
High Performance Computing Framework for Tera-Scale
Database Search of Mass Spectrometry Data

Muhammad Haseeb1, Fahad Saeed2,3,4,5

1Knight Foundation School of Computing and Information Sciences, Florida International
University, Miami, FL, USA.

2Knight Foundation School of Computing and Information Sciences, Florida International
University, Miami, FL, USA.

3Biomolecular Sciences Institute (BSI), Florida International University, Miami, FL, USA.

4Department of Human and Molecular Genetics, Herbert Wertheim School of Medicine, Florida
International University, Miami, FL, USA.

Abstract

Database peptide search algorithms deduce peptides from mass spectrometry (MS) data. There

has been substantial effort in improving their computational efficiency to achieve larger and

more complex systems biology studies. However, modern serial and high-performance computing

(HPC) algorithms exhibit sub-optimal performance mainly due to their ineffective parallel designs

(low resource utilization), and high overhead costs.

We present an HPC framework, called HiCOPS, for efficient acceleration of the database peptide

search algorithms on distributed-memory supercomputers. HiCOPS provides, on average, more

than 10-fold improvement in speed, and superior parallel performance over several existing HPC

database search software. We also formulate a mathematical model for performance analysis

and optimization, and report near-optimal results for several key metrics including strong-scale

efficiency, hardware utilization, load-balance, inter-process communication and I/O overheads.

The core parallel design, techniques, and optimizations presented in HiCOPS are search-algorithm

independent and can be extended to efficiently accelerate the existing and future algorithms and

software.

Keywords

mass spectrometry; high performance computing; proteomics; peptide identification; bulk
synchronous parallel

5Corresponding Author. fsaeed@fiu.edu.
Author Contributions
M.H. and F.S. designed the parallel computational framework. M.H. implemented the software. M.H. and F.S. designed and performed
the experiments, performed calculations, analyzed the data and results, and wrote the manuscript.

Competing Interests
The authors declare no competing interests.

HHS Public Access
Author manuscript
Nat Comput Sci. Author manuscript; available in PMC 2022 February 20.

Published in final edited form as:
Nat Comput Sci. 2021 August ; 1(8): 550–561. doi:10.1038/s43588-021-00113-z.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

1 Introduction

Faster, and more efficient peptide identification algorithms [1], [2], [3] have been the

cornerstone of computational research in shotgun mass spectrometry (MS) based proteomics

for more than 30 years [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14],

[15], [16], [17]. Modern mass spectrometry technologies allow the generation of thousands

of raw, noisy spectra in a span of few hours producing several gigabytes of data [18]

(Supplementary Figure 1). Database peptide search is the most commonly employed

computational approach to identify the peptides from the experimental spectra [19], [10],

[2], [20]. In this approach, the experimental spectra are searched against an (indexed)

database of theoretical spectra (or modeled-spectra) with the goal to find the best possible

matches [1]. The theoretical spectra database (or simply theoretical database) is simulated by

simulating in-silico digestion on a proteome sequence database (Supplementary Figure 2).

The theoretical databases (and their indexed versions) expand exponentially in space (several

giga to terabytes) as the post-translational modifications (PTMs) are added in the simulation

[2], [21] (Supplementary Figure 3a, b). Consequently, the low computational arithmetic

intensity (operations or instructions per byte) [22] inherent to database search algorithms

[2], [23], [9] results in performance bottlenecks due to memory contention (parallel database

query), out-of-core processing (database size > main memory), database management (data

movement), and I/O.

As demonstrated by other scientific fields [24], these limitations can be alleviated through

effective exploitation of architectural resources provided by modern high-performance

computing (HPC) systems. However, most existing HPC database peptide search algorithms

[25], [26], [27], [28], [29], [30], [31] employ unoptimized parallelization techniques,

resulting in sub-optimal performance and limited application in the domain (Supplementary

Section 1, Supplementary Section 2, Supplementary Figure 3c). The need for efficient

parallel database peptide search software is driven by the computational demands of

modern systems biology studies for proteomics, meta-proteomics and proteogenomics,

where peptide identification is often the first step in the analysis. These systems biology

studies also have a direct impact on personalized nutrition, microbiome research [32], [33],

and cancer therapeutics [34].

In this paper, we present an HPC framework for efficient acceleration of database peptide

search algorithms on large-scale symmetric multiprocessor (SMP) distributed-memory

supercomputers. HiCOPS provides orders-of-magnitude improvement in speed compared

to several existing shared- and distributed-memory database peptide search tools allowing

searching of several gigabyte experimental MS/MS data against terabytes of theoretical

databases in a few minutes compared to several hours required using existing algorithms.

The proposed HiCOPS parallel design implements an unconventional approach where the

(massive) theoretical databases are distributed across parallel nodes in a load-balanced

fashion followed by asynchronous parallel execution of the database peptide search. Upon

completion, the locally computed results are merged into global results in a communication

optimal manner. This overhead cost-optimal design, along with several optimizations,

allows HiCOPS to maximize resource utilization and alleviate the performance bottlenecks.

We also formulate and perform a performance analysis to identify the overhead costs

Haseeb and Saeed Page 2

Nat Comput Sci. Author manuscript; available in PMC 2022 February 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

and discuss optimization techniques to minimize them. Finally, we implement a shared

peak counting coupled hyperscore-based search algorithm [11], [2], [35] in HiCOPS to

demonstrate its parallel performance, but in essence, our framework is search-algorithm

oblivious. i.e. the proposed parallel design, algorithms and optimizations can be extended or

replaced to accelerate most existing and future search algorithms.

Our comprehensive experimentation shows that HiCOPS outperforms several existing serial

and parallel database peptide search tools by more than 10-folds on average while producing

correct and consistent peptide identifications. Additionally, we demonstrate the application

of HiCOPS in large-scale database search setting through multiple compute- and data

intensive experiments. Note that the HiCOPS framework does not propose a new database

search algorithm and instead relies on the underlying (portable) search algorithmic workflow

for peptide identification accuracy. Finally, we performed an extensive performance

evaluation where we report between 70-80% strong-scale efficiency and less than 25%

overall performance overheads (load imbalance, I/O, inter-process communication, pipeline

halt); collectively depicting a near-optimal parallel performance.

2 Results

2.1 Methods Overview

HiCOPS constructs the parallel database peptide search workflow (task-graph) through

four Single Program Multiple Data (SPMD) Bulk Synchronous Parallel (BSP) [36]

supersteps. In the BSP model, a superstep [37] refers to a set of distinct algorithmic

and data communications blocks, asynchronously executed by all parallel processes (pi

ϵ P). Synchronization between the processes is done at the end of each superstep, as

needed. In the first HiCOPS’s superstep, the (massive) theoretical database is partitioned

across parallel processes in a load balanced fashion, and locally indexed. In the second

superstep, the experimental data are divided into batches and pre-processed, if required. In

the third superstep, the parallel processes execute a local database peptide search, producing

intermediate results. In the final superstep, the intermediate results are de-serialized, and

assembled into complete (global) results. Supplementary Figure 4 provides an overview

of the overall task-graph, and workload profile for each superstep (Methods). The current

HiCOPS design allows in-core processing so the minimum number of nodes Pmin required

to run must be ≥ D/M where D is the theoretical database index size and M is the available

main memory per node.

The total wall time (TH) for executing the four supersteps is the sum of superstep execution

times, given as:

TH = T1 + T2 + T3 + T4

Where the execution time for a superstep (j) is the maximum time required by any parallel

task (pi ϵ P) to complete that superstep, given as:

Tj = max(Tj, p1, Tj, p2, …, Tj, pP)

Haseeb and Saeed Page 3

Nat Comput Sci. Author manuscript; available in PMC 2022 February 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Or simply:

Tj = maxpi(Tj, pi)

Combining the above three equations, the total HiCOPS runtime is given as:

TH = ∑
j = 1

4
maxpi(Tj, pi) (1)

2.2 Experimental Setup Overview

We constructed five custom datasets (Si) by combining several Pride Archive (PXD) datasets

(accession numbers: PXDxxxxxx) for our experimentation and evaluation. These five

custom datasets are given as follows: S1: PXD009072, S2: PXD020590, S3: PXD015890,

S4: PXD007871, 009072, 010023, 012463, 013074, 013332, 014802, 015391 combined, and

S5: all above listed datasets combined. The datasets were searched against several theoretical

databases constructed by adding combinations of post-translational modifications (PTMs)

to the D1: UniProt Homo sapiens (UP000005640) and D2: UniProt SwissProt (reviewed)

databases. Detailed discussion about the settings for database digestion, post-translational

modifications, theoretical spectra generation etc. is provided in the (Methods) section. In

the rest of the paper, we will represent the workload size for each performed experiment

(expn) as a tuple given as: expn = (q, D, δM); where q is experimental MS/MS dataset size

in 1 million spectra, D is theoretical database size in 100 million spectra and δM is the

peptide precursor mass tolerance setting in ±100Da. Note that the tuple does not contain

the fragmention mass tolerance (δF) information as it is globally set to ±0.01 Da unless

specifically mentioned as the fourth element in an experiment tuple.

Runtime Environment: All experiments were run on the Extreme Science and

Engineering Discovery Environment (XSEDE) [38] Comet cluster at the San Diego

Supercomputer Center (SDSC). The Comet compute nodes are equipped with 2 sockets × 12

cores of Intel Xeon E5-2680v3 processor (Total: 24 cores), 2 NUMA nodes × 64GB (Total:

128GB) DRAM, 56 Gbps FDR InfiniBand interconnect and Lustre shared file system. The

maximum number of nodes allowed per job is 72 and maximum allowed job time is 48

hours. Furthermore, the single-node experiments for Crux and X!Tandem tools requiring

>48h (XSEDE limit) execution time were run on a (comparable) local machine named

raptor, equipped with Intel Xeon Gold 6152 processor (22 cores), 128GB DRAM and 6TB

SSD HDD.

2.3 Correctness Analysis

We evaluated the HiCOPS’s correctness using a two-step approach. In the first step, we

verified the consistency of results across parallel runs by searching all five datasets Si

against both protein sequence databases Di using various settings and PTM combinations.

The correctness was evaluated in terms of identified peptide sequences, and the

corresponding hyperscores and expected values (expectscores) assigned (within 3 decimal

points). A comparison of hyperscores and expectscores between the serial (x-axis) and

Haseeb and Saeed Page 4

Nat Comput Sci. Author manuscript; available in PMC 2022 February 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

parallel runs (y-axis), obtained by searching the dataset: S1 against the database: D1 with no

PTMs is shown in Figure 2a, 2b respectively. The results show over 99.5% consistency in

scores. A small error was observed in a negligible number of results due to the sampling and

floating-point precision losses (Methods, Figure 1d).

In the second step, we verified the quality of the implemented search algorithm by

comparing the HiCOPS-computed hyperscores with the MSFragger-computed ones as

both frameworks employ a similar scoring algorithm. i.e. shared-peak counting coupled

hyperscore. Note that the hyperscores computed by MSFragger and HiCOPS cannot be

exactly identical as MSFragger uses several pre-processing and boosting features that affect

the final scores. These features could not be replicated in HiCOPS as MSFragger is a

proprietary software. We designed and executed six experiments, three with restricted search

(δM=1Da) and three with open search (δM ≥100Da) setting. The experimental MS/MS data

pre-processing and database search settings were kept identical (and as minimal as possible)

for both tools for fair comparisons. The details of the six experiments are as follows:

In the first experiment, a subset of 860 thousand spectra from the dataset: S4 was searched

against the database: D1 modified with Methionine oxidation and NQ-deamidation as PTMs

yielding a thoretical database of 18 million spectra at δM = 1Da. In the second experiment,

the dataset: S3 was searched against the database: D1 modified with Methionine oxidation

and STY-phosphorylation yielding a theoretical database of 66 million spectra at δM = 1Da.

In the third experiment, the dataset: S3 was searched against the database: D2 modified with

Methionine oxidation and Serine phosphorylation yielding a database of 80 million spectra

at δM = 1Da. In the fourth experiment: the entire dataset: S3 was searched against the

database: D1 with Methionine oxidation and NQ-deamidation yielding a theoretical database

of 18 million spectra at δM = 200Da. In the fifth experiment, the S3 was searched against

the database: D1 modified with Methionine oxidation and ST-phosphorylation yielding a

theoretical database of 56 million spectra at δM = 100Da. In the sixth experiment, dataset:

S3 was searched against the database: D2 modified with Methionine oxidation and Serine

phosphorylation yielding a database of 80 million spectra at δM = 200Da.

For our comparisons, first, a correlation between the hyperscores assigned by both tools

to commonly identified peptide to spectrum matches (PSMs) was computed (shown in

Figures 2c to 2h). Then, the PSMs from both tools were filtered at 1% q-value (false

discovery rate) and compared (shown in Supplementary Figure 5). Figures 2c, 2d, and

2e respectively depict a strong-correlation (pearson coefficient R ≥ 0.90) between the

hyperscores computed by both tools in the first three (restricted-search) experiments.

However, the correlation between the hyperscores slightly drops between 0.70 ≤ R ≤ 0.90

for the last three (open-search) experiments (Figures 2f, 2g, and 2h respectively). We suspect

that the divergence in hyperscores may have stemmed from open-search specific spectral

processing, reconstruction and/or score re-ranking algorithms implemented in MSFragger.

Further, the results in Supplementary Figure 5 show about 50% overlap between the q-value

filtered PSMs from HiCOPS and MSFragger. The results also show that the MSFragger’s

scoring algorithm outperformed the underlying scoring algorithm in HiCOPS in identified

peptides, as expected. Recall that the HiCOPS is designed as algorithm oblivious; meaning

Haseeb and Saeed Page 5

Nat Comput Sci. Author manuscript; available in PMC 2022 February 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

the underlying algorithms can be customized or ported with more sophisticated versions to

improve the identification while delivering similar performance.

2.4 Speed Comparison Against Existing Algorithms

We compared the HiCOPS speed against many existing shared- and distributed-memory

database peptide search algorithms including Tide/Crux v3.2 [3], Comet v2020.01 [40],

MSFragger v3.0 [2], X! Tandem v17.2.1 [41], X!! Tandem v10.12.1 [26], and SW-Tandem

[29]. Parallel versions of the shared-memory tools were also implemented and run through

Python and Bash wrapper scripts executing the following workflow: run parallel instances

of the tool on XSEDE Comet nodes with equal partitions (random partitioning) of the

experimental MS/MS data files. This technique also indirectly simulated the workflows

of cloud-based tools such as MS-PyCloud (via parallel MSGF+) and Bolt (via parallel

MSFragger). Additionally, we tried to run the UltraQuant HPC tool which implements a

parallel MaxQuant. However, it crashed with unhandled exceptions every time it was run on

>1 node.

We designed six experiments listed as (a) to (f) in increasing order of their experimental

workload sizes. (i.e. database and dataset sizes, and experimental settings). In the first two

(a, b) experiment, a subset of 8000 spectra from dataset: S3 (file: 7Sep18_Olson_WT24)

was searched against the database: D2 modified with variable Methionine oxidation, and

Tyrosine Biotin-tyramide yielding a theoretical database of 93.5 million spectra at δM
= 10Da and δM = 500Da respectively. In the third experiment (c), the dataset: S3 was

searched against database D1 modified with variable Methionine oxidation, and Tyrosine

Biotin-tyramide as PTMs yielding a theoretical database of 7.1 million spectra at δM =

500Da. In the fourth (d) and fifth (e) experiments, the entire dataset: S3 was searched against

the theoretical database of first two experiments (i.e. the 93.5 million spectra one) at δM
= 10Da and δM = 500Da respectively. In the sixth (f) experiment, dataset S4 was searched

against the database: D1 modified with variable Methionine oxidation, STY-phosphorylation

and NQ-deamidation yielding a theoretical database of: 213 million at δM = 100Da. The

slower tools such as Comet, MSGF+, Crux and X!Tandem variants were only run for

smaller experiments due to XSEDE max job time limits.

The obtained wall time results (Figure 3a to 3f) show that the HiCOPS outperforms all

other tools by >10× on average in speed, especially for experiments with larger workloads

(Figure 3d, e, f). It can also be observed that the HiCOPS exhibits better strong-scale

parallel efficiency compared to other tools as the experimental workload size increases

(a→f). For smaller workloads (Figure 3a, 3b, 3c) the parallel efficiency is limited by

the Amdahl’s law. The scalability is shown as the deviation (+ve = sub-linear; −ve =

hyper-linear) from the ideal speedup track (dotted gray) lines in each experiment in Figure

3a to Figure 3f. The parallel efficiency results for MSFragger were particularly peculiar

as it appears to be scaling super-linearly up to a certain number of parallel nodes, and

then dropping to sub-linear. To explain this, the runtime components of MSFragger were

further analyzed in detail. The results (Figure 3g and 3i) show that a large percentage of

MSFragger’s runtime is composed of I/O, and load imbalance, resulting in low overhead/

compute ratio (effective resource utilization). Comparatively, HiCOPS exhibits significantly

Haseeb and Saeed Page 6

Nat Comput Sci. Author manuscript; available in PMC 2022 February 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

improved memory performance (Figure 3h, 3j) resulting in lower run time even though the

effective search time (useful compute time) for MSFragger and HiCOPS are comparable.

The results (Figure 3a, 3b, 3c) show that the existing HPC tools including X!!Tandem,

SW-Tandem, parallel Comet and parallel MSGF+ (MS-PyCloud) are > 100× slow even for

small-scale experiments. Finally, we observed zero parallel efficiency for SW-Tandem in all

experiments, i.e. no speedups whatsoever (Supplementary Section 3).

2.5 Application in Tera-Scale Experimentation

Application of HiCOPS in tera-scale experiments was demonstrated using three additional

experiments. In the first experiment, the dataset: S3 was searched against a theoretical

database of 766 million spectra (780GB) at δM = ±500Da and δF = ±0.01Da. In the

second experiment, the dataset: S4 was searched against a theoretical database of 1.59 billion

spectra (1.7TB) at δM = ±500Da and δF = ±0.05Da. In the third experiment, the dataset: S2

was searched against a theoretical database of 3.89 billion spectra (4TB) at δM = ±500Da

and δF = ±0.01Da. HiCOPS completed the execution of the these three experiments in 14.55

minutes (64 nodes), 103.5 minutes (72 nodes) and 27.3 minutes (64 nodes) respectively.

In contrast, MSFragger completed the execution of first experiment in 158.8 minutes (64

nodes; 10× slower). The second experiment was completed by MSFragger in 18 hours

(72 nodes; 10.3× slower) and 35.5 days when using 1 node (494× slower). The other

experiments were intentionally not run on MSFragger or other tools due to feasibility issues.

The results for this set of experiments are summarized in Table 1.

2.6 Performance Evaluation

Twelve experiments of varying workload sizes were designed using combinations of

aforementioned databases (Di) and datasets (Si), post-translational modifications, and

precursor peptide mass tolerance windows (δM) for an extensive performance evaluation.

These experimental workloads varied from extremely small to massive-scale covering a

wide-range of application. The twelve experiment sets in the tuple form are listed as follows:

exp1 = (0.3, 0.84, 0.1), exp2 = (0.3, 0.84, 2), exp3 = (3.89, 0.07, 5), exp4 = (1.51, 2.13, 5),

exp5 = (6.1, 0.93, 5), exp6 = (3.89, 7.66, 5), exp7 = (1.51, 19.54, 5), exp8 = (1.6, 38.89,

5), exp9 = (3.89, 15.85, 5), exp10 = (3.89, 1.08, 5), exp11 = (1.58, 2.13, 1), and exp12 =

(0.305, 0.847, 5). Note that the fragment-ion tolerance is set to δF = ±0.01Da in all these

experiments.

Parallel Scalability: Strong-scale efficiency for all twelve experiments was measured and

the results (Figure 4a, 4b) depict that the overall strong-scale efficiency ranges between

70-80% for sufficiently large experimental workloads. For smaller experiments, the parallel

speedup quickly dampens as there is not enough parallel work to be done (Amdahl’s Law).

Superstep-level dissection of the speedup results in Supplementary Figure 6 further confirm

that the most significant fraction of the overall runtime is constituted by the superstep

3 indicating its importance in optimizations. Note that the minimum number of parallel

nodes (Pmin) required by HiCOPS for each experiment must be Pmin ≥ D/M; where M
is main memory per node. Therefore, the speedup and efficiency calculations were done

using the runtime for the experiment with minimum nodes as the base case. The serial

time (Ts) was first computed using the base case experiment runtime (TPmin) as: Ts =

Haseeb and Saeed Page 7

Nat Comput Sci. Author manuscript; available in PMC 2022 February 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Pmin × TPmin. Then, the speedups and efficiency for experiments with nodes ≥ Pmin were

computed relative to TPmin using the computed Ts. Essentially, the speedups are relative to

the base case runtime which may not be the 1-node time depending on the Pmin (limitation

of HiCOPS). Furthermore, super-linear speedups were observed in several experiments with

larger workloads. To explain this, the following hardware counters-based metrics were also

recorded for all experiments: instructions per cycle (ipc), last level cache misses (LLC) per

all cache level misses (lpc), and the cycles stalled due to writes per total stalled cycles (wps).

The results (Figure 4c, 4d, 4e) show that the CPU, cache, and memory bandwidth utilization

improves as the workload per node (wf/P) increases reaching to an optimum point after

which it saturates due to memory bandwidth contention since the database search algorithms

employed (and also in general) are highly memory intensive. Beyond this saturation point,

increasing the number of parallel nodes for the same experimental workload resulted in

a substantial improvement (super-linear) in performance as the workload per node (wf/P)

reduced to the normal (optimal) range. For instance, the experiment set exp5 depicts super

linear speedups (Figure 4a) which can be correlated to the hardware performance surge in

Figure 4c.

Performance Overheads: Several metrics including load imbalance, communication,

I/O, and pipeline halt costs were also measured to identify and quantify the performance

overheads. The obtained results (Figure 5a, 5b, 5c) depict that the load imbalance costs

remain ≤10%, I/O costs remain ≤10%, and inter-task communication costs remain ≤5% in

most experiments. Note that the load imbalance is a direct measure of synchronization

cost. Figure 5e shows a time series of the per-batch producer-consumer pipeline halt

time (see Superstep 3 in Methods) when searching three datasets of increasing size. The

wait time is the time when any of the pipeline sub-tasks wait for a batch of data from

its predecessor. The results (Figure 5e) show that our task-scheduling algorithm actively

performs counter measures (reallocates threads) as soon as a pipeline-stall is detected due

to speed mismatches between parallel sub-tasks keeping the total cost to ≤ 5% in most

experiments (Figure 5d).

3 Discussion

Recent trends in high-performance computing (HPC) have shifted towards heterogeneous

architectures [42] as several top-500 supercomputers combine CPUs with Graphical

Processing Units (GPUs) and Field Programmable Gate Arrays (FPGAs) to deliver petascale

(and in near future, exascale [43]) computing powers. However, the presented SPMD-BSP

based HiCOPS design limits its application to only the homogeneous (CPU-only) parallel

nodes in a supercomputer. This technological shift in HPC drives our future efforts that

include a GPU-accelerated design for HiCOPS.

Peptide identification rates achieved by HiCOPS are limited by the underlying data

processing, scoring and statistical modeling algorithms it executes. In our current design,

we implement a basic shared-peak coupled hyperscoring algorithm [2] without making an

explicit effort to improve these algorithms. Further, in some cases, searching against smaller

databases (on single nodes) results in better performance (smaller workloads) and search

quality (high-confidence separation of true positives from false positives). Although the

Haseeb and Saeed Page 8

Nat Comput Sci. Author manuscript; available in PMC 2022 February 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

proposed parallel design is algorithm-independent; i.e. underlying algorithms can be trivially

ported and updated, we focus our future efforts on implementing (heterogeneous) HPC

versions of several modern algorithms, and machine- and deep-learning models [44], [45],

[9] within HiCOPS.

Finally, we believe that the computational tools are the enablers of new and more exciting

science – science that one might not envision today because of the limitations of the

infrastructure that is at our disposal. Therefore, we are confident that our current and future

efforts will make a useful advance in enabling scientific investigations in this application

domain.

7 Methods

Notations and Symbols

For the rest of the paper, we will denote the number of peptide sequences in the database

as (ζ), average number of post-translational modifications (PTMs) per peptide sequence

as (m), the total theoretical database index size as (ζ(2m) = D), the number of parallel

nodes/processes as (P), number of cores per parallel process as (cpi), size of experimental

MS/MS dataset (i.e. number of experimental/query spectra) as (q), average length of query

spectrum as (β), and the total dataset size as (qβ). The runtime of executing the superstep (j)
by parallel task (pi) will be denoted as (Tj,pi) and the generic overheads due to boilerplate

code, OS delays, memory allocation etc. will be captured via (γpi). Note that we shall refer

the theoretical database as simply the database in the rest of the paper.

7.1 Runtime Cost Model

Since the HiCOPS parallel processes run in SPMD fashion, the cost analysis for any parallel

process (with variable input size) is applicable for the entire system. Also, the runtime cost

for a parallel process (pi ε P) to execute superstep (j) can be modeled by only its local input

size (i.e. database and dataset sizes) and available resources (i.e. number of cores, memory

bandwidth). The parallel processes may execute the algorithmic work in a data parallel, task

parallel or a hybrid task and data parallel model. As an example, the execution runtime

(cost) for a parallel process pi to execute superstep (j) which first generates D model-spectra

using algorithm k1 and then sorts them using algorithm k2 in data parallel fashion (using all

cpi cores) will be given as follows:

Tj, pi = kj1(D) + kj2(D) + γpi (2)

Similarly, if the above steps kz are performed in a hybrid task and data parallel fashion, the

number of cores allocated to each (kjz) must also be considered. For instance, in the above

example, if the two algorithmic steps are executed in sub-task parallel fashion with cpi/2

cores each, the execution time will be given as:

Tj, pi = max(kj1(D, cpi ∕ 2), kj2(D, cpi ∕ 2)) + γpi (3)

Haseeb and Saeed Page 9

Nat Comput Sci. Author manuscript; available in PMC 2022 February 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

For analysis purposes, if the time complexity of the algorithms used for step kjz is known

(say O(.)), we will convert it into a linear function kjz′ with its input data size multiplied by

its runtime complexity. This conversion will allow better quantification of serial and parallel

runtime portions as seen in later sections. As an example, if it is known that the sorting

algorithms used for kj2 have time complexity: O(N log N), the equation 2 can be modified

to:

Tj, pi = kj1(D) + kj2′ (D log D) + γpi (4)

Remarks: The formulated model will be used to analyze the runtime cost for each

superstep, quantify the serial, parallel and overhead costs in the overall design, and optimize

the overheads.

7.2 Superstep 1: Database Partitioning

In this superstep, the HiCOPS parallel processes construct a local database partition through

the following three algorithmic data parallel steps (Figure 1): 1) Generate and extract

a (balanced) local partition of the (peptides + PTM variants) database. 2) Generate the

theoretical spectra data. 3) Index the local peptide and model-spectra to build the theoretical

database index (suffix array and the fragment-ion index).

The database partitions are constructed using the LBE algorithm [46] (illustrated in

Supplementary Figure 7). The LBE algorithm first clusters similar model-spectra in the

database which are then scattered across parallel nodes cluster by cluster to achieve the

balance [46] as also depicted in Supplementary Algorithm 1. In this work, we supplement

the LBE algorithm with a new additional distance metric for clustering. We call this

metric as the Mod Distance (Δm) which allows better separation of database spectral-pairs

which cannot be separated by the normalized Edit Distance (Δe) metric introduced in the

LBE algorithm (See Supplementary Section 5 for more information on Mod Distance).

Consequently, the new distance metric allows better load balance between the database

partitions as corroborated by our experimental results. To the best of our knowledge, LBE

is the only existing technique for efficient theoretical database partitioning. Mod Distance
(Δm) proposed in this paper is defined as follows:

Mod Distance: For a pair of model-spectra in the database (x, y), assuming the sum of

unedited amino acid sequence lengths from both peptide sequence termini is (a), the Mod

Distance (Δm) is given as follows (See Supplementary Section 5):

Δm(x, y) = 2 − a
max(len(x), len(y))

Cost Analysis: The first step generates the entire database of size (D) and separates out a

local partition (of roughly the size D/P = Dpi) in runtime: k11(D). The second step generates

the model-spectra from the partitioned database using the standard simulation model [12],

[40] in runtime: k12(Dpi). The third step constructs a fragmention index similar to [2],

[23], [21] in runtime: O(N log N). In our implementation, we employed the CFIR-Index

Haseeb and Saeed Page 10

Nat Comput Sci. Author manuscript; available in PMC 2022 February 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

[21] algorithm due to its smaller memory footprint resulting in runtime: k13′ (Dpi log Dpi).

Collective runtime for this superstep is given by Equation 5.

T1 = maxpi (k11(D) + k12(Dpi) + k13′ (Dpi log Dpi) + γpi) (5)

Remarks: Equation 5 depicts that the serial execution time i.e. k11(D) bottlenecks the

parallel efficiency.

7.3 Superstep 2: Experimental MS/MS Data Pre-processing

In this superstep, the HiCOPS parallel processes pre-process a partition of experimental

MS/MS spectra data through the following three algorithmic data parallel steps (Figure 1):

1) Read the dataset files, create a batch index and initialize internal structures. 2) Pre-process

(i.e. normalize, clear noise, reconstruct etc.) a partition of experimental MS/MS data. 3)
Write-back the pre-processed data.

The experimental spectra are split into batches such that a reasonable parallel granularity is

achieved when these batches are searched against the database. By default, the maximum

batch size is set to 10K spectra and the minimum number of batches per dataset is set to P.

The batch information is indexed using a queue and a pointer stack to allow quick access to

the pre-processed experimental data in the superstep 3.

Cost Analysis: The first step for reads the entire dataset (size: qβ) and creates a batch

index in runtime: k21(qβ). The second step may pre-process a partition of the dataset (of

roughly the size: qβ/P = Qpi) using a data pre-processing algorithm such as [47], [5], [44]

etc. in runtime: k22(Qpi). The third step may write the pre-processed data back to the file

system in runtime: k23(Qpi). Note that the second and third steps may altogether be skipped

in subsequent runs when the input data are already pre-processed. Collective runtime for this

superstep is given by Equation 6.

T2 = maxpi (k21(qβ) + k22(Qpi) + k23(Qpi) + γpi) (6)

Remarks: Equation 6 depicts that the parallel efficiency of superstep 2 is highly limited

by its dominant serial portion i.e. k21(qβ). Moreover, this superstep is sensitive to the file

system bandwidth since large volumes of data may be communicated to/from the shared file

system.

7.4 Superstep 3: Database Peptide Search

This is the most important superstep in HiCOPS workflow and is responsible for 80-90% of

the total algorithmic workload. In this superstep, the HiCOPS parallel processes search

the pre-processed experimental spectra against their local database partitions through

the following three algorithmic hybrid task and data parallel fashion steps (Figure 1,

Supplementary Figure 4): 1) Load the pre-processed experimental MS/MS data batches

Haseeb and Saeed Page 11

Nat Comput Sci. Author manuscript; available in PMC 2022 February 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

into memory. 2) Search the loaded spectra batches against the (local) database partition and

produce intermediate results. 3) Serialize and write the intermediate results to the shared file

system assigning them unique tags.

Three parallel subtasks are created, namely R, I and K, that work in a producer-consumer

pipeline to execute the algorithmic work of this superstep (Figure 1c). The data flow

between the sub-tasks is handled through queues to create a buffer between the producers

and consumers. The first sub-task (R) loads batches of the pre-processed experimental

spectra data and puts them in queue (qf) as depicted in Supplementary Algorithm 2. The

sub-task R may also perform minimal computations on the experimental spectra before

putting them in queue. e.g. peak selection and/or intensity normalization. The parallel cores

assigned to sub-task R are given by: ∣ r ∣. The second sub-task (I) extracts batches from (qf),

performs the database peptide search (currently: shared-peak counting coupled hyperscore

computation) against its local database partition and puts the produced intermediate (local)

results in queue (qk) as depicted in Supplementary Algorithm 3. The parallel cores assigned

to sub-task I are given by: ∣ i ∣. The sub-task I also recycles the memory buffers back to

sub-task R using the queue (qr). The third sub-task (K) serializes and writes the intermediate

results to a shared memory using ∣ k ∣ cores. Given an experimental spectrum (φ), a database

peptide (χ), the number of shared b-ions between them (nb) with intensities (ib,j), and the

number of shared y-ions between them (ny) with intensities (iy,k), the hyperscore between

them is given as:

ℎyperscore(φ, χ) = log(nb!) + log(ny!) + log(∑
j = 1

nb
ib, j) + log(∑

k = 1

ny
iy, k)

Cost Analysis: The sub-task (R) reads the experimental data batches in runtime: k30(qβ).

The sub-task (I) iteratively filters the database and computes spectral comparisons against

the database (scoring step). Most commonly, the database peptide search algorithms use

two or three database filtration steps, most commonly, peptide precursor mass tolerance [3],

[29], shared fragment-ions [2], [23] and sequence tags [10] [9]. In current implementation,

we use the first two filtration methods which execute in runtime: k31(qDpi) and k32(qβαpi)

respectively. Here, the αpi represents the average filtered database size filtered from the first

step. The currently implemented scoring mechanism computes hyperscores [13] in runtime:

k33(qβσpi) + k34(qαγpi). Here, the σpi and μpi represent the average number of filtered

shared-ions and model-spectra per experimental spectrum. Note that the scoring algorithm in

this superstep is portable as the parallel design does not depend on it. Finally, the sub-task K
writes the intermediate results to the shared file system in runtime: k35(q).

Overhead Costs: Overhead factors stemming from load imbalance, producer-consumer

pipeline halt, file system bandwidth congestion affect the performance of this superstep.

Therefore, we capture them using an additional runtime cost: Vpi (q, Dpi, P). Several

optimizations including buffering, task scheduling, load balancing and data sampling

(discussed in later sections) were implemented to alleviate the overhead costs. Collective

runtime for this superstep is given by Equation 10.

Haseeb and Saeed Page 12

Nat Comput Sci. Author manuscript; available in PMC 2022 February 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

The runtime of sub-task R, i.e. tpi(r, ∣ r ∣), is given as:

tpi(r, ∣ r ∣) = k30(qβ, ∣ r ∣) (7)

The runtime of sub-task I, i.e. tpi (i, ∣ i ∣), is given as:

tpi (i, ∣ i ∣) = k31(qDpi, ∣ i ∣) + k32(qβαpi, ∣ i ∣) + k33(qβσpi) + k34(qμpi, ∣ i ∣)

Or:

tpi (i, ∣ i ∣) = k31′ (q log(Dpi), ∣ i ∣) + k32′ (qβ log(αpi), ∣ i ∣) +
k33(qβσpi, ∣ i ∣) + k34(qμpi, ∣ i ∣) (8)

The runtime of sub-task K, i.e. tpi (k, ∣ k ∣), is given as:

tpi (k, ∣ k ∣) = k35(q, ∣ k ∣) (9)

Combining equations 7, 8 and 9 we have:

T3 = maxpi(max(tpi(r, ∣ r ∣), tpi(i, ∣ i ∣), tpi(k, ∣ k ∣)) +
V pi(q, Dpi, P) + γpi)

(10)

Remarks: Equations 7, 8, 9 and 10 depict that the parallel runtime portion of this superstep

grows quadratically superseding the serial portion if the experimental load is sufficient.

7.5 Superstep 4: Result Assembly

In this superstep, the HiCOPS parallel processes assemble the intermediate results from

the last superstep into complete results through the following hybrid task and data parallel

algorithmic steps (Figure 1d): 1) Read a set of intermediate result batches, assemble them

into complete results, and send the assembled results to their parent processes. 2) Receive

complete results from other parallel processes and synchronize communication. 3) Write the

complete results to the file system.

Two parallel sub-tasks are created to execute the algorithmic steps in this superstep. The

first sub-task reads sets of intermediate results from the shared file system (or shared

memory) (satisfying: tag mod P = pi; pi ϵ MPI ranks), de-serializes them and assembles

the complete results. The expectation scores are then computed and communicated to their

origin processes. For example, the process with MPI rank 4 will process the all intermediate

result batches with tag 0x8_i where i = 0,1,.., P − 1. The assembly process is done through

signal addition and shift operations (Figure 1d). The expected values (expectscores (es))

are computed by first smoothing the assembled data through Savitzky-Golay filter and then

applying the null test through either the Linear-Tail Fit [48] or log-Weibull (Gumbel) Fit

method (Figure 1d). The computed es along with additional information (total: 16 bytes)

Haseeb and Saeed Page 13

Nat Comput Sci. Author manuscript; available in PMC 2022 February 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

are queued to be sent to the HiCOPS process that recorded the most significant database hit

(origin). The final results are stored in a map data structure for collective communication at

the end of all batches. All available cores (cpi) are assigned to this sub-task. Supplementary

Algorithm 4 depicts the algorithmic work performed by this sub-task.

The second sub-task runs waits for P − 1 packets of results from other HiCOPS processes.

This task runs asynchronously using an over-subscribed thread and only activates when

incoming data is detected. Finally, once the two sub-tasks complete (join), the complete

results are written to the file system in data parallel fashion using all available threads.

Cost Analysis: The first sub-task reads the intermediate results, performs regression and

sends computed results to other processes in runtime: k41 (Qpi, cpi) + k42(Qpi, cpi) + k43(P,

1) time. The second sub-task receives complete results from other tasks in runtime: k44(P,

1). Finally, the complete results are written in runtime: k45(Qpi). Collectively, the runtime for

this superstep is given by equation 11.

T4 = maxpi(max(k41(Qpi, cpi) + k42(Qpi, cpi) + k43(P , 1), k44(P , 1)) + k45(Qpi)
+ γpi)

(11)

To simplify equation 11, we can re-write it as a sum of computation costs plus the

communication overheads (kcom(P, 1)) as:

T4 = maxpi(k41(Qpi, cpi) + k42(Qpi, cpi) + kcom(P , 1) + k45(Qpi) + γpi) (12)

Assuming that the network latency is denoted as (ω), bandwidth is denoted as (π) and

(16Qpi) is the average data packet size in bytes, the inter-process communication overhead

cost (kcom(P, 1)) in seconds is estimated to be:

kcom(P , 1) ≈ 2(P − 1)(ω + 16Qpi ∕ π)

Remarks: As the communication per process are limited to only one data exchange

between any pair of processes, the overall runtime given by equation 12 is highly scalable.

The effective communication cost depends on the amount of overlap with computations and

the network parameters at the time of experiment.

7.6 Performance Analysis

To quantify the parallel performance, we decompose the total HiCOPS time TH (Eq. 1)

into three runtime components. i.e. parallel runtime (Tp), serial runtime (Ts) and overheads

runtime (To) given as:

TH = ∑
j = 1

4
maxpi (Tj, pi) = To + Ts + Tp (13)

Haseeb and Saeed Page 14

Nat Comput Sci. Author manuscript; available in PMC 2022 February 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Using equations 1, 5, 6, 10, and 12, we separate the three runtime components as:

To = V pi(q, Dpi, P) + γpi (14)

Ts = k11(D) + k21(qβ) + kcom(P , 1) (15)

and:

Tp = k12(Dpi) + k13′ (Dpi log Dpi) + k22(Qpi) + k23(Qpi) +
max(tpi(t, ∣ r ∣), tpi(i, ∣ i ∣), tpi(k, ∣ k ∣)) + k41(Qpi, cpi) +

k42(Qpi, cpi) + k45(Qpi)
(16)

Ts is the minimum serial time required for HiCOPS execution and cannot be further reduced.

Therefore, we will focus on optimizing the remaining runtime: TF = Tp + To. Using

equations 14 and 16, we have:

TF = k12(Dpi) + k13′ (Dpi log Dpi) + k22(Qpi) + k23(Qpi) +
max(tpi(t, ∣ r ∣), tpi(i, ∣ i ∣), tpi(k, ∣ k ∣)) + k41(Qpi, cpi) +

k42(Qpi, cpi) + k45(Qpi) + To
(17)

Since the HiCOPS parallel processes divide the database and experimental dataset roughly

fairly in supersteps 1 and 2, the first four and the sixth term in Tp are already almost

optimized, so we can prune them from TF:

TF = max(tpi(t, ∣ r ∣), tpi(i, ∣ i ∣), tpi(k, ∣ k ∣)) + k41(Qpi, cpi) +
k42(Qpi, cpi) + + k45(Qpi) + To

(18)

Recall that the superstep 4 runtime is optimized for maximum parallelism (and least inter

process communication) and that the superstep 3 performs the largest fraction of overall

algorithmic workload. Thus, we can also remove the superstep 4 terms from TF to simplify

analysis:

TF = max(tpi (t, ∣ r ∣), tpi (i, ∣ i ∣), tpi(k, ∣ k ∣)) + To

Further, as that the superstep 3 is executed using the producer-consumer pipeline (Figure

1c) where the sub-task R must produce all data before it can be consumed by I meaning its

runtime must also be smaller than tpi (i, ∣ i ∣) and tpi (k, ∣ k ∣) allowing a safe removal from

the above equation yielding:

TF = max(tpi(i, ∣ i ∣), tpi(k, ∣ k ∣)) + To

Haseeb and Saeed Page 15

Nat Comput Sci. Author manuscript; available in PMC 2022 February 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

In above equation, we can rewrite the max(.) term as the time to complete sub-task I: (tpi(i,
∣ i ∣)) plus the extra time to complete sub-task K (the last consumer): tx(k). Therefore, using

equation 9 we have:

TF = k31′ (q log(Dpi), ∣ i ∣) + k32′ (qβ log(αpi), ∣ i ∣) +
k33(qβσpi, ∣ i ∣) + k34(qμpi, ∣ i ∣) + tx(k) + To

(19)

We can prune the first two terms in the equation 19 as well since their runtime contribution:

O(log N) will be relatively very small. Finally, using equation 14 in 19, we have:

TF = k33(qβσpi, ∣ i ∣) + k34(qμpi, ∣ i ∣) + tx(k) + V pi(q, Dpi, P) + γpi (20)

7.7 Optimizations

The following sections discuss the optimization techniques employed to alleviate the

overhead costs in Equation 20.

7.7.1 Buffering—Four queues, the forward queue (qf), recycle queue (qr) and result

queues (qk, qk′) are initialized and routed between the producer-consumer sub-tasks in the

superstep 3 (Figure 1c) as: R → I, R ← I, I → K and I ← K respectively. The qr is

initialized with (default: 20) empty buffers for the sub-task R to fill the pre-processed

experimental data batches and push in qf. The sub-task I removes a buffer from qf, consumes

it (searches it) and pushes back to qr for re-use. The results are pushed to qk which are

consumed by sub-task K and pushed back to qk′ for re-use. Three regions are defined for

the queue qf based on the number of data buffers it contains at any time. i.e. w1 : (len(qf)

< 5), w2 : (5 ≤ len(qf) < 15) and w3 : (len(qf) ≥ 15). These regions (wl) are used by the

task-scheduling algorithm discussed in the following section.

7.7.2 Task Scheduling—The task scheduling algorithm is used to maintain a synergy

between the producer-consumer (sub-task) pipeline in the superstep 3. The algorithm

initializes a thread pool of cpi + 2 threads where cpi is the number of available cores. In

the first iteration, 2 threads are assigned to the sub-tasks R and K while the remaining cpi − 2

threads are assigned to sub-task I. Then, in each iteration, the qf region: wl, and the qf.pop()

time for I, given by: twait, are monitored. A time series is built to forecast the next twait (i.e.

tfct) using double exponential smoothing [49]. The twait is also accumulated into tcum. Two

thresholds are defined: minimum wait (tmin) and maximum cumulative wait (tmax). Using

all this information, a thread is removed from sub-task I and added to R if the following

conditions are satisfied:

cI R = (twait ≥ tmin ∧ (tcum + tfct) > tmax) ∨ (wl = w1 ∧ ∣ r ∣ = 0)

The tcum is set to 0 every time a thread is added to R. Similarly, a thread is removed from

sub-task R and added to I if the following conditions are satisfied. All threads are removed

Haseeb and Saeed Page 16

Nat Comput Sci. Author manuscript; available in PMC 2022 February 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

from R if the queue qf becomes full or there is no more experimental MS/MS data left to be

loaded.

cR I = (wl = w3 ∧ ∣ r ∣ > 1) ∨ qf ⋅ full()

The sub-task K uses its 2 over-subscribed threads to perform the overlapped I/O operations

concurrently (Figure 1c).

7.7.3 Load Balancing—The algorithmic workload in equation 20 is given by:

k33(qβσpi, ∣ i ∣) + k34(qμpi, ∣ i ∣). Here, the terms qβ and q are constants (experimental

data size) whereas the terms σpi and μpi are variable. The variable terms represent the

filtered database size for a parallel HiCOPS process (pi) and thus, must be balanced across

processes. We do this statically by constructing balanced database partitions (hence a

balanced workload) using the LBE algorithm supplemented with our new Mod Distance
metric in Superstep 1 (Methods, Figure 1a, Supplementary Figure 6). The correctness of the

LBE algorithm for load balancing is proven in Supplementary Section 6. In future, we plan

to devise and develop dynamic load balancing techniques for better results.

7.7.4 Sampling—Sampling is used to reduce the inter-process communication required

in result assembly (superstep 4) without compromising on the assembly accuracy. For

each experimental spectrum, the HiCOPS processes (pi) produce a local resultc consisting:

number of local hits, hyperscore for the top hits etc. (12 bytes), and the local null

distribution histogram of hyperscores (2048 bytes). Communicating this, the size of each

data packet (1 per batch) will be: ~20MB, which can result in serious overheads. It has

been shown that the null distribution hyperscore (and several other scoring algorithms)

in database peptide search follow a log-Weibull or Gumbel curve [41]. This means that

most of the data are localized around the mean. We exploit this information to reduce

the communication footprint as follows: We first locate the mean of the local null

distribution and sample most intense non-zero data points around it. If the total number

of non-zero samples exceed s(=120 default), we prioritize the samples towards the head

of the distribution as we can reconstruct the tail fairly accurately through curve fitting.

The sampled data are further encoded into unsigned short instead of int to fit inside a

buffer of 256 bytes resulting in a 1.5MB data packet size which is instantly written/read

from the shared file system reducing the overhead costs including tx(k) (see Equation 20).

Supplementary Figure 7 illustrates an example of sampling.

7.8 Detailed Experimental Setup

The two databases (i.e. D1 and D2) were digested in-silico using Trypsin as enzyme

(fully tryptic) with 2 allowed missed cleavages, peptide lengths between 6 and 46

and peptide masses between 500 and 5000Da. The pseudo-spectra were simulated by

generating b- and y-ions up to +3 charge with zero isotope error and no decoys. Cysteine

carbamidomethylation was set as fixed modification for all experiments whereas the variable

modifications were chosen from the combinations of Methionine oxidation, Arginine and

Glutamine deamidation, Serine, Threonine and Tyrosine phosphorylation, Cysteine and

Haseeb and Saeed Page 17

Nat Comput Sci. Author manuscript; available in PMC 2022 February 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Lysine gly-gly adducts, and Tyrosine Biotin-tyramide across experiments. The maximum

number of allowed modified residues (amino acid letters) per peptide was set to 5. The

number and type of PTMs used in database expansion, and the search settings including

peptide precursor mass tolerance (δM) were varied across experiments to cover both

the open-: δM ~ ±500Da and closed-search: δM ≤ ±10Da scenarios. The closed-search

criterion was set to a few Daltons (≤1Da in correctness analysis and ≤10Da in performance

evaluation) instead of 10-20ppms to cover the differences in calculated peptide precursor

masses due to monoisotopic or average masses and isotopic masses across search tools.

The four experimental MS/MS datasets were converted to MS2 format before use. The

experimental MS/MS spectra pre-processing settings for all tools were set to minimal so

that all tools execute a nearly identical algorithmic work (fairness). Some of these settings

are listed as follows: allowed precursor masses: 500 to 5000Da, precursor charges: +1 to

+4, min matched peaks for PSM candidacy: 4, min database hits for statistical scoring:

4, de-noising: only top 100 peaks picked (by intensity), peak transformations: none, mass

calibration: no, precursor peak removal: no, partial spectrum re-construction: no, clip n-term

M: no.

8 Code Availability

The HiCOPS software has been implemented using object-oriented C++17, MPI, OpenMP,

Python, Bash and CMake. Instrumentation interface is implemented via Timemory [42]

for performance analysis. Command-line tools for MPI task mapping (Supplementary

Section 7), database processing, file format conversion and result post-processing are also

distributed with the software. HiCOPS is under active development and all documentation

updates, source code releases etc. will be updated on the same web page. The source

code is available open-source at https://doi.org/10.5281/zenodo.5094072 [50] and https://

github.com/hicops/hicops. Please refer to the software web page: https://hicops.github.io for

detailed documentation, licensing and future software updates.

9 Data Availability

All datasets used in this study are publicly available from Pride Archive and can be accessed

via https://www.ebi.ac.uk/pride/archive/projects/<AccessionNum> where Accession Num
is the accession number for each dataset mentioned in the text. For example, to access

the dataset S1: PXD009072, use the link: https://www.ebi.ac.uk/pride/archive/projects/

PXD009072. Homo sapiens protein sequence database can be downloaded from UniProtKB

using the link: https://www.uniprot.org/proteomes/UP000005640. The UniProt SwissProt

(reviewed) database can be downloading using the link: https://www.uniprot.org/uniprot/?

query=reviewed:yes. Source data for Figures 2, 3, 4, 5 are also available with this

manuscript as well as on [39].

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Haseeb and Saeed Page 18

Nat Comput Sci. Author manuscript; available in PMC 2022 February 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/hicops/hicops
https://github.com/hicops/hicops
https://hicops.github.io/
https://www.ebi.ac.uk/pride/archive/projects/
https://www.ebi.ac.uk/pride/archive/projects/PXD009072
https://www.ebi.ac.uk/pride/archive/projects/PXD009072
https://www.uniprot.org/proteomes/UP000005640
https://www.uniprot.org/uniprot/?query=reviewed:yes
https://www.uniprot.org/uniprot/?query=reviewed:yes

Acknowledgments

This work used the NSF Extreme Science and Engineering Discovery Environment (XSEDE) Supercomputers
through allocations: TG-CCR150017 (F.S.) and TG-ASC200004 (F.S.). This research was supported by the NIGMS
of the National Institutes of Health (NIH) under award number: R01GM134384 (F.S.). The authors were further
supported by the National Science Foundations (NSF) under the award number: NSF CAREER OAC-1925960
(F.S.). The content is solely the responsibility of the authors and does not necessarily represent the official views of
the National Institutes of Health and/or National Science Foundation.

References

[1]. Nesvizhskii Alexey I. A survey of computational methods and error rate estimation procedures
for peptide and protein identification in shotgun proteomics. Journal of proteomics, 73(11):2092–
2123, 2010. [PubMed: 20816881]

[2]. Kong Andy T, Leprevost Felipe V, Avtonomov Dmitry M, Mellacheruvu Dattatreya, and
Nesvizhskii Alexey I. Msfragger: ultrafast and comprehensive peptide identification in mass
spectrometry-based proteomics. Nature methods, 14(5):513, 2017. [PubMed: 28394336]

[3]. McIlwain Sean, Tamura Kaipo, Kertesz-Farkas Attila, Grant Charles E, Diament Benjamin,
Frewen Barbara, Jeffry Howbert J, Hoopmann Michael R, Kall Lukas, Eng Jimmy K, et al. Crux:
rapid open source protein tandem mass spectrometry analysis. Journal of proteome research,
13(10):4488–4491, 2014. [PubMed: 25182276]

[4]. ei Yuan Zuo-F, Liu Chao, Wang Hai-Peng, Sun Rui-Xiang, Fu Yan, Zhang Jing-Fen, Wang
Le-Heng, Chi Hao, Li You, Xiu Li-Yun, et al. pparse: A method for accurate determination
of monoisotopic peaks in high-resolution mass spectra. Proteomics, 12(2):226–235, 2012.
[PubMed: 22106041]

[5]. Deng Yamei, Ren Zhe, Pan Qingfei, Qi Da, Wen Bo, Ren Yan, Yang Huanming, Wu Lin, Chen
Fei, and Liu Siqi. pclean: an algorithm to preprocess high-resolution tandem mass spectra for
database searching. Journal of proteome research, 18(9):3235–3244, 2019. [PubMed: 31364357]

[6]. Degroeve Sven and Martens Lennart. Ms2pip: a tool for ms/ms peak intensity prediction.
Bioinformatics, 29(24):3199–3203, 2013. [PubMed: 24078703]

[7]. Zhou Xie-Xuan, Zeng Wen-Feng, Chi Hao, Luo Chunjie, Liu Chao, Zhan Jianfeng, He Si-Min,
and Zhang Zhifei. pdeep: predicting ms/ms spectra of peptides with deep learning. Analytical
chemistry, 89(23):12690–12697, 2017. [PubMed: 29125736]

[8]. Zhang Jing, Xin Lei, Shan Baozhen, Chen Weiwu, Xie Mingjie, Yuen Denis, Zhang Weiming,
Zhang Zefeng, Lajoie Gilles A, and Ma Bin. Peaks db: de novo sequencing assisted database
search for sensitive and accurate peptide identification. Molecular & Cellular Proteomics,
11(4):M111–010587, 2012.

[9]. Devabhaktuni Arun, Lin Sarah, Zhang Lichao, Swaminathan Kavya, Gonzalez Carlos G, Olsson
Niclas, Pearlman Samuel M, Rawson Keith, and Elias Joshua E. Taggraph reveals vast protein
modification landscapes from large tandem mass spectrometry datasets. Nature biotechnology,
page 1, 2019.

[10]. Chi Hao, Liu Chao, Yang Hao, Zeng Wen-Feng, Wu Long, Zhou Wen-Jing, Xiu-Nan Niu Yue-He
Ding, Zhang Yao, Wang Rui-Min, et al. Open-pfind enables precise, comprehensive and rapid
peptide identification in shotgun proteomics. bioRxiv, page 285395, 2018.

[11]. Bern Marshall, Cai Yuhan, and Goldberg David. Lookup peaks: a hybrid of de novo sequencing
and database search for protein identification by tandem mass spectrometry. Analytical
chemistry, 79(4):1393–1400, 2007. [PubMed: 17243770]

[12]. Eng Jimmy K, McCormack Ashley L, and Yates John R. An approach to correlate tandem
mass spectral data of peptides with amino acid sequences in a protein database. Journal of the
American Society for Mass Spectrometry, 5(11):976–989, 1994. [PubMed: 24226387]

[13]. Craig Robertson and Beavis Ronald C. A method for reducing the time required to match protein
sequences with tandem mass spectra. Rapid communications in mass spectrometry, 17(20):2310–
2316, 2003. [PubMed: 14558131]

Haseeb and Saeed Page 19

Nat Comput Sci. Author manuscript; available in PMC 2022 February 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

[14]. Diament Benjamin J and Noble William Stafford. Faster sequest searching for peptide
identification from tandem mass spectra. Journal of proteome research, 10(9):3871–3879, 2011.
[PubMed: 21761931]

[15]. Eng Jimmy K, Fischer Bernd, Grossmann Jonas, and MacCoss Michael J. A fast sequest
cross correlation algorithm. Journal of proteome research, 7(10):4598–4602, 2008. [PubMed:
18774840]

[16]. Park Christopher Y, Klammer Aaron A, Kall Lukas, MacCoss Michael J, and Noble William
S. Rapid and accurate peptide identification from tandem mass spectra. Journal of proteome
research, 7(7):3022–3027, 2008. [PubMed: 18505281]

[17]. Geer Lewis Y, Markey Sanford P, Kowalak Jeffrey A, Wagner Lukas, Xu Ming, Maynard Dawn
M, Yang Xiaoyu, Shi Wenyao, and Bryant Stephen H. Open mass spectrometry search algorithm.
Journal of proteome research, 3(5):958–964, 2004. [PubMed: 15473683]

[18]. Hebert Alexander S, Richards Alicia L, Bailey Derek J, Ulbrich Arne, Coughlin Emma E,
Westphall Michael S, and Coon Joshua J. The one hour yeast proteome. Molecular & Cellular
Proteomics, 13(1):339–347, 2014. [PubMed: 24143002]

[19]. Nesvizhskii Alexey I, Roos Franz F, Grossmann Jonas, Vogelzang Mathijs, Eddes James
S, Gruissem Wilhelm, Baginsky Sacha, and Aebersold Ruedi. Dynamic spectrum quality
assessment and iterative computational analysis of shotgun proteomic data toward more efficient
identification of post-translational modifications, sequence polymorphisms, and novel peptides.
Molecular & Cellular Proteomics, 5(4):652–670, 2006. [PubMed: 16352522]

[20]. Eng Jimmy K, Searle Brian C, Clauser Karl R, and Tabb David L. A face in the crowd:
recognizing peptides through database search. Molecular & Cellular Proteomics, pages mcp
R111, 2011.

[21]. Haseeb Muhammad and Saeed Fahad. Efficient shared peak counting in database peptide search
using compact data structure for fragment-ion index. In 2019 IEEE International Conference on
Bioinformatics and Biomedicine (BIBM), pages 275–278. IEEE, 2019.

[22]. Williams Samuel, Waterman Andrew, and Patterson David. Roofline: an insightful visual
performance model for multicore architectures. Communications of the ACM, 52(4):65–76,
2009.

[23]. Chi Hao, He Kun, Yang Bing, Chen Zhen, Sun Rui-Xiang, Fan Sheng-Bo, Zhang Kun, Liu
Chao, Yuan Zuo-Fei, Wang Quan-Hui, et al. pfind–alioth: A novel unrestricted database search
algorithm to improve the interpretation of high-resolution ms/ms data. Journal of proteomics,
125:89–97, 2015. [PubMed: 25979774]

[24]. Marx Vivien. Biology: The big challenges of big data, 2013.

[25]. Duncan Dexter T, Craig Robertson, and Link Andrew J. Parallel tandem: a program for parallel
processing of tandem mass spectra using pvm or mpi and x! tandem. Journal of proteome
research, 4(5):1842–1847, 2005. [PubMed: 16212440]

[26]. Bjornson Robert D, Carriero Nicholas J, Colangelo Christopher, Shifman Mark, Cheung Kei-Hoi,
Miller Perry L, and Williams Kenneth. X!! tandem, an improved method for running x! tandem
in parallel on collections of commodity computers. The Journal of Proteome Research, 7(1):293–
299, 2007. [PubMed: 17902638]

[27]. Pratt Brian Jeffry Howbert J, Tasman Natalie I, and Nilsson Erik J. Mr-tandem: parallel x!
tandem using hadoop mapreduce on amazon web services. Bioinformatics, 28(1):136–137, 2011.
[PubMed: 22072385]

[28]. Li Chuang, Li Kenli, Li Keqin, and Lin Feng. Mctandem: an efficient tool for large-scale peptide
identification on many integrated core (mic) architecture. BMC bioinformatics, 20(1):397, 2019.
[PubMed: 31315562]

[29]. Li C, Li K, Chen T, Zhu Y, and He Q. Sw-tandem: A highly efficient tool for large-scale peptide
sequencing with parallel spectrum dot product on sunway taihulight. Bioinformatics (Oxford,
England), 2019.

[30]. Chen Li, Zhang Bai, Schnaubelt Michael, Shah Punit, Aiyetan Paul, Chan Daniel, Zhang Hui,
and Zhang Zhen. Ms-pycloud: An open-source, cloud computing-based pipeline for lc-ms/ms
data analysis. bioRxiv, page 320887, 2018.

Haseeb and Saeed Page 20

Nat Comput Sci. Author manuscript; available in PMC 2022 February 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

[31]. Prakash Amol, Ahmad Shadab, Majumder Swetaketu, Jenkins Conor, and Orsburn Ben. Bolt:
A new age peptide search engine for comprehensive ms/ms sequencing through vast protein
databases in minutes. Journal of The American Society for Mass Spectrometry, 30(11):2408–
2418, 2019. [PubMed: 31452088]

[32]. Kaiser Patricia, Bode Maya, Cornils Astrid, Hagen Wilhelm, Arbizu Pedro Martínez, Auel
Holger, and Laakmann Silke. High-resolution community analysis of deep-sea copepods using
maldi-tof protein fingerprinting. Deep Sea Research Part I: Oceanographic Research Papers,
138:122–130, 2018.

[33]. Rossel S and Martínez Arbizu P. Revealing higher than expected diversity of harpacticoida
(crustacea: Copepoda) in the north sea using maldi-tof ms and molecular barcoding. Scientific
reports, 9(1):1–14, 2019. [PubMed: 30626917]

[34]. Yates John R III. Proteomics of communities: metaproteomics, 2019.

[35]. Beyter Doruk, Lin Miin S, Yu Yanbao, Pieper Rembert, and Bafna Vineet. Proteostorm:
An ultrafast metaproteomics database search framework. Cell systems, 7(4):463–467, 2018.
[PubMed: 30268435]

[36]. Valiant Leslie G. A bridging model for parallel computation. Communications of the ACM,
33(8):103–111, 1990.

[37]. Tiskin Alexander. BSP (Bulk Synchronous Parallelism), pages 192–199. Springer US, Boston,
MA, 2011.

[38]. Towns John, Cockerill Timothy, Dahan Maytal, Foster Ian, Gaither Kelly, Grimshaw Andrew,
Hazlewood Victor, Lathrop Scott, Lifka Dave, Peterson Gregory D, et al. Xsede: accelerating
scientific discovery. Computing in Science & Engineering, 16(5):62–74, 2014.

[39]. Haseeb Muhammad and Saeed Fahad. Source Data: High Performance Computing Framework
for Tera-Scale Database Search of Mass Spectrometry Data. , 7 2021.

[40]. Eng Jimmy K, Jahan Tahmina A, and Hoopmann Michael R. Comet: an open-source ms/ms
sequence database search tool. Proteomics, 13(1):22–24, 2013. [PubMed: 23148064]

[41]. Craig Robertson and Beavis Ronald C. Tandem: matching proteins with tandem mass spectra.
Bioinformatics, 20(9):1466–1467, 2004. [PubMed: 14976030]

[42]. Madsen Jonathan R, Awan Muaaz G, Brunie Hugo, Deslippe Jack, Gayatri Rahul, Oliker Leonid,
Wang Yunsong, Yang Charlene, and Williams Samuel. Timemory: Modular performance analysis
for hpc. In International Conference on High Performance Computing, pages 434–452. Springer,
2020.

[43]. Stevens Rick, Ramprakash Jini, Messina Paul, Papka Michael, and Riley Katherine. Aurora:
Argonne’s next-generation exascale supercomputer. Technical report, ANL (Argonne National
Laboratory (ANL), Argonne, IL (United States)), 2019.

[44]. Liu Kaiyuan, Li Sujun, Wang Lei, Ye Yuzhen, and Tang Haixu. Full-spectrum prediction of
peptides tandem mass spectra using deep neural network. Analytical chemistry, 92(6):4275–
4283, 2020. [PubMed: 32053352]

[45]. Lin Yang-Ming, Chen Ching-Tai, and Chang Jia-Ming. Ms2cnn: predicting ms/ms spectrum
based on protein sequence using deep convolutional neural networks. BMC genomics, 20(9):1–
10, 2019. [PubMed: 30606130]

[46]. Haseeb Muhammad, Afzali Fatima, and Saeed Fahad. Lbe: A computational load balancing
algorithm for speeding up parallel peptide search in mass-spectrometry based proteomics. In
2019 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW),
pages 191–198. IEEE, 2019.

[47]. Ding Jiarui, Shi Jinhong, Poirier Guy G, and Wu Fang-Xiang. A novel approach to denoising ion
trap tandem mass spectra. Proteome Science, 7(1):9, 2009. [PubMed: 19292921]

[48]. Fenyö David and Beavis Ronald C. A method for assessing the statistical significance of mass
spectrometry-based protein identifications using general scoring schemes. Analytical chemistry,
75(4):768–774, 2003. [PubMed: 12622365]

[49]. LaViola Joseph J. Double exponential smoothing: an alternative to kalman filter-based predictive
tracking. In Proceedings of the workshop on Virtual environments 2003, pages 199–206, 2003.

[50]. Haseeb Muhammad and Saeed Fahad. hicops software code v1.0.0 – 1st public release, 7 2021.

Haseeb and Saeed Page 21

Nat Comput Sci. Author manuscript; available in PMC 2022 February 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

[51]. Kim Sangtae and Pevzner Pavel A. Ms-gf+ makes progress towards a universal database search
tool for proteomics. Nature communications, 5:5277, 2014.

[52]. Kulkarni Gaurav, Kalyanaraman Ananth, Cannon William R, and Baxter Douglas. A scalable
parallel approach for peptide identification from large-scale mass spectrometry data. In 2009
International Conference on Parallel Processing Workshops, pages 423–430. IEEE, 2009.

Haseeb and Saeed Page 22

Nat Comput Sci. Author manuscript; available in PMC 2022 February 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 1: Methods Overview.
(a) Superstep 1: The massive theoretical spectra database (spectra shown as shapes) is

partitioned among parallel processes and locally indexed. Partitioning is done in a load

balanced fashion (similar shapes clustered and scattered across processes). (b) Superstep
2: The experimental MS/MS spectra data are indexed, tagged, pre-processed and written

back to a shared memory in data parallel. (c) Superstep 3: Asynchronous parallel database

peptide search is executed by all processes. On each process, three parallel sub-tasks

R, I and K work in a pipeline to load the pre-processed data, execute a local database

search, and write the produced (sampled) local results to the shared memory respectively.

Task scheduler manages the parallel threads between the pipeline tasks. (d) Superstep 4:
Local/intermediate results are assembled followed by curve fitting and expected value (es)

computation in data parallel fashion. Results with es < 0.01 are communicated to their origin

processes.

Haseeb and Saeed Page 23

Nat Comput Sci. Author manuscript; available in PMC 2022 February 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 2: Correctness Analysis.
(a,b) Comparison of 5K out of 251K data samples of hyperscores and expected values

(expectscores), computed by HiCOPS in serial (x-axis) and parallel (y-axis) runs is shown.

Note that all 251K samples depict the same consistency across parallel runs [39], only

infeasible to plot. (c to h) Correlations between hyperscores computed by HiCOPS (x-axis)

and MSFragger (y-axis) under restricted-search (c, d, e) and corresponding open-search (f,
g, h) settings are shown along with Pearson correlation coefficients (R).

Haseeb and Saeed Page 24

Nat Comput Sci. Author manuscript; available in PMC 2022 February 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 3: Speed Comparisons.
(a to f) Speed comparison between HiCOPS and other tools with increasing number of

parallel nodes is shown. The gray dotted line tracks the ideal speedup times for each

tool (log-log scale) in experiments. The δM window for MSGF+ and Comet was further

tightened in some experiments (indicated by ’@’ in labels) due to tool limitations. (g to i)
The percentage I/O and load imbalance overheads exhibited by HiCOPS and MS-Fragger

for experiments in sub-figures (c, d, e, and f), are shown with increasing number of parallel

nodes.

Haseeb and Saeed Page 25

Nat Comput Sci. Author manuscript; available in PMC 2022 February 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 4: Performance Metrics.
Performance metrics including (a) parallel speedup, (b) strong-scale efficiency, (c)
instructions per cycle (ipc), (d) last level cache miss per total cache misses (lpc), and

(e) write stalls per total stalls (wps) respectively are shown with increasing parallel nodes

for all performance evaluation experiments (labeled as tuples: expn in section: Performance

Evaluation). The black dotted lines (ref) show the ideal speedup and efficiency in (a) and (b)
respectively.

Haseeb and Saeed Page 26

Nat Comput Sci. Author manuscript; available in PMC 2022 February 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 5: Overhead Analysis.
Overhead costs including (a) load imbalance, (b) I/O, (c) communication, and (d)
pipeline halt time are shown with increasing parallel nodes for all performance evaluation

experiments (labeled as tuples: expn in section: Performance Evaluation). (e) The time series

shows the per-batch sub-task pipeline halt time (scheduling performance) in Superstep 3

when searching datasets of sizes 15GB, 41GB, and 71GB in open-search using 64 nodes.

The wait time shows the time the pipeline sub-tasks in Superstep 3 waited for corresponding

data batches.

Haseeb and Saeed Page 27

Nat Comput Sci. Author manuscript; available in PMC 2022 February 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Haseeb and Saeed Page 28

Table 1:

Summary of the execution times for three large-scale database search experiments using HiCOPS and

MSFragger is shown. Peptide precursor mass tolerance and fragment-ion tolerance in Daltons (Da) are given

as δM and δF respectively. Single node version of the second experiment using MSFragger (i.e. 2*) was run

on the local (raptor) server. The third experiment was not run using MSFragger due to feasibility issues.

Experiment
Number Tool Name Nodes

Dataset
size

(GB)

Database
size

(GB)

δM
(Da)

δF
(Da)

Runtime
(min)

1 HiCOPS 64 20 780 500 0.01 14.55

1 MSFragger 64 20 780 500 0.01 158.8

2 HiCOPS 72 15 1692 500 0.05 103.5

2 MSFragger 72 15 1692 500 0.05 1074.45

2* MSFragger 1 15 1692 500 0.05 51130

3 HiCOPS 64 41 4000 500 0.01 27.3

Nat Comput Sci. Author manuscript; available in PMC 2022 February 20.

	Abstract
	Introduction
	Results
	Methods Overview
	Experimental Setup Overview
	Runtime Environment:

	Correctness Analysis
	Speed Comparison Against Existing Algorithms
	Application in Tera-Scale Experimentation
	Performance Evaluation
	Parallel Scalability:
	Performance Overheads:

	Discussion
	Methods
	Notations and Symbols
	Runtime Cost Model
	Remarks:

	Superstep 1: Database Partitioning
	Mod Distance:
	Cost Analysis:
	Remarks:

	Superstep 2: Experimental MS/MS Data Pre-processing
	Cost Analysis:
	Remarks:

	Superstep 3: Database Peptide Search
	Cost Analysis:
	Overhead Costs:
	Remarks:

	Superstep 4: Result Assembly
	Cost Analysis:
	Remarks:

	Performance Analysis
	Optimizations
	Buffering
	Task Scheduling
	Load Balancing
	Sampling

	Detailed Experimental Setup

	Code Availability
	Data Availability
	References
	Figure 1:
	Figure 2:
	Figure 3:
	Figure 4:
	Figure 5:
	Table 1:

