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Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the third leading cause of cancer-
related deaths in the United States. Although chemotherapeutic regimens such as 
gemcitabine+ nab-paclitaxel and FOLFIRINOX (FOLinic acid, 5-Fluroruracil, 
IRINotecan, and Oxaliplatin) significantly improve patient survival, the pre-
valence of therapy resistance remains a major roadblock in the success of these 
agents. This review discusses the molecular mechanisms that play a crucial role in 
PDAC therapy resistance and how a better understanding of these mechanisms 
has shaped clinical trials for pancreatic cancer chemotherapy. Specifically, we 
have discussed the metabolic alterations and DNA repair mechanisms observed 
in PDAC and current approaches in targeting these mechanisms. Our discussion 
also includes the lessons learned following the failure of immunotherapy in 
PDAC and current approaches underway to improve tumor’s immunological 
response.
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Core Tip: With a five-year survival rate of 10%, pancreatic adenocarcinomas are one of 
the most aggressive forms of cancer. Despite extensive efforts, only a few drug 
combinations have been found to be effective in improving patient outcomes. The 
drug-resistant mechanisms active in pancreatic ductal adenocarcinoma contribute to the 
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ineffectiveness of therapies. Through this review, we discuss key mechanisms that 
contribute to the development of resistant phenotype in pancreatic tumors and how 
these mechanisms are being sought as a target to treat this cancer.
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INTRODUCTION
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive tumor, with a 5-year 
overall survival of 10%. As the cause of approximately 47000 deaths annually, it is the 
third leading cause of cancer-related mortality in the United States and is expected to 
be the second primary cause of cancer-related deaths by 2030[1,2]. Surgical resection of 
the tumor remains the only curative option for patients with PDAC. However, due to 
late diagnosis, only a limited number of patients qualify for it. Relapse is common and 
often observed as early as two months post-surgery. Therefore, adjuvant chemo-
therapy is often prescribed to improve patient outcomes. For over a decade, gem-
citabine was the mainstay for chemotherapy for resectable PDACs. The drug advanced 
the patient survival to 5.65 mo compared with 4.41 mo with 5-fluorouracil[3]. Recently, 
a combination therapy FOLFIRINOX (FOLinic acid, 5-Fluroruracil, IRINotecan, and 
Oxaliplatin) displayed better patient outcomes than gemcitabine[4]. The four-drug 
cocktail, although toxic, significantly improved survival in PDAC patients and is 
currently approved for both resectable and metastatic PDAC[5-9] (Table 1).

The complex pancreatic cancer biology is often attributed as the underlying cause of 
the poor chemotherapeutic response. This review will highlight the current knowledge 
of the therapeutic resistance mechanisms prevalent in PDAC and the opportunities 
PDAC tumor biology provides for its efficient targeting.

CURRENT THERAPIES IN PDAC
Gemcitabine
Gemcitabine has been a mainstay for PDAC treatment since 1997, when it was found 
to improve median and overall survival compared to 5-fluorouracil[3]. Gemcitabine 
(2’, 2’- difluorodeoxycytidine) is a difluoro analog of deoxycytidine which inhibits 
DNA synthesis through (1) inhibition of ribonucleotide reductase (RR), (2) inhibition 
of DNA polymerase (via diphosphate analog), or (3) mis-incorporation into the DNA, 
thus preventing chain elongation (via triphosphate analog)[10,11]. The inhibition of RR 
by the diphosphate analog depletes the deoxy-ribonucleotide pool essential for DNA 
synthesis.

Numerous mechanisms for gemcitabine inactivity have been demonstrated. 
Although resistance can be divided into innate and acquired forms, we will present 
evidence referring to both as “resistance” for this review.

The first interaction of gemcitabine with the cells occurs at the nucleotide 
transporter level. These transporters-concentrative nucleoside transporters (hCNTs) 
and equilibrative nucleoside transporters (hENTs) allow the transport of gemcitabine 
into the cells[12]. Evidence of the importance of nucleotide transporters for gem-
citabine activity includes the observation that, in the absence of hENT1, PDAC patients 
treated with gemcitabine have reduced survival[13]. The enzyme deoxycytidine kinase 
(dCK) is the rate-limiting enzyme that converts gemcitabine into di-fluoro deoxy-
cytidine mono-phosphate and is essential for gemcitabine-induced cytotoxicity[14]. 
Acquired resistant models demonstrate reduced expression of dCK in cells that do not 
respond to gemcitabine[14,15]. However, a recent analysis of the patient-derived 
xenograft PDAC model found no change in dCK levels in the gemcitabine-resistant 
tumors[16], indicating that mechanisms independent of dCK contribute to poor 
response to gemcitabine.
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Table 1 Landmark trials for approved pancreatic ductal adenocarcinoma therapies

Treatment Tumor characteristic Primary endpoint Ref.

Gemcitabine Advanced PDAC Median survival, 5.65 mo Burris et al[3]

Gemcitabine + Erlotinib vs Gemcitabine Locally Advanced or metastatic PDAC Overall survival (OS), 6.24 mo vs 5.91 mo Hoffmann et al[59]

FOLFIRINOX vs Gemcitabine Metastatic PDAC OS, 11.1 mo vs 6.8 mo Conroy et al[4]

Gemcitabine + nab-paclitaxel vs Gemcitabine Metastatic PDAC OS, 8.5 mo vs 6.7 mo Couvelard et al[60]

Gemcitabine + Capacitabine vs Gemcitabine Resectable PDAC OS, 28 mo vs 25.5 mo Neoptolemos et al[8]

PDAC: Pancreatic ductal adenocarcinoma.

As mentioned earlier, when gemcitabine inhibits RR, the deoxy-ribonucleotide pool 
of the cells becomes depleted, leading to cell death. Overexpression of M1 and M2 
isoforms, namely RRM1 and RRM2, is associated with reduced cellular response to 
gemcitabine[16-18]. Micro RNAs such as miR20a-5 and miR211 have been shown to 
downregulate RR, enhancing pancreatic cancer’s sensitivity to gemcitabine and 
inhibiting cellular invasion[19,20]. Similarly, natural product, small molecule, and 
miRNA-based inhibition of RR sensitizes PDAC cells to gemcitabine[19-21-24]. 
Although strong in vitro data indicate RRM1/RRM2 play a key role in gemcitabine 
sensitivity, conflicting clinical outcomes have limited the utility of these enzymes for 
PDAC prognosis[25-28].

Other cellular processes such as epithelial-mesenchymal transition (EMT), mitoge-
nic signaling, and tumor-stroma interaction also contribute to gemcitabine resistance
[29]. Analysis of PDAC lines revealed that the EMT gene expression profile differs 
considerably between drug-sensitive and -resistant cells[30]. The drug-resistant cells 
showed reduced response to gemcitabine, 5-fluorouracil, and cisplatin, and expressed 
elevated levels of EMT marker Zeb1[30]. In addition, suppression of EMT enhanced 
the sensitivity of PDAC to gemcitabine by regulating the expression of nucleoside 
transporters[31].

5-Fluorouracil
Similar to gemcitabine, 5-fluorouracil belongs to the antimetabolite class of anti-cancer 
agents. 5-Fluorouracil inhibits the enzyme thymidylate synthetase (TS), which is 
responsible for methylation of deoxyuridine mono-phosphate to deoxythymidine 
mono-phosphate, a precursor for DNA synthesis. 5-Fluorouracil was the first drug to 
be approved as PDAC adjuvant therapy[32,33]. Although no longer used as mono-
therapy, 5-fluorouracil forms a part of the PDAC chemotherapeutic regimen FOL-
FIRINOX. Compared to gemcitabine therapy, combination therapy with FOLFIRINOX 
improved the overall survival and median progression-free survival of patients with 
metastatic PDAC[4]. Although any improvement in PDAC patient outcomes should be 
observed as a positive sign, the high toxicity of the drug regimen, limited patient 
eligibility for FOLFIRINOX, and prevalence of 5-fluorouracil resistant mechanisms 
may further limit the use this combination therapy in PDAC[34-38]. Multiple me-
chanisms have demonstrated to contribute to 5-fluorouracil resistance, such as 
alteration in (1) 5-fluorouracil metabolizing enzymes, (2) membrane transporters, and 
(3) pro-survival/ pro-apoptotic pathways. High TS expression is associated with poor 
survival in PDAC patients, however, the difference in survival is more significant in 
patients that received 5-fluorouracil based therapy[39,40]. The enzyme dihydropy-
rimidine dehydrogenase (DPD) catabolizes the 5-fluorouracil in the liver. In colorectal 
cancer patients receiving 5-fluorouracil based therapy, high DPD levels was associated 
with significantly shorter disease-free survival and overall survival[41]. In vitro 
analysis of PDAC cells lines and 5-fluorouracil-resistant sub-lines revealed that high 
expression of TS and DPDY is associated with poor 5-fluorouracil response[42].

Targeted therapies in PDAC
Comprehensive genetic analysis has revealed that pancreatic cancers are a host of 
numerous genetic mutations[43]. Mutation of K-ras is the most frequent genetic 
alteration observed in more than 90% of pancreatic cancer cases[44]. K-ras protein is a 
downstream signaling molecule activated by various transmembrane receptor tyrosine 
kinases, such as the epidermal growth factor receptor (EGFR), insulin-like growth 
factor receptor, and c-met. EGFR, overexpressed in more than 40% of pancreatic 
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cancers, is associated with poor disease prognosis, invasion, and aggressive clinical 
behavior[45,46]. Given its importance, therapies targeting EGFR have been tested to 
determine their ability to improve the outcomes of PDAC patients. In one phase III 
trial, the addition of erlotinib (EGFR tyrosine kinase inhibitor) to gemcitabine-based 
therapy significantly improved the overall survival of PDAC patients[47]. A recent 
clinical trial compared the efficacy of gemcitabine + erlotinib in rash-positive pan-
creatic cancer patients and found similar one-year survival and better quality of life 
compared to patients on FOLFIRINOX[48]. Some trials however, have failed to show 
the clinical benefit of adding EGFR targeting drugs to PDAC chemotherapy[49-52]. 
Therapies targeting other molecular mechanisms active in pancreatic cancer have not 
shown beneficial effects, and EGFR targeting may have a place in PDAC therapy as 
precision medicine[53-57].

FUTURE OPPORTUNITIES TO TARGET PDAC
Pancreatic tumor metabolism
Pancreatic cancer is characterized by a dense stroma surrounding the tumor. This 
dense stromal region limits vascularization, creating an environment limiting oxygen 
and nutrient supply[58,59]. Limited oxygen gives rise to hypoxia that is associated 
with poor patient prognosis[59-61]. In an abundance of oxygen, the non-malignant 
cells produce most of their energy from mitochondrial oxidative phosphorylation 
(OXPHOS) while cancer cells exhibit an altered metabolism, first observed in the 1920s 
by Warburg[62], in which they produce most of their energy from glycolysis. Further, 
Warburg[62] observed that the majority of the glucose taken up by the cancer cells is 
converted to lactate rather than CO2, an observation that has since been witnessed and 
verified by various researchers in various tumors, including PDAC[63-70]. Pancreatic 
cancer shows upregulation in glycolysis, pentose phosphate pathway (PPP), fatty acid 
synthesis, and purine/pyrimidine synthesis, and downregulation of enzymes involved 
in Kreb’s cycle and the OXPHOS.

Analysis of the pancreatic cancer progression model revealed that the metabolic 
alterations precede tumor formation[71]. Metabolic rewiring in the early stages 
involves upregulated glycolytic and PPP. The altered metabolic profile allows quick 
ATP production and provides nucleotides and other metabolic intermediates required 
for proliferating cancer cells[72]. However, the suppression of OXPHOS can lead to 
excessive acid build-up within the cancer cells in the form of lactate. To circumvent 
this, pancreatic cancers express monocarboxylate transporters (MCT1 and MCT4) to 
efflux out lactate[73,74]. These metabolic adaptations, aided by the upregulation of 
glucose transporters GLUT1, allow the cancer cells to utilize glucose for their energy 
and biosynthetic needs. In addition, the molecular biology of pancreatic cancers, such 
as mutation of KRAS and P53, contribute to the so-called “glycolytic switch” in the 
PDACs by regulating genes like hexokinase-2, glucose transporters GLUT-1, and 
PKM2, and by promoting anabolic processes[75-78].

Altered tumor metabolism is also associated with poor therapy response in 
pancreatic tumors. Acquired gemcitabine-resistant models of pancreatic cancer show a 
marked increase in aerobic glycolysis that maintains the EMT phenotype and reduced 
responsiveness to the therapeutic agent[79]. The resistant cells exhibit elevated 
glycolytic enzymes HK2, LDHA and PKM2, and glucose transporter GLUT1. Below 
we discuss the central carbon metabolic pathways — namely, glycolysis, tricarboxylic 
acid (TCA) cycle, and the PPP — as therapeutic targets in pancreatic cancer.

Glycolysis as therapeutic target: Analysis of pancreatic tumors reveals that HK2 
expression is upregulated in localized tumors as well as metastatic tumors compared 
to non-malignant tissues[80]. Since HK2 plays a crucial role in pancreatic tumors, 
efforts have been made to evaluate HK2 as a therapeutic target for pancreatic cancers. 
We were among the first to show that inhibition of glycolytic enzymes HK2 inhibits 
the growth and pro-survival signaling in pancreatic cancers[81]. In addition, inhibition 
of HK2 in pancreatic cancer cells suppresses their anchorage-independent growth and 
invasion[80]. The role of HK2 has also been implicated in gemcitabine resistance, as 
HK2 dimerization is enhanced in cells that do not respond to gemcitabine[82]. In vitro 
and in vivo analysis revealed that inhibition of HK2 enhanced the sensitivity of PDAC 
to gemcitabine. Similarly, in another study, inhibition of HK2 using chemical inhibitor 
2-deoxyglucose enhanced resistant cells’ sensitivity to gemcitabine[79].

PKM2: Pyruvate kinase (PK) is a glycolytic enzyme that catalyzes the conversion of 
phosphoenol pyruvate and ADP into pyruvate and ATP. Four isoforms of the enzyme 
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exist in vertebrates: PKR in erythrocytes; PKL in liver and kidney; PKM1 in adult 
muscle, brain, and heart; and PKM2 in most adult tissues and fetal tissues[83]. 
Phosphorylation of PKM2 at tyrosine residue 105 (Y105) is associated with reduced 
PKM2 activity and enhanced tumor growth[84,85]. Analyses of PKM isoform show 
abundance of isoform M2 in tumor cells compared to high levels of M1 in normal 
tissues[52,53]. In cancer cell lines, high PKM2 Levels are associated with proliferation, 
metastasis, and angiogenesis[54-56]. The role of PKM2 in pancreatic tumors is, 
however, controversial. Using the mice model of PDAC, a recent report demonstrated 
that although PKM2 expression is elevated in PDAC, the loss of PKM2 does not 
significantly affect the size of tumors or the survival of mice bearing PDAC[86]. 
Surgical specimens from 115 PDAC patients show that PKM2 expression is associated 
with better overall survival[87]. However, others have shown that high PKM2 ex-
pression correlates with poor patient outcomes[88,89]. Considering several obser-
vations demonstrating a vital role of PKM2 in pancreatic cancer survival, invasion, 
angiogenesis, metastasis, and drug resistance, we believe the PKM2 serves as an 
attractive target for the treatment of PDAC, even though its role in pancreatic cancer 
tumorigenesis is still unproven[90-95].

Lactate dehydrogenase (LDH): LDH is an enzyme that exists as a tetramer and 
catalyzes the conversion of pyruvate to lactate and vice versa. LDHA (LDH gene 
product) regulates pyruvate’s conversion to lactate, thus preventing the entry of 
pyruvate into the TCA cycle. Deregulated expression of LDHA is observed in various 
tumors, including pancreatic, gastric, bladder, cholangiocarcinoma, lung, and endo-
metrial cancers[96-102]. Numerous oncogenic signaling molecules, namely, HIF1 
alpha, myc, FOXM1, and tyrosine kinase receptors, can regulate the level or the 
activity of LDH[96,103-106]. Elevated levels of LDH are associated with unfavorable 
prognoses for PDAC patient survival, chemotherapy response, and recurrence[107-
112]. Preclinical studies have revealed that inhibition of LDH reduces the survival of 
PDAC cells[113,114].

PPP as therapeutic target: The PPP branches from glycolysis and contributes to the 
cancer phenotype through (1) synthesis of NADPH (oxidative PPP), which is im-
portant for redox regulation and fatty acid synthesis, and (2) supplying the prolif-
erating cells with pentose sugar (non-oxidative PPP) for nucleic acid biosynthesis
[115]. Accumulating evidence indicates that PPP plays a vital role in pancreatic tumor 
survival, metastasis, and therapy resistance. Our lab and others have shown that MYC 
regulates the activity of both oxidative and non-oxidative PPP through the regulation 
of G6PD and the RPIA (non-oxidative PPP) gene[78,116,117]. The regulation of RPIA 
via MYC appears to be under the directive of KRAS. The MAPK-MYC-RPIA-nu-
cleotide biosynthesis pathway is shown to be important for KRAS-mediated main-
tenance of PDAC[78,116]. Considering that most PDAC patients (90%) express mutant 
KRAS, inhibition of PPP is an attractive strategy for developing more efficient 
pancreatic cancer therapies that would target KRAS-induced metabolic abnormalities. 
Our recent results found that pancreatic cancer cells resistant to erlotinib express 
elevated levels of G6PD. The upregulated G6PD prevents the induction of ROS in 
response to erlotinib, thus protecting the cells from drug-induced cytotoxicity[117]. 
The non-oxidative PPP has also been implicated in PDAC therapy resistance. Shukla et 
al[118] found that gemcitabine-resistant cells express enhanced carbon flux into the 
non-oxidative PPP, aided by elevated non-oxidative PPP enzyme levels. This alteration 
in metabolic flux allows elevated pyrimidine synthesis that contributes to gemcitabine 
resistance[118].

TCA cycle and OXPHOS as therapeutic target: Although cancer cells exhibit an 
elevated flux of glycolytic intermediate into branched pathways, the TCA cycle is still 
functional. The TCA cycle continues to provide proliferating cancer cells with energy, 
macromolecules and maintain the cellular redox balance. Recent reports have de-
monstrated the importance of the TCA cycle and OXPHOS in pancreatic cancer 
survival[119-123]. Due to their critical roles, the TCA cycle and OXPHOS have been 
tested as a therapeutic target for PDAC therapy. Three major approaches have been 
sought to this end: (1) Targeting TCA cycle enzyme/intermediates; (2) Targeting 
glutamine-dependent anaplerosis; and (3) Targeting the OXPHOS.

Glutamine, a non-essential amino acid, is considered an important energy source for 
PDAC along with glucose[124,125]. Accumulating evidence demonstrates that 
glutamine plays a vital role in PDAC proliferation, invasion, maintenance of redox 
balance, chemotherapy, and radiotherapy resistance, underlining glutamine meta-
bolism as a potential therapeutic target[126-132]. However, conflicting results show 
that the presence of glutamine suppresses PDAC growth and invasion, dampening 
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enthusiasm for targeting glutamine metabolism[133-135]. A current clinical trial 
(NCT04634539) is analyzing whether adding glutamine improves efficacy and reduces 
the toxicity of PDAC chemotherapy. The results from this trial will shed light on the 
effect of glutamine on PDAC chemotherapy.

Two additional approaches, targeting the OXPHOS and the TCA cycle, have shown 
promise in preclinical evaluations, and agents targeting them are currently in clinical 
trials (Table 2). IACS-010759 inhibits mitochondrial complex one and has recently 
completed a phase I study in different tumor types, including advanced pancreatic 
cancers (Table 2). Although the preclinical data regarding the effect of IACS-010759 on 
pancreatic tumors is lacking, inhibition of OXPHOS complex one appears to be a 
promising strategy for overcoming drug resistance[136-139]. The anti-diabetic drug 
metformin has been tested and continues to be tested for its efficacy in PDAC 
(NCT01210911, NCT02336087, and NCT01666730). Although the experience with 
metformin in clinical settings has not resulted in improved patient outcomes, a recent 
meta-analysis indicated survival benefits in patients with PDAC and concurrent 
diabetes mellitus, highlighting a need for a personalized therapeutic approach for the 
success of this therapy[140-142].

CPI-613 or Demivistat (Table 2) is a TCA cycle targeting agent that inhibits the 
activity of pyruvate dehydrogenase and α- ketoglutarate dehydrogenase. In a phase 1 
trial, 61% of patients achieved an objective response, and 3 (17%) patients achieved a 
complete response after receiving CPI-613[143].

Targeting PDAC DNA repair
Activating KRAS mutations are major drivers of malignant growth in PDAC and have 
remained undruggable until recent promising developments. Oncogenic KRAS-
induced DNA replication stress drives genomic instability and tumorigenesis in 
PDAC. Genomic analysis have also revealed that modifications in “DNA damage 
control” is a prominent genetic alteration observed in PDAC[43]. Recently, genetic 
alterations in PDAC have been classified into four sub-types by Waddell et al[144]: (1) 
Stable; (2) Locally rearranged; (3) Scattered; and (4) Unstable. The “unstable” pheno-
type harbors mutations in the DNA damage repair (DDR), such as BRCA1, BRCA2, 
PALB2, and ATM. Mutations in ATM account for the most frequently occurring 
somatic mutations in approximately 4% of PDAC cases, followed by BRCA2, STK11, 
and BRCA1[144-147]. Given the important role these DDR genes play in a significant 
proportion of human PDACs, patients are likely to benefit from tailored, targeted 
therapies, including platinums, directed against specific DDR (Table 3). The following 
paragraphs will discuss these therapies.

Platinums: Platinum agents (cisplatin, oxaliplatin) cause DNA damage by forming 
platinum adducts on the DNA and causing DNA interstrand crosslinks[148]. Oxali-
platin is a component of the standard of care FOLFIRINOX, and platinum compounds 
alone are well suited in cancers that have a deficiency in the homologous repair (HR) 
pathway. Many studies have highlighted the advantageous use of platinum com-
pounds for HR-deficient PDAC. Golan et al[149] showed a survival benefit (22 mo vs 9 
mo) in platinum-treated vs platinum-naïve BRCA1/2 mutated advanced PDAC. 
Similarly, platinum improved overall survival in patients with HR-deficient PDACs 
and in patients with germline BRCA1, BRCA2, and PALB2 mutations[150,151]. Hence 
careful patient selection depending on the genetic make-up of the tumor would be 
essential for platinums to succeed.

Poly (ADP-ribose) glycohydrolase: Poly (ADP-ribose) glycohydrolase (PARG) is a 
macrodomain protein with exo- and endo-glycohydrolase activity[152,153]. It critically 
regulates DNA damage responses by removing poly (ADP-ribose) molecules 
(PARylation) on modified proteins during the DNA repair process. It is the primary 
PAR degrading enzyme and reverses poly (ADP ribose) polymerase (PARP) functions 
by hydrolyzing the ribose-ribose bonds present in PAR molecules. By preventing 
cytoplasmic PAR accumulation, PARG prevents PAR-mediated apoptosis, termed as 
parthanatos[154]. Inhibiting PARG causes DNA replication fork collapse, which leads 
to irreparable DNA damage and cell death. Recent studies have highlighted the 
benefits of selectively targeting PARG as an anti-cancer therapeutic strategy alone or 
in combination with other genotoxic therapies[155-157]. Targeting PARG was shown 
to enhance chemotherapeutic effects of DNA damaging agents, like oxaliplatin and 5-
fluorouracil in PDAC, and was also synergistic with mitotic kinase, Wee-1 inhibition. 
In a siRNA screen with DNA replication factors, PARG inhibition was shown to be 
synergistic with TIMELESS, HUS1, MCM2, CHK1, and RFC2 proteins in an ovarian 
cancer model, indicating that combinations of PARGi and DNA replication stress 
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Table 2 Pancreatic ductal adenocarcinoma trials involving agents that target tumor metabolism

Drug Target Trial description NCI trial number

IACS-010759 OXPHOS inhibitor Phase I, in advanced cancers NCT03291938

CPI-613 PDH/alpha KDH inhibitor Phase I, combination with Gem + nab-paclitaxel NCT03435289

CPI-613 PDH/alpha KDH inhibitor Phase II, combination with FOLFIRINOX NCT03699319

CPI-613 PDH/alpha KDH inhibitor Phase III, combination with modified FOLFIRINOX NCT03504423

Metformin and atorvastatin Metabolic inhibitors Metformin + Atorvastatin + Doxycycline + Mebendazole in cancers NCT02201381

L-glutamine Glutamine analog Phase I, combination with Gem + nab-paclitaxel NCT04634539

OXPHOS: Oxidative phosphorylation; PDH: Pyruvate dehydrogenase; KDH: Ketoglutarate dehydrogenase.

Table 3 Pancreatic ductal adenocarcinoma trials involving agents that target DNA repair

Drug Target Trial description NCI trial 
number

M6620 (VX-970) ATR Phase I, M6620 and irinotecan hydrochloride in treating patients with solid tumors that are metastatic 
or cannot be removed by surgery

NCT02595931

AZD6738/olaparib ATR/PARP Phase II, Phase II trial of AZD6738 alone and in combination with olaparib NCT03682289

BAY1895344 ATR Phase I, testing the addition of an anti-cancer drug, BAY 1895344 ATR inhibitor, to the chemotherapy 
treatment (Gemcitabine) for advanced solid tumors, pancreatic cancer, and ovarian cancer

NCT04616534

Olaparib PARP Phase II, a study of pembrolizumab and olaparib for people with metastatic pancreatic ductal 
adenocarcinoma and homologous recombination deficiency or exceptional treatment response to 
platinum-based therapy

NCT04666740

Olaparib PARP Phase I, targeted PARP or MEK/ERK inhibition in patients with pancreatic cancer NCT04005690

Olaparib PARP Phase II, a phase 2 study of cediranib in combination with olaparib in advanced solid tumors NCT02498613

Olaparib PARP Phase II, olaparib in treating patients with stage IV pancreatic cancer NCT02677038

Talazoparib PARP Phase II, measuring the effects of talazoparib in patients with advanced cancer and DNA repair 
variations

NCT04550494

Talazoparib PARP Phase I/II, a study of avelumab, binimetinib and talazoparib in patients with locally advanced or 
metastatic RAS-mutant solid tumors

NCT03637491

Niraparib PARP Phase II, niraparib in metastatic pancreatic cancer after previous chemotherapy (NIRA-PANC): A 
phase 2 trial

NCT03553004

Niraparib PARP Phase II, niraparib in patients with pancreatic cancer NCT03601923

Rucaparib PARP Phase II, maintenance rucaparib in BRCA1, BRCA2 or PALB2 mutated pancreatic cancer that has not 
progressed on platinum-based therapy

NCT03140670

MK1775 WEE1 Phase I/II, a phase i and randomized phase II study of nab-paclitaxel/gemcitabine with or without 
AZD1775 for treatment of metastatic adenocarcinoma of the pancreas

NCT02194829

PARP: Poly (ADP ribose) polymerase.

inducers should be evaluated as potential therapeutic strategies for PDAC treatment
[158]. A synthetic lethal relationship with PARG inhibition and DDR proteins like 
BRCA1, BRCA2, ABRAXAS, BARD1, and PALB2 was reported in an MCF7 breast 
cancer model[159]. Since genomic screens in PDAC have revealed alterations/muta-
tions in similar DDR proteins, it is valuable to target PARG in such DDR-deficient 
PDAC tumors.

Wee-1: WEE1 kinase is an important cell cycle regulator of the G2-M checkpoint and is 
overexpressed in various cancers, including glioblastoma, breast cancer, osteosarcoma, 
and hepatocellular carcinoma[160-163]. It phosphorylates and inactivates CDK1 to 
allow for the repair of damaged DNA before entering mitosis. Wee-1 has regulatory 
roles in DNA replication stress and HR mechanisms[164-166]. In PDAC, Wee-1 
expression is upregulated by a post-transcriptional mechanism regulated by RNA 
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binding protein, HuR[167], and its inhibition has been found to be effective in DNA 
repair-deficient PDAC cells[168]. In one study, Wee-1 inhibition was found to sensitize 
PDAC cells to gemcitabine chemo-radiation therapy[165]. Another study showed Wee-
1 inhibition was synergistic with gemcitabine in p53-deficient PDAC xenografts[169]. 
Co-targeting WEE1 and ATM was shown to synergistically reduce cell proliferation 
and migration via downregulation of PDL-1 expression in pancreatic cancers[170]. 
Recently, it was also published that a combination of Wee-1 with another DNA repair 
target, PARG, enhances DNA damage and decreases cell survival in PDAC cells[171].

PARP: PARP is a DNA repair enzyme that plays a role in inflammation, regulation of 
cell death, transcription, and modulation of post-transcriptional gene expression. In 
response to DNA damage, PARP-1 could either promote cell survival and DNA repair 
or cause cell death when the damage is high[172]. PARP covalently adds Poly (ADP 
ribose) (PAR) chains onto its target proteins by consuming beta nicotinamide adenine 
dinucleotide (β NAD+). PAR further recruits other DNA repair proteins in the process 
of damage repair. Chemical competitive inhibitors of PARP enzymatic activity have 
gained interest as treatment options for many cancers, like ovarian, breast, uterine, and 
prostate[173], specifically for patients with tumors harboring somatic or germline 
defects/mutations in HR genes like BRCA1/2. Recent whole-genome sequencing 
studies done in patients with familial pancreatic cancer show that mutations in BRCA2 
gene accounts for 5%-10% of familial pancreatic cancers. In the Ashkenazi Jewish 
population with PDAC, this percentage increases to 13.7% and represents a major 
subgroup of PDAC cases that could benefit from PARP inhibitor (PARPi) therapy. In 
the context of synthetic lethality, impairment of two DNA repair pathways induces 
cell death and thus targeting HR deficient cells (BRCA1/2 mutants or others) with 
PARP inhibitors was found to be lethal[174,175]. Following the success of POLO trial 
(Pancreas Cancer Olaparib Ongoing), in 2019 FDA approved olaparib (PARPi) as a 
maintenance therapy in patients with a germline BRCA mutated metastatic PDAC that 
had not progressed on first-line platinum therapy[174]. An increasing amount of 
ongoing preclinical and clinical studies suggest that PARPi in combination with either 
conventional chemotherapeutics (gemcitabine/nab-paclitaxel) or radiation therapy 
could benefit patients in the long run[176]. However, recent research suggests that 
although these respond greatly to PARP inhibitors, there is still 40%-70% of BRCA1/2-
mutated cancers that fail to respond to PARPi therapy and in those settings PARPi 
cannot be used. Novel efforts to create a ’BRCAness-tumors harboring mutations in 
HR beyond BRCA1/2’ phenotype in the cells by use of other small molecule inhibitors 
and their combination with PARPi is now being exploited. Bagnolini et al[174] 
discovered a small molecule disruptor of RAD51-BRCA2 interaction synergizes with 
olaparib in pancreatic cancer cells. Another study showed synthetic lethaility with 
PARPi therapy and FGFR1 blockade in pancreatic cancer[177]. Failure of PARPi 
therapy can also be attributed to acquired resistance mechanisms[178]. A study in 
pancreatic cancer showed a secondary mutation in BRCA2 emerged after the patient’s 
exceptional response to platinum and PARPi therapy, which likely restored BRCA2 
function in PARP inhibitor-resistant tumor cells[179]. Thus, careful evaluation and 
design of PARPi therapy should be pursued, and novel targets for PARPi beyond 
BRCA1/2 should be explored.

Other inhibitors of DDR pathway: Ataxia telangiectasia mutated (ATM) and RAD-3 
related (ATR) are serine/threonine protein kinases that are involved in double/single-
strand break repair and modulate DNA replication stress and DDR signaling[180-
182]. ATM is one of the most commonly mutated DDR genes, and many whole 
genomic sequencing studies in PDAC have reported both somatic or germline ATM 
loss-of-function mutations. ATM loss drives pancreatic cancer progression, angio-
genesis, epithelial-to-mesenchymal transition, and stemness[183]. Radiosensitization of 
cells with ATM loss/inhibition has been well documented in many tumor types, 
including pancreatic cancers[184-186]. ATM loss can also synergize with platinums 
and PARP inhibitor therapies, emphasizing its role in DNA repair. Specific to PDAC, 
two studies have shown that patients with ATM/ATR mutated tumors respond well 
to oxaliplatin-based chemotherapy, experiencing either improved progression-free 
survival or a stable disease[187,188]. Based on these data, multiple ongoing clinical 
trials (Phase I/II) involving ATM-deficient solid tumors have been initiated with DNA 
damage agents like PARP inhibitor therapies (olaparib, talazoparib, and niraparib), 
some of which accept pancreatic cancer patients. Chemical inhibition of ATM via small 
molecule inhibitors (AZD0156, AZD1390) is also being tested in combination with 
other agents in early stage clinical trials in patients with advanced solid tumors and 
brain tumors (NCT02588105, NCT03423628). Lack of ATM function may lead to 
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increased dependence on ATR for DDR, and thus ATR inhibition may be particularly 
potent in PDACs with somatic mutations in ATM. A recent study employing a multi-
DDR interference strategy that included an ATR inhibitor and PARP and DNA-PKC 
inhibitor was shown to inhibit FOLFIRINOX-induced invasive clones in ATM-
deficient PDAC tumors[189]. In 2012, a study tested VX-970, an ATR inhibitor, and 
found it sensitizes PDAC cells to radiation therapy in vivo and in vitro[190]. Another 
study found that a combination treatment of AZD6738 (ATR inhibitor) and 
gemcitabine induces PDAC regression by preventing checkpoint activation by 
gemcitabine[191]. The ATR inhibitors (VX-970, AZD6738, BAY18953[43]) are currently 
in the early stages of clinical development, like ATM inhibitors in patients with 
advanced solid tumors and lymphomas (NCT03188965, NCT03682289, NCT02595931, 
and NCT03718091), with or without other chemotherapeutic agents. Although these 
appear to be promising therapies, their clinical activity in PDAC patients is yet to be 
shown[183].

Immunotherapy
Immunotherapy has achieved promising outcomes in certain cancers, however is yet 
to be realized in PDAC[192-194]. Tumors with high tumor mutation burden (TMB, 
approximate mutations per megabase), such as melanomas and NSCLC, have shown 
to respond better to immunotherapy[195-197]. These TMBs are generally associated 
with mismatch repair (MMR) deficiency. PDACs intrinsically have low MMR defi-
ciencies, which may explain the lower response to immunotherapy approaches such as 
immune checkpoint inhibitors (ICI)[198]. The immunosuppressive nature and “T cell 
exhaustion” further contributes to the poor response of PDAC to immunotherapy.

The PDAC is characterized by the presence of dense stroma in the tumor microen-
vironment. The stromal components include T cells (cytotoxic and regulatory) and 
myeloid cells such as tumor-associated macrophages (TAM). Infiltration with ma-
crophages is observed in early PDAC tumor development stages and is associated 
with poor prognosis in PDAC patients[199-201]. These macrophages secrete immuno-
suppressive factors such as arginase and TGFβ, and thereby regulate T-cell mediated 
cytotoxicity and surveillance[200]. The myeloid-derived suppressor cells are immature 
myeloid cells that suppress T cell proliferation and promote ROS-induced T cell 
apoptosis[202,203]. The term “T cell exhaustion” is used for T cells’ differentiation 
state in chronic antigen exposure. The exhaustion stage is driven by persistent T cell 
receptor signaling leading to ineffective T cell functioning[204-206]. Recent evidence 
has shown that the T cells present in the PDAC tumor microenvironment are defective 
in the production of interferon and tumor necrosis factors following peptide recog-
nition[207,208]. However, the T cells with identical peptide specificity in the spleen 
retain functionality in tumor-bearing animals[209].

Some approaches that are currently under investigation for improving the immuno-
logical response of PDAC include as follow.

Cancer vaccines and immune checkpoint blockade: Monotherapies targeting pro-
grammed cell death 1 (PD-1) and programmed cell death ligand 1 (PD-L1) have not 
shown promising responses in PDAC. However, the therapy showed tumor regression 
and disease stabilization in other advanced cancers such as NSCLC, melanoma, and 
renal cancers[193]. Similarly, inhibition of PD-1 or PD-L1 failed to demonstrate a 
positive response in PDAC animal models[207,210-212]. Similar to ICI inhibitors, 
vaccine trials using vaccine-GVAX pancreas (granulocyte-macrophage colony-
stimulating factor-secreting allogeneic pancreatic tumor cells) failed to improve overall 
survival in PDAC patients compared to single-agent chemotherapy[213]. Since the 
vaccines were able to recruit T cells, one approach to improve their efficacy would be 
to promote the activation of T cells, which may be achieved through the combination 
of vaccines with ICI[214]. Currently, clinical trials are underway for establishing the 
safety and efficacy of these GVAX with ICIs (NCT03153410, NCT02451982, and 
NCT02648282).

Targeting tumor associated macrophages: Another way to improve the efficacy of 
immunotherapies is to inhibit the immunosuppressive signaling that originates from 
the tumor microenvironment. For this, one strategy being tested is to inhibit myeloid 
cells. Researchers found that CD11b agonist reduces the total number of myeloid cells 
and improves survival in PDAC mice. In addition, when CD11b was combined with 
anti-PD-1, anti-CLTA-4, and gemcitabine, enhanced infiltration of tumor with CD8 T 
cells was observed[212]. Similarly, other studies have confirmed that targeting TAMs 
improves therapeutic and T-cell checkpoint immunotherapy response in PDAC 
models[215-217]. Blockade of Csf1/Csf1R (macrophage colony-stimulating factor 
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1/receptor) reduces collagen deposits and enhances CD8 T cell infiltration in the 
PDAC mice model[218]. Currently, a phase II trial is underway to determine the 
efficacy of cabralizumab (CSF1R inhibitor) in combination with nivolumab and che-
motherapy in PDAC (NCT03336216).

Adoptive T cell therapy
Adoptive T cell therapy involves isolating T cells from tumors and then engineering, 
expanding, and infusing them back into the patients[219]. The chimeric antigen 
receptor (CAR) T cell therapy is an example of adoptive T cell therapy wherein the T 
cells are manipulated to express CAR to assist tumor recognition[220]. Antigen targets 
that are being tested for PDAC include mesothelin, prostate stem cell antigen, CEA, 
MUC1, and HER2[221]. However, the immunosuppressive microenvironment remains 
a hindrance in CAR-T cell therapy’s success in PDAC[222,223]. Other barrier to the 
success of adoptive T cell therapy in PDAC include antigen selection and toxicities
[224-226]. Still, a few promising outcomes have sustained hope for the use of this 
approach in PDAC. A phase 1 trial found that treatment of PDAC patients with 
mesothelin-targeting-CART-T cells stabilized disease in 2 out of 6 patients[227]. 
Similarly, analysis of efficacy and safety of MUC1-targeting CART-T cells found the 
therapy to be safe and successfully elevated the levels of CD4+ and CD8+ T cells at the 
tumor[228]. Currently, clinical trials are underway to determine MUC-1-targeted CAR-
T cell therapy’s efficacy and safety in patients with solid tumors, including PDAC 
(NCT02587689 and NCT02617134).

CONCLUSION
The PDAC remains an intractable disease that is slated to be the second leading cause 
of cancer-related deaths by 2030. Although surgical resection remains the only curative 
treatment option, late diagnosis, in addition to the patient’s performance status, limits 
the scope of surgical intervention. Chemotherapeutic regimens such as gemcitabine+ 
nab-paclitaxel and FOLFIRINOX has shown promise in improving patient survival; 
however, drug resistance remains a continuing challenge that has limited their 
efficacy. Two approaches that may improve PDAC patient outcomes include in-
hibiting the mechanism(s) that promote therapy resistance and targeting the key 
pathways essential for PDAC survival. The altered metabolism provides the PDAC 
cells with energy (ATP) and macromolecules essential for tumor growth. Additionally, 
studies have shown that metabolism plays a key role in PDAC therapy resistance. 
Similarly, PARP targeting therapies’ success has once again brought the importance of 
DNA repair mechanisms in PDAC into the center. The limited success of immuno-
therapy has dampened the enthusiasm for targeting PDAC using this approach. 
However, the uncovering of mechanisms contributing to poor PDAC’s response to 
immunotherapy has provided opportunities to test newer approaches. Even though 
the strategies mentioned above have shown promising pre-clinical results indivi-
dually, a regimen targeting multiple aspects of PDAC will likely deliver a better 
clinical outcome in this deadly disease.
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