Table 2.
Details of Embeddings
| # | Embedding name and source | Details |
|---|---|---|
| em1 | Drug Chatter Twitter [16] | 1B drug tweets from user timelines; window size 5 and dimension 400 |
| em2 | Glove [33] | 840B tokens, 2.2 M vocab, cased, 300d vectors |
| em3 | Twitter Word2vec Embeddings [34] | 400 million Twitter tweets; Negative sampling; Skip-gram architecture; Window of 1; subsampling rate of 0.001; Vector size of 400 |
| em4 | glove.twitter.27B [33] | 2B tweets, 27B tokens, 1.2 M vocab, uncased,200d vectors |
| em5 | RedMed Model [31] | 3 M tokens, 64d; Reddit drug posts |
| em6 | Glove [33] | 42B tokens, 1.9 M vocab, uncased, 300d vectors |