been reported that treatment with 
pioglitazone reduces the α-diversity of the gut microbiota in murine T2D models, 
which may be one of the mechanisms mediating its antidiabetic function[79]. In our 
previous studies, Danshensu Bingpian Zhi, a synthetic derivative of danshensu and 
borneol, is a PPARγ agonist that prevents HFD-induced atherosclerosis, obesity, and 
insulin resistance in mice in part by reversing intestinal microbiota dysbiosis, such as 
increasing the ratio of Bacteroidetes to Firmicutes, increasing the level of Akkermansia, 
and reducing the level of the harmful bacterium Helicobacter marmotae[84]. These 
results suggest that gut microbiome is a potential target of many anti-diabetic 
medications clinically.

Traditional Chinese medicines (TCMs) have a long history of treating diabetes, but 
their mechanisms are not fully understood. Several studies have suggested that TCMs 
have multiple therapeutic effects on diabetes, including antioxidation, suppression of 
inflammation, protection of intestinal mucosal barrier, and inhibition of lipotoxicity, 
mainly by remodeling the gut microbiota[85]. Berberine, a well-known bioactive 
alkaloid extracted from TCM Coptis chinensis, has been used for the treatment of 
diarrhea and diabetes. Berberine is useful in diabetes management because its 
administration is associated with a decrease of obesity indices, such as body mass 
index and waist circumference[86]. Berberine maintains gut health in rats and humans 
with diabetes by increasing the abundance of Bifidobacterium and Lactobacillus, and 
decreasing the abundance of Escherichia coli[87,88]. Gegen Qinlian Decoction can 
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Figure 2 The schematic mechanisms of metformin act through the gut microbiome and the related beneficial effects on diabetes. AMPK: 
AMP-activated protein kinase; FXR: farnesoid X receptor; GUDCA: glycoursodeoxycholic acid; SCFAs: short-chain fatty acids.

relieve T2D in clinical trials, which is associated with an increase in the level of 
beneficial bacteria, such as Faecalibacterium spp.[89]. In addition, Banxia Xiexin 
Decoction, Huanglian Jiedu Decoction, and Qijian mixture also have beneficial effects 
by regulating gut microbiota[85,90,91]. These results suggest that gut microbiota is 
likely a new direction in elucidating the antidiabetic mechanism of TCMs.

CONCLUSION
Diabetes has become an urgent public health threat, and the growing trend of diabetes 
cases is expected to continue for the next two decades and beyond. Gut microbiome 
plays a critical role in health maintenance, and the dysregulation of gut microbiome 
can contribute to the development and progression of the disease. Here, we 
summarized the interaction between diabetes and the gut microbiota. Gut dysbiosis is 
increasingly recognized as a mechanism that induces metabolic diseases. Accumu-
lating studies have shown that the gut microbiome is a key factor in the 
pathophysiology of diabetes, but research in this area is still in the early stages. Most 
of the studies have only shown that changes in the composition of the gut microbiota 
are associated with the progression of metabolic diseases. The exact causal relationship 
between a specific intestinal bacterium and phenotypic exposure is still not well 
understood. Further experiments using fecal or bacterial transplantation in germ-free 
mice and clinical studies are required to obtain a deeper understanding of the roles of 
individual bacteria in metabolic diseases. The use of metabolomics and transcrip-
tomics to study the gut microbiome is a more effective strategy to understand the role 
of microbiota in the progression of host disease.

Traditionally, most pharmacological agents used for treatment of diabetes directly 
regulate the signaling pathways involved in glucose and insulin homeostasis. 
However, the gut microbiota is becoming an emerging therapeutic target for diabetes. 
In view of the good performance of herbal agents, particularly TCMs, in regulating gut 
microbiota, more consideration should be given to the use of medicinal herbs for the 
treatment of diabetes.
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