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Abstract

Database peptide search algorithms deduce peptides from mass spectrometry (MS) data. There 

has been substantial effort in improving their computational efficiency to achieve larger and 

more complex systems biology studies. However, modern serial and high-performance computing 

(HPC) algorithms exhibit sub-optimal performance mainly due to their ineffective parallel designs 

(low resource utilization), and high overhead costs.

We present an HPC framework, called HiCOPS, for efficient acceleration of the database peptide 

search algorithms on distributed-memory supercomputers. HiCOPS provides, on average, more 

than 10-fold improvement in speed, and superior parallel performance over several existing HPC 

database search software. We also formulate a mathematical model for performance analysis 

and optimization, and report near-optimal results for several key metrics including strong-scale 

efficiency, hardware utilization, load-balance, inter-process communication and I/O overheads. 

The core parallel design, techniques, and optimizations presented in HiCOPS are search-algorithm 

independent and can be extended to efficiently accelerate the existing and future algorithms and 

software.
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1 Introduction

Faster, and more efficient peptide identification algorithms [1], [2], [3] have been the 

cornerstone of computational research in shotgun mass spectrometry (MS) based proteomics 

for more than 30 years [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], 

[15], [16], [17]. Modern mass spectrometry technologies allow the generation of thousands 

of raw, noisy spectra in a span of few hours producing several gigabytes of data [18] 

(Supplementary Figure 1). Database peptide search is the most commonly employed 

computational approach to identify the peptides from the experimental spectra [19], [10], 

[2], [20]. In this approach, the experimental spectra are searched against an (indexed) 

database of theoretical spectra (or modeled-spectra) with the goal to find the best possible 

matches [1]. The theoretical spectra database (or simply theoretical database) is simulated by 

simulating in-silico digestion on a proteome sequence database (Supplementary Figure 2). 

The theoretical databases (and their indexed versions) expand exponentially in space (several 

giga to terabytes) as the post-translational modifications (PTMs) are added in the simulation 

[2], [21] (Supplementary Figure 3a, b). Consequently, the low computational arithmetic 

intensity (operations or instructions per byte) [22] inherent to database search algorithms 

[2], [23], [9] results in performance bottlenecks due to memory contention (parallel database 

query), out-of-core processing (database size > main memory), database management (data 

movement), and I/O.

As demonstrated by other scientific fields [24], these limitations can be alleviated through 

effective exploitation of architectural resources provided by modern high-performance 

computing (HPC) systems. However, most existing HPC database peptide search algorithms 

[25], [26], [27], [28], [29], [30], [31] employ unoptimized parallelization techniques, 

resulting in sub-optimal performance and limited application in the domain (Supplementary 

Section 1, Supplementary Section 2, Supplementary Figure 3c). The need for efficient 

parallel database peptide search software is driven by the computational demands of 

modern systems biology studies for proteomics, meta-proteomics and proteogenomics, 

where peptide identification is often the first step in the analysis. These systems biology 

studies also have a direct impact on personalized nutrition, microbiome research [32], [33], 

and cancer therapeutics [34].

In this paper, we present an HPC framework for efficient acceleration of database peptide 

search algorithms on large-scale symmetric multiprocessor (SMP) distributed-memory 

supercomputers. HiCOPS provides orders-of-magnitude improvement in speed compared 

to several existing shared- and distributed-memory database peptide search tools allowing 

searching of several gigabyte experimental MS/MS data against terabytes of theoretical 

databases in a few minutes compared to several hours required using existing algorithms. 

The proposed HiCOPS parallel design implements an unconventional approach where the 

(massive) theoretical databases are distributed across parallel nodes in a load-balanced 

fashion followed by asynchronous parallel execution of the database peptide search. Upon 

completion, the locally computed results are merged into global results in a communication

optimal manner. This overhead cost-optimal design, along with several optimizations, 

allows HiCOPS to maximize resource utilization and alleviate the performance bottlenecks. 

We also formulate and perform a performance analysis to identify the overhead costs 
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and discuss optimization techniques to minimize them. Finally, we implement a shared

peak counting coupled hyperscore-based search algorithm [11], [2], [35] in HiCOPS to 

demonstrate its parallel performance, but in essence, our framework is search-algorithm 

oblivious. i.e. the proposed parallel design, algorithms and optimizations can be extended or 

replaced to accelerate most existing and future search algorithms.

Our comprehensive experimentation shows that HiCOPS outperforms several existing serial 

and parallel database peptide search tools by more than 10-folds on average while producing 

correct and consistent peptide identifications. Additionally, we demonstrate the application 

of HiCOPS in large-scale database search setting through multiple compute- and data

intensive experiments. Note that the HiCOPS framework does not propose a new database 

search algorithm and instead relies on the underlying (portable) search algorithmic workflow 

for peptide identification accuracy. Finally, we performed an extensive performance 

evaluation where we report between 70-80% strong-scale efficiency and less than 25% 

overall performance overheads (load imbalance, I/O, inter-process communication, pipeline 

halt); collectively depicting a near-optimal parallel performance.

2 Results

2.1 Methods Overview

HiCOPS constructs the parallel database peptide search workflow (task-graph) through 

four Single Program Multiple Data (SPMD) Bulk Synchronous Parallel (BSP) [36] 

supersteps. In the BSP model, a superstep [37] refers to a set of distinct algorithmic 

and data communications blocks, asynchronously executed by all parallel processes (pi 

ϵ P). Synchronization between the processes is done at the end of each superstep, as 

needed. In the first HiCOPS’s superstep, the (massive) theoretical database is partitioned 

across parallel processes in a load balanced fashion, and locally indexed. In the second 

superstep, the experimental data are divided into batches and pre-processed, if required. In 

the third superstep, the parallel processes execute a local database peptide search, producing 

intermediate results. In the final superstep, the intermediate results are de-serialized, and 

assembled into complete (global) results. Supplementary Figure 4 provides an overview 

of the overall task-graph, and workload profile for each superstep (Methods). The current 

HiCOPS design allows in-core processing so the minimum number of nodes Pmin required 

to run must be ≥ D/M where D is the theoretical database index size and M is the available 

main memory per node.

The total wall time (TH) for executing the four supersteps is the sum of superstep execution 

times, given as:

TH = T1 + T2 + T3 + T4

Where the execution time for a superstep (j) is the maximum time required by any parallel 

task (pi ϵ P) to complete that superstep, given as:

Tj = max(Tj, p1, Tj, p2, …, Tj, pP )
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Or simply:

Tj = maxpi(Tj, pi)

Combining the above three equations, the total HiCOPS runtime is given as:

TH = ∑
j = 1

4
maxpi(Tj, pi) (1)

2.2 Experimental Setup Overview

We constructed five custom datasets (Si) by combining several Pride Archive (PXD) datasets 

(accession numbers: PXDxxxxxx) for our experimentation and evaluation. These five 

custom datasets are given as follows: S1: PXD009072, S2: PXD020590, S3: PXD015890, 

S4: PXD007871, 009072, 010023, 012463, 013074, 013332, 014802, 015391 combined, and 

S5: all above listed datasets combined. The datasets were searched against several theoretical 

databases constructed by adding combinations of post-translational modifications (PTMs) 

to the D1: UniProt Homo sapiens (UP000005640) and D2: UniProt SwissProt (reviewed) 

databases. Detailed discussion about the settings for database digestion, post-translational 

modifications, theoretical spectra generation etc. is provided in the (Methods) section. In 

the rest of the paper, we will represent the workload size for each performed experiment 

(expn) as a tuple given as: expn = (q, D, δM); where q is experimental MS/MS dataset size 

in 1 million spectra, D is theoretical database size in 100 million spectra and δM is the 

peptide precursor mass tolerance setting in ±100Da. Note that the tuple does not contain 

the fragmention mass tolerance (δF) information as it is globally set to ±0.01 Da unless 

specifically mentioned as the fourth element in an experiment tuple.

Runtime Environment: All experiments were run on the Extreme Science and 

Engineering Discovery Environment (XSEDE) [38] Comet cluster at the San Diego 

Supercomputer Center (SDSC). The Comet compute nodes are equipped with 2 sockets × 12 

cores of Intel Xeon E5-2680v3 processor (Total: 24 cores), 2 NUMA nodes × 64GB (Total: 

128GB) DRAM, 56 Gbps FDR InfiniBand interconnect and Lustre shared file system. The 

maximum number of nodes allowed per job is 72 and maximum allowed job time is 48 

hours. Furthermore, the single-node experiments for Crux and X!Tandem tools requiring 

>48h (XSEDE limit) execution time were run on a (comparable) local machine named 

raptor, equipped with Intel Xeon Gold 6152 processor (22 cores), 128GB DRAM and 6TB 

SSD HDD.

2.3 Correctness Analysis

We evaluated the HiCOPS’s correctness using a two-step approach. In the first step, we 

verified the consistency of results across parallel runs by searching all five datasets Si 

against both protein sequence databases Di using various settings and PTM combinations. 

The correctness was evaluated in terms of identified peptide sequences, and the 

corresponding hyperscores and expected values (expectscores) assigned (within 3 decimal 

points). A comparison of hyperscores and expectscores between the serial (x-axis) and 
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parallel runs (y-axis), obtained by searching the dataset: S1 against the database: D1 with no 

PTMs is shown in Figure 2a, 2b respectively. The results show over 99.5% consistency in 

scores. A small error was observed in a negligible number of results due to the sampling and 

floating-point precision losses (Methods, Figure 1d).

In the second step, we verified the quality of the implemented search algorithm by 

comparing the HiCOPS-computed hyperscores with the MSFragger-computed ones as 

both frameworks employ a similar scoring algorithm. i.e. shared-peak counting coupled 

hyperscore. Note that the hyperscores computed by MSFragger and HiCOPS cannot be 

exactly identical as MSFragger uses several pre-processing and boosting features that affect 

the final scores. These features could not be replicated in HiCOPS as MSFragger is a 

proprietary software. We designed and executed six experiments, three with restricted search 

(δM=1Da) and three with open search (δM ≥100Da) setting. The experimental MS/MS data 

pre-processing and database search settings were kept identical (and as minimal as possible) 

for both tools for fair comparisons. The details of the six experiments are as follows:

In the first experiment, a subset of 860 thousand spectra from the dataset: S4 was searched 

against the database: D1 modified with Methionine oxidation and NQ-deamidation as PTMs 

yielding a thoretical database of 18 million spectra at δM = 1Da. In the second experiment, 

the dataset: S3 was searched against the database: D1 modified with Methionine oxidation 

and STY-phosphorylation yielding a theoretical database of 66 million spectra at δM = 1Da. 

In the third experiment, the dataset: S3 was searched against the database: D2 modified with 

Methionine oxidation and Serine phosphorylation yielding a database of 80 million spectra 

at δM = 1Da. In the fourth experiment: the entire dataset: S3 was searched against the 

database: D1 with Methionine oxidation and NQ-deamidation yielding a theoretical database 

of 18 million spectra at δM = 200Da. In the fifth experiment, the S3 was searched against 

the database: D1 modified with Methionine oxidation and ST-phosphorylation yielding a 

theoretical database of 56 million spectra at δM = 100Da. In the sixth experiment, dataset: 

S3 was searched against the database: D2 modified with Methionine oxidation and Serine 

phosphorylation yielding a database of 80 million spectra at δM = 200Da.

For our comparisons, first, a correlation between the hyperscores assigned by both tools 

to commonly identified peptide to spectrum matches (PSMs) was computed (shown in 

Figures 2c to 2h). Then, the PSMs from both tools were filtered at 1% q-value (false 

discovery rate) and compared (shown in Supplementary Figure 5). Figures 2c, 2d, and 

2e respectively depict a strong-correlation (pearson coefficient R ≥ 0.90) between the 

hyperscores computed by both tools in the first three (restricted-search) experiments. 

However, the correlation between the hyperscores slightly drops between 0.70 ≤ R ≤ 0.90 

for the last three (open-search) experiments (Figures 2f, 2g, and 2h respectively). We suspect 

that the divergence in hyperscores may have stemmed from open-search specific spectral 

processing, reconstruction and/or score re-ranking algorithms implemented in MSFragger. 

Further, the results in Supplementary Figure 5 show about 50% overlap between the q-value 

filtered PSMs from HiCOPS and MSFragger. The results also show that the MSFragger’s 

scoring algorithm outperformed the underlying scoring algorithm in HiCOPS in identified 

peptides, as expected. Recall that the HiCOPS is designed as algorithm oblivious; meaning 
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the underlying algorithms can be customized or ported with more sophisticated versions to 

improve the identification while delivering similar performance.

2.4 Speed Comparison Against Existing Algorithms

We compared the HiCOPS speed against many existing shared- and distributed-memory 

database peptide search algorithms including Tide/Crux v3.2 [3], Comet v2020.01 [40], 

MSFragger v3.0 [2], X! Tandem v17.2.1 [41], X!! Tandem v10.12.1 [26], and SW-Tandem 

[29]. Parallel versions of the shared-memory tools were also implemented and run through 

Python and Bash wrapper scripts executing the following workflow: run parallel instances 

of the tool on XSEDE Comet nodes with equal partitions (random partitioning) of the 

experimental MS/MS data files. This technique also indirectly simulated the workflows 

of cloud-based tools such as MS-PyCloud (via parallel MSGF+) and Bolt (via parallel 

MSFragger). Additionally, we tried to run the UltraQuant HPC tool which implements a 

parallel MaxQuant. However, it crashed with unhandled exceptions every time it was run on 

>1 node.

We designed six experiments listed as (a) to (f) in increasing order of their experimental 

workload sizes. (i.e. database and dataset sizes, and experimental settings). In the first two 

(a, b) experiment, a subset of 8000 spectra from dataset: S3 (file: 7Sep18_Olson_WT24) 

was searched against the database: D2 modified with variable Methionine oxidation, and 

Tyrosine Biotin-tyramide yielding a theoretical database of 93.5 million spectra at δM 
= 10Da and δM = 500Da respectively. In the third experiment (c), the dataset: S3 was 

searched against database D1 modified with variable Methionine oxidation, and Tyrosine 

Biotin-tyramide as PTMs yielding a theoretical database of 7.1 million spectra at δM = 

500Da. In the fourth (d) and fifth (e) experiments, the entire dataset: S3 was searched against 

the theoretical database of first two experiments (i.e. the 93.5 million spectra one) at δM 
= 10Da and δM = 500Da respectively. In the sixth (f) experiment, dataset S4 was searched 

against the database: D1 modified with variable Methionine oxidation, STY-phosphorylation 

and NQ-deamidation yielding a theoretical database of: 213 million at δM = 100Da. The 

slower tools such as Comet, MSGF+, Crux and X!Tandem variants were only run for 

smaller experiments due to XSEDE max job time limits.

The obtained wall time results (Figure 3a to 3f) show that the HiCOPS outperforms all 

other tools by >10× on average in speed, especially for experiments with larger workloads 

(Figure 3d, e, f). It can also be observed that the HiCOPS exhibits better strong-scale 

parallel efficiency compared to other tools as the experimental workload size increases 

(a→f). For smaller workloads (Figure 3a, 3b, 3c) the parallel efficiency is limited by 

the Amdahl’s law. The scalability is shown as the deviation (+ve = sub-linear; −ve = 

hyper-linear) from the ideal speedup track (dotted gray) lines in each experiment in Figure 

3a to Figure 3f. The parallel efficiency results for MSFragger were particularly peculiar 

as it appears to be scaling super-linearly up to a certain number of parallel nodes, and 

then dropping to sub-linear. To explain this, the runtime components of MSFragger were 

further analyzed in detail. The results (Figure 3g and 3i) show that a large percentage of 

MSFragger’s runtime is composed of I/O, and load imbalance, resulting in low overhead/

compute ratio (effective resource utilization). Comparatively, HiCOPS exhibits significantly 
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improved memory performance (Figure 3h, 3j) resulting in lower run time even though the 

effective search time (useful compute time) for MSFragger and HiCOPS are comparable. 

The results (Figure 3a, 3b, 3c) show that the existing HPC tools including X!!Tandem, 

SW-Tandem, parallel Comet and parallel MSGF+ (MS-PyCloud) are > 100× slow even for 

small-scale experiments. Finally, we observed zero parallel efficiency for SW-Tandem in all 

experiments, i.e. no speedups whatsoever (Supplementary Section 3).

2.5 Application in Tera-Scale Experimentation

Application of HiCOPS in tera-scale experiments was demonstrated using three additional 

experiments. In the first experiment, the dataset: S3 was searched against a theoretical 

database of 766 million spectra (780GB) at δM = ±500Da and δF = ±0.01Da. In the 

second experiment, the dataset: S4 was searched against a theoretical database of 1.59 billion 

spectra (1.7TB) at δM = ±500Da and δF = ±0.05Da. In the third experiment, the dataset: S2 

was searched against a theoretical database of 3.89 billion spectra (4TB) at δM = ±500Da 

and δF = ±0.01Da. HiCOPS completed the execution of the these three experiments in 14.55 

minutes (64 nodes), 103.5 minutes (72 nodes) and 27.3 minutes (64 nodes) respectively. 

In contrast, MSFragger completed the execution of first experiment in 158.8 minutes (64 

nodes; 10× slower). The second experiment was completed by MSFragger in 18 hours 

(72 nodes; 10.3× slower) and 35.5 days when using 1 node (494× slower). The other 

experiments were intentionally not run on MSFragger or other tools due to feasibility issues. 

The results for this set of experiments are summarized in Table 1.

2.6 Performance Evaluation

Twelve experiments of varying workload sizes were designed using combinations of 

aforementioned databases (Di) and datasets (Si), post-translational modifications, and 

precursor peptide mass tolerance windows (δM) for an extensive performance evaluation. 

These experimental workloads varied from extremely small to massive-scale covering a 

wide-range of application. The twelve experiment sets in the tuple form are listed as follows: 

exp1 = (0.3, 0.84, 0.1), exp2 = (0.3, 0.84, 2), exp3 = (3.89, 0.07, 5), exp4 = (1.51, 2.13, 5), 

exp5 = (6.1, 0.93, 5), exp6 = (3.89, 7.66, 5), exp7 = (1.51, 19.54, 5), exp8 = (1.6, 38.89, 

5), exp9 = (3.89, 15.85, 5), exp10 = (3.89, 1.08, 5), exp11 = (1.58, 2.13, 1), and exp12 = 

(0.305, 0.847, 5). Note that the fragment-ion tolerance is set to δF = ±0.01Da in all these 

experiments.

Parallel Scalability: Strong-scale efficiency for all twelve experiments was measured and 

the results (Figure 4a, 4b) depict that the overall strong-scale efficiency ranges between 

70-80% for sufficiently large experimental workloads. For smaller experiments, the parallel 

speedup quickly dampens as there is not enough parallel work to be done (Amdahl’s Law). 

Superstep-level dissection of the speedup results in Supplementary Figure 6 further confirm 

that the most significant fraction of the overall runtime is constituted by the superstep 

3 indicating its importance in optimizations. Note that the minimum number of parallel 

nodes (Pmin) required by HiCOPS for each experiment must be Pmin ≥ D/M; where M 
is main memory per node. Therefore, the speedup and efficiency calculations were done 

using the runtime for the experiment with minimum nodes as the base case. The serial 

time (Ts) was first computed using the base case experiment runtime (TPmin) as: Ts = 
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Pmin × TPmin. Then, the speedups and efficiency for experiments with nodes ≥ Pmin were 

computed relative to TPmin using the computed Ts. Essentially, the speedups are relative to 

the base case runtime which may not be the 1-node time depending on the Pmin (limitation 

of HiCOPS). Furthermore, super-linear speedups were observed in several experiments with 

larger workloads. To explain this, the following hardware counters-based metrics were also 

recorded for all experiments: instructions per cycle (ipc), last level cache misses (LLC) per 

all cache level misses (lpc), and the cycles stalled due to writes per total stalled cycles (wps). 

The results (Figure 4c, 4d, 4e) show that the CPU, cache, and memory bandwidth utilization 

improves as the workload per node (wf/P) increases reaching to an optimum point after 

which it saturates due to memory bandwidth contention since the database search algorithms 

employed (and also in general) are highly memory intensive. Beyond this saturation point, 

increasing the number of parallel nodes for the same experimental workload resulted in 

a substantial improvement (super-linear) in performance as the workload per node (wf/P) 

reduced to the normal (optimal) range. For instance, the experiment set exp5 depicts super

linear speedups (Figure 4a) which can be correlated to the hardware performance surge in 

Figure 4c.

Performance Overheads: Several metrics including load imbalance, communication, 

I/O, and pipeline halt costs were also measured to identify and quantify the performance 

overheads. The obtained results (Figure 5a, 5b, 5c) depict that the load imbalance costs 

remain ≤10%, I/O costs remain ≤10%, and inter-task communication costs remain ≤5% in 

most experiments. Note that the load imbalance is a direct measure of synchronization 

cost. Figure 5e shows a time series of the per-batch producer-consumer pipeline halt 

time (see Superstep 3 in Methods) when searching three datasets of increasing size. The 

wait time is the time when any of the pipeline sub-tasks wait for a batch of data from 

its predecessor. The results (Figure 5e) show that our task-scheduling algorithm actively 

performs counter measures (reallocates threads) as soon as a pipeline-stall is detected due 

to speed mismatches between parallel sub-tasks keeping the total cost to ≤ 5% in most 

experiments (Figure 5d).

3 Discussion

Recent trends in high-performance computing (HPC) have shifted towards heterogeneous 

architectures [42] as several top-500 supercomputers combine CPUs with Graphical 

Processing Units (GPUs) and Field Programmable Gate Arrays (FPGAs) to deliver petascale 

(and in near future, exascale [43]) computing powers. However, the presented SPMD-BSP 

based HiCOPS design limits its application to only the homogeneous (CPU-only) parallel 

nodes in a supercomputer. This technological shift in HPC drives our future efforts that 

include a GPU-accelerated design for HiCOPS.

Peptide identification rates achieved by HiCOPS are limited by the underlying data 

processing, scoring and statistical modeling algorithms it executes. In our current design, 

we implement a basic shared-peak coupled hyperscoring algorithm [2] without making an 

explicit effort to improve these algorithms. Further, in some cases, searching against smaller 

databases (on single nodes) results in better performance (smaller workloads) and search 

quality (high-confidence separation of true positives from false positives). Although the 
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proposed parallel design is algorithm-independent; i.e. underlying algorithms can be trivially 

ported and updated, we focus our future efforts on implementing (heterogeneous) HPC 

versions of several modern algorithms, and machine- and deep-learning models [44], [45], 

[9] within HiCOPS.

Finally, we believe that the computational tools are the enablers of new and more exciting 

science – science that one might not envision today because of the limitations of the 

infrastructure that is at our disposal. Therefore, we are confident that our current and future 

efforts will make a useful advance in enabling scientific investigations in this application 

domain.

7 Methods

Notations and Symbols

For the rest of the paper, we will denote the number of peptide sequences in the database 

as (ζ), average number of post-translational modifications (PTMs) per peptide sequence 

as (m), the total theoretical database index size as (ζ(2m) = D), the number of parallel 

nodes/processes as (P), number of cores per parallel process as (cpi), size of experimental 

MS/MS dataset (i.e. number of experimental/query spectra) as (q), average length of query 

spectrum as (β), and the total dataset size as (qβ). The runtime of executing the superstep (j) 
by parallel task (pi) will be denoted as (Tj,pi) and the generic overheads due to boilerplate 

code, OS delays, memory allocation etc. will be captured via (γpi). Note that we shall refer 

the theoretical database as simply the database in the rest of the paper.

7.1 Runtime Cost Model

Since the HiCOPS parallel processes run in SPMD fashion, the cost analysis for any parallel 

process (with variable input size) is applicable for the entire system. Also, the runtime cost 

for a parallel process (pi ε P) to execute superstep (j) can be modeled by only its local input 

size (i.e. database and dataset sizes) and available resources (i.e. number of cores, memory 

bandwidth). The parallel processes may execute the algorithmic work in a data parallel, task 

parallel or a hybrid task and data parallel model. As an example, the execution runtime 

(cost) for a parallel process pi to execute superstep (j) which first generates D model-spectra 

using algorithm k1 and then sorts them using algorithm k2 in data parallel fashion (using all 

cpi cores) will be given as follows:

Tj, pi = kj1(D) + kj2(D) + γpi (2)

Similarly, if the above steps kz are performed in a hybrid task and data parallel fashion, the 

number of cores allocated to each (kjz) must also be considered. For instance, in the above 

example, if the two algorithmic steps are executed in sub-task parallel fashion with cpi/2 

cores each, the execution time will be given as:

Tj, pi = max(kj1(D, cpi ∕ 2), kj2(D, cpi ∕ 2)) + γpi (3)
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For analysis purposes, if the time complexity of the algorithms used for step kjz is known 

(say O(.)), we will convert it into a linear function kjz′  with its input data size multiplied by 

its runtime complexity. This conversion will allow better quantification of serial and parallel 

runtime portions as seen in later sections. As an example, if it is known that the sorting 

algorithms used for kj2 have time complexity: O(N log N), the equation 2 can be modified 

to:

Tj, pi = kj1(D) + kj2′ (D log D) + γpi (4)

Remarks: The formulated model will be used to analyze the runtime cost for each 

superstep, quantify the serial, parallel and overhead costs in the overall design, and optimize 

the overheads.

7.2 Superstep 1: Database Partitioning

In this superstep, the HiCOPS parallel processes construct a local database partition through 

the following three algorithmic data parallel steps (Figure 1): 1) Generate and extract 

a (balanced) local partition of the (peptides + PTM variants) database. 2) Generate the 

theoretical spectra data. 3) Index the local peptide and model-spectra to build the theoretical 

database index (suffix array and the fragment-ion index).

The database partitions are constructed using the LBE algorithm [46] (illustrated in 

Supplementary Figure 7). The LBE algorithm first clusters similar model-spectra in the 

database which are then scattered across parallel nodes cluster by cluster to achieve the 

balance [46] as also depicted in Supplementary Algorithm 1. In this work, we supplement 

the LBE algorithm with a new additional distance metric for clustering. We call this 

metric as the Mod Distance (Δm) which allows better separation of database spectral-pairs 

which cannot be separated by the normalized Edit Distance (Δe) metric introduced in the 

LBE algorithm (See Supplementary Section 5 for more information on Mod Distance). 

Consequently, the new distance metric allows better load balance between the database 

partitions as corroborated by our experimental results. To the best of our knowledge, LBE 

is the only existing technique for efficient theoretical database partitioning. Mod Distance 
(Δm) proposed in this paper is defined as follows:

Mod Distance: For a pair of model-spectra in the database (x, y), assuming the sum of 

unedited amino acid sequence lengths from both peptide sequence termini is (a), the Mod 

Distance (Δm) is given as follows (See Supplementary Section 5):

Δm(x, y) = 2 − a
max(len(x), len(y))

Cost Analysis: The first step generates the entire database of size (D) and separates out a 

local partition (of roughly the size D/P = Dpi) in runtime: k11(D). The second step generates 

the model-spectra from the partitioned database using the standard simulation model [12], 

[40] in runtime: k12(Dpi). The third step constructs a fragmention index similar to [2], 

[23], [21] in runtime: O(N log N). In our implementation, we employed the CFIR-Index 
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[21] algorithm due to its smaller memory footprint resulting in runtime: k13′ (Dpi log Dpi). 

Collective runtime for this superstep is given by Equation 5.

T1 = maxpi (k11(D) + k12(Dpi) + k13′ (Dpi log Dpi) + γpi) (5)

Remarks: Equation 5 depicts that the serial execution time i.e. k11(D) bottlenecks the 

parallel efficiency.

7.3 Superstep 2: Experimental MS/MS Data Pre-processing

In this superstep, the HiCOPS parallel processes pre-process a partition of experimental 

MS/MS spectra data through the following three algorithmic data parallel steps (Figure 1): 

1) Read the dataset files, create a batch index and initialize internal structures. 2) Pre-process 

(i.e. normalize, clear noise, reconstruct etc.) a partition of experimental MS/MS data. 3) 
Write-back the pre-processed data.

The experimental spectra are split into batches such that a reasonable parallel granularity is 

achieved when these batches are searched against the database. By default, the maximum 

batch size is set to 10K spectra and the minimum number of batches per dataset is set to P. 

The batch information is indexed using a queue and a pointer stack to allow quick access to 

the pre-processed experimental data in the superstep 3.

Cost Analysis: The first step for reads the entire dataset (size: qβ) and creates a batch 

index in runtime: k21(qβ). The second step may pre-process a partition of the dataset (of 

roughly the size: qβ/P = Qpi) using a data pre-processing algorithm such as [47], [5], [44] 

etc. in runtime: k22(Qpi). The third step may write the pre-processed data back to the file 

system in runtime: k23(Qpi). Note that the second and third steps may altogether be skipped 

in subsequent runs when the input data are already pre-processed. Collective runtime for this 

superstep is given by Equation 6.

T2 = maxpi (k21(qβ) + k22(Qpi) + k23(Qpi) + γpi) (6)

Remarks: Equation 6 depicts that the parallel efficiency of superstep 2 is highly limited 

by its dominant serial portion i.e. k21(qβ). Moreover, this superstep is sensitive to the file 

system bandwidth since large volumes of data may be communicated to/from the shared file 

system.

7.4 Superstep 3: Database Peptide Search

This is the most important superstep in HiCOPS workflow and is responsible for 80-90% of 

the total algorithmic workload. In this superstep, the HiCOPS parallel processes search 

the pre-processed experimental spectra against their local database partitions through 

the following three algorithmic hybrid task and data parallel fashion steps (Figure 1, 

Supplementary Figure 4): 1) Load the pre-processed experimental MS/MS data batches 
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into memory. 2) Search the loaded spectra batches against the (local) database partition and 

produce intermediate results. 3) Serialize and write the intermediate results to the shared file 

system assigning them unique tags.

Three parallel subtasks are created, namely R, I and K, that work in a producer-consumer 

pipeline to execute the algorithmic work of this superstep (Figure 1c). The data flow 

between the sub-tasks is handled through queues to create a buffer between the producers 

and consumers. The first sub-task (R) loads batches of the pre-processed experimental 

spectra data and puts them in queue (qf) as depicted in Supplementary Algorithm 2. The 

sub-task R may also perform minimal computations on the experimental spectra before 

putting them in queue. e.g. peak selection and/or intensity normalization. The parallel cores 

assigned to sub-task R are given by: ∣ r ∣. The second sub-task (I) extracts batches from (qf), 

performs the database peptide search (currently: shared-peak counting coupled hyperscore 

computation) against its local database partition and puts the produced intermediate (local) 

results in queue (qk) as depicted in Supplementary Algorithm 3. The parallel cores assigned 

to sub-task I are given by: ∣ i ∣. The sub-task I also recycles the memory buffers back to 

sub-task R using the queue (qr). The third sub-task (K) serializes and writes the intermediate 

results to a shared memory using ∣ k ∣ cores. Given an experimental spectrum (φ), a database 

peptide (χ), the number of shared b-ions between them (nb) with intensities (ib,j), and the 

number of shared y-ions between them (ny) with intensities (iy,k), the hyperscore between 

them is given as:

ℎyperscore(φ, χ) = log(nb!) + log(ny!) + log( ∑
j = 1

nb
ib, j) + log( ∑

k = 1

ny
iy, k)

Cost Analysis: The sub-task (R) reads the experimental data batches in runtime: k30(qβ). 

The sub-task (I) iteratively filters the database and computes spectral comparisons against 

the database (scoring step). Most commonly, the database peptide search algorithms use 

two or three database filtration steps, most commonly, peptide precursor mass tolerance [3], 

[29], shared fragment-ions [2], [23] and sequence tags [10] [9]. In current implementation, 

we use the first two filtration methods which execute in runtime: k31(qDpi) and k32(qβαpi) 

respectively. Here, the αpi represents the average filtered database size filtered from the first 

step. The currently implemented scoring mechanism computes hyperscores [13] in runtime: 

k33(qβσpi) + k34(qαγpi). Here, the σpi and μpi represent the average number of filtered 

shared-ions and model-spectra per experimental spectrum. Note that the scoring algorithm in 

this superstep is portable as the parallel design does not depend on it. Finally, the sub-task K 
writes the intermediate results to the shared file system in runtime: k35(q).

Overhead Costs: Overhead factors stemming from load imbalance, producer-consumer 

pipeline halt, file system bandwidth congestion affect the performance of this superstep. 

Therefore, we capture them using an additional runtime cost: Vpi (q, Dpi, P). Several 

optimizations including buffering, task scheduling, load balancing and data sampling 

(discussed in later sections) were implemented to alleviate the overhead costs. Collective 

runtime for this superstep is given by Equation 10.
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The runtime of sub-task R, i.e. tpi(r, ∣ r ∣), is given as:

tpi(r, ∣ r ∣ ) = k30(qβ, ∣ r ∣ ) (7)

The runtime of sub-task I, i.e. tpi (i, ∣ i ∣), is given as:

tpi (i, ∣ i ∣ ) = k31(qDpi, ∣ i ∣ ) + k32(qβαpi, ∣ i ∣ ) + k33(qβσpi) + k34(qμpi, ∣ i ∣ )

Or:

tpi (i, ∣ i ∣ ) = k31′ (q log(Dpi), ∣ i ∣ ) + k32′ (qβ log(αpi), ∣ i ∣ ) +
k33(qβσpi, ∣ i ∣ ) + k34(qμpi, ∣ i ∣ ) (8)

The runtime of sub-task K, i.e. tpi (k, ∣ k ∣), is given as:

tpi (k, ∣ k ∣ ) = k35(q, ∣ k ∣ ) (9)

Combining equations 7, 8 and 9 we have:

T3 = maxpi(max(tpi(r, ∣ r ∣ ), tpi(i, ∣ i ∣ ), tpi(k, ∣ k ∣ )) +
V pi(q, Dpi, P ) + γpi)

(10)

Remarks: Equations 7, 8, 9 and 10 depict that the parallel runtime portion of this superstep 

grows quadratically superseding the serial portion if the experimental load is sufficient.

7.5 Superstep 4: Result Assembly

In this superstep, the HiCOPS parallel processes assemble the intermediate results from 

the last superstep into complete results through the following hybrid task and data parallel 

algorithmic steps (Figure 1d): 1) Read a set of intermediate result batches, assemble them 

into complete results, and send the assembled results to their parent processes. 2) Receive 

complete results from other parallel processes and synchronize communication. 3) Write the 

complete results to the file system.

Two parallel sub-tasks are created to execute the algorithmic steps in this superstep. The 

first sub-task reads sets of intermediate results from the shared file system (or shared 

memory) (satisfying: tag mod P = pi; pi ϵ MPI ranks), de-serializes them and assembles 

the complete results. The expectation scores are then computed and communicated to their 

origin processes. For example, the process with MPI rank 4 will process the all intermediate 

result batches with tag 0x8_i where i = 0,1,.., P − 1. The assembly process is done through 

signal addition and shift operations (Figure 1d). The expected values (expectscores (es)) 

are computed by first smoothing the assembled data through Savitzky-Golay filter and then 

applying the null test through either the Linear-Tail Fit [48] or log-Weibull (Gumbel) Fit 

method (Figure 1d). The computed es along with additional information (total: 16 bytes) 
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are queued to be sent to the HiCOPS process that recorded the most significant database hit 

(origin). The final results are stored in a map data structure for collective communication at 

the end of all batches. All available cores (cpi) are assigned to this sub-task. Supplementary 

Algorithm 4 depicts the algorithmic work performed by this sub-task.

The second sub-task runs waits for P − 1 packets of results from other HiCOPS processes. 

This task runs asynchronously using an over-subscribed thread and only activates when 

incoming data is detected. Finally, once the two sub-tasks complete (join), the complete 

results are written to the file system in data parallel fashion using all available threads.

Cost Analysis: The first sub-task reads the intermediate results, performs regression and 

sends computed results to other processes in runtime: k41 (Qpi, cpi) + k42(Qpi, cpi) + k43(P, 

1) time. The second sub-task receives complete results from other tasks in runtime: k44(P, 

1). Finally, the complete results are written in runtime: k45(Qpi). Collectively, the runtime for 

this superstep is given by equation 11.

T4 = maxpi(max(k41(Qpi, cpi) + k42(Qpi, cpi) + k43(P , 1), k44(P , 1)) + k45(Qpi)
+ γpi)

(11)

To simplify equation 11, we can re-write it as a sum of computation costs plus the 

communication overheads (kcom(P, 1)) as:

T4 = maxpi(k41(Qpi, cpi) + k42(Qpi, cpi) + kcom(P , 1) + k45(Qpi) + γpi) (12)

Assuming that the network latency is denoted as (ω), bandwidth is denoted as (π) and 

(16Qpi) is the average data packet size in bytes, the inter-process communication overhead 

cost (kcom(P, 1)) in seconds is estimated to be:

kcom(P , 1) ≈ 2(P − 1)(ω + 16Qpi ∕ π)

Remarks: As the communication per process are limited to only one data exchange 

between any pair of processes, the overall runtime given by equation 12 is highly scalable. 

The effective communication cost depends on the amount of overlap with computations and 

the network parameters at the time of experiment.

7.6 Performance Analysis

To quantify the parallel performance, we decompose the total HiCOPS time TH (Eq. 1) 

into three runtime components. i.e. parallel runtime (Tp), serial runtime (Ts) and overheads 

runtime (To) given as:

TH = ∑
j = 1

4
maxpi (Tj, pi) = To + Ts + Tp (13)
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Using equations 1, 5, 6, 10, and 12, we separate the three runtime components as:

To = V pi(q, Dpi, P ) + γpi (14)

Ts = k11(D) + k21(qβ) + kcom(P , 1) (15)

and:

Tp = k12(Dpi) + k13′ (Dpi log Dpi) + k22(Qpi) + k23(Qpi) +
max(tpi(t, ∣ r ∣ ), tpi(i, ∣ i ∣ ), tpi(k, ∣ k ∣ )) + k41(Qpi, cpi) +

k42(Qpi, cpi) + k45(Qpi)
(16)

Ts is the minimum serial time required for HiCOPS execution and cannot be further reduced. 

Therefore, we will focus on optimizing the remaining runtime: TF = Tp + To. Using 

equations 14 and 16, we have:

TF = k12(Dpi) + k13′ (Dpi log Dpi) + k22(Qpi) + k23(Qpi) +
max(tpi(t, ∣ r ∣ ), tpi(i, ∣ i ∣ ), tpi(k, ∣ k ∣ )) + k41(Qpi, cpi) +

k42(Qpi, cpi) + k45(Qpi) + To
(17)

Since the HiCOPS parallel processes divide the database and experimental dataset roughly 

fairly in supersteps 1 and 2, the first four and the sixth term in Tp are already almost 

optimized, so we can prune them from TF:

TF = max(tpi(t, ∣ r ∣ ), tpi(i, ∣ i ∣ ), tpi(k, ∣ k ∣ )) + k41(Qpi, cpi) +
k42(Qpi, cpi) + + k45(Qpi) + To

(18)

Recall that the superstep 4 runtime is optimized for maximum parallelism (and least inter

process communication) and that the superstep 3 performs the largest fraction of overall 

algorithmic workload. Thus, we can also remove the superstep 4 terms from TF to simplify 

analysis:

TF = max(tpi (t, ∣ r ∣ ), tpi (i, ∣ i ∣ ), tpi(k, ∣ k ∣ )) + To

Further, as that the superstep 3 is executed using the producer-consumer pipeline (Figure 

1c) where the sub-task R must produce all data before it can be consumed by I meaning its 

runtime must also be smaller than tpi (i, ∣ i ∣) and tpi (k, ∣ k ∣) allowing a safe removal from 

the above equation yielding:

TF = max(tpi(i, ∣ i ∣ ), tpi(k, ∣ k ∣ )) + To
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In above equation, we can rewrite the max(.) term as the time to complete sub-task I: (tpi(i, 
∣ i ∣)) plus the extra time to complete sub-task K (the last consumer): tx(k). Therefore, using 

equation 9 we have:

TF = k31′ (q log(Dpi), ∣ i ∣ ) + k32′ (qβ log(αpi), ∣ i ∣ ) +
k33(qβσpi, ∣ i ∣ ) + k34(qμpi, ∣ i ∣ ) + tx(k) + To

(19)

We can prune the first two terms in the equation 19 as well since their runtime contribution: 

O(log N) will be relatively very small. Finally, using equation 14 in 19, we have:

TF = k33(qβσpi, ∣ i ∣ ) + k34(qμpi, ∣ i ∣ ) + tx(k) + V pi(q, Dpi, P ) + γpi (20)

7.7 Optimizations

The following sections discuss the optimization techniques employed to alleviate the 

overhead costs in Equation 20.

7.7.1 Buffering—Four queues, the forward queue (qf), recycle queue (qr) and result 

queues (qk, qk′ ) are initialized and routed between the producer-consumer sub-tasks in the 

superstep 3 (Figure 1c) as: R → I, R ← I, I → K and I ← K respectively. The qr is 

initialized with (default: 20) empty buffers for the sub-task R to fill the pre-processed 

experimental data batches and push in qf. The sub-task I removes a buffer from qf, consumes 

it (searches it) and pushes back to qr for re-use. The results are pushed to qk which are 

consumed by sub-task K and pushed back to qk′  for re-use. Three regions are defined for 

the queue qf based on the number of data buffers it contains at any time. i.e. w1 : (len(qf) 

< 5), w2 : (5 ≤ len(qf) < 15) and w3 : (len(qf) ≥ 15). These regions (wl) are used by the 

task-scheduling algorithm discussed in the following section.

7.7.2 Task Scheduling—The task scheduling algorithm is used to maintain a synergy 

between the producer-consumer (sub-task) pipeline in the superstep 3. The algorithm 

initializes a thread pool of cpi + 2 threads where cpi is the number of available cores. In 

the first iteration, 2 threads are assigned to the sub-tasks R and K while the remaining cpi − 2 

threads are assigned to sub-task I. Then, in each iteration, the qf region: wl, and the qf.pop() 

time for I, given by: twait, are monitored. A time series is built to forecast the next twait (i.e. 

tfct) using double exponential smoothing [49]. The twait is also accumulated into tcum. Two 

thresholds are defined: minimum wait (tmin) and maximum cumulative wait (tmax). Using 

all this information, a thread is removed from sub-task I and added to R if the following 

conditions are satisfied:

cI R = (twait ≥ tmin ∧ (tcum + tfct) > tmax) ∨ (wl = w1 ∧ ∣ r ∣ = 0)

The tcum is set to 0 every time a thread is added to R. Similarly, a thread is removed from 

sub-task R and added to I if the following conditions are satisfied. All threads are removed 
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from R if the queue qf becomes full or there is no more experimental MS/MS data left to be 

loaded.

cR I = (wl = w3 ∧ ∣ r ∣ > 1) ∨ qf ⋅ full()

The sub-task K uses its 2 over-subscribed threads to perform the overlapped I/O operations 

concurrently (Figure 1c).

7.7.3 Load Balancing—The algorithmic workload in equation 20 is given by: 

k33(qβσpi, ∣ i ∣) + k34(qμpi, ∣ i ∣). Here, the terms qβ and q are constants (experimental 

data size) whereas the terms σpi and μpi are variable. The variable terms represent the 

filtered database size for a parallel HiCOPS process (pi) and thus, must be balanced across 

processes. We do this statically by constructing balanced database partitions (hence a 

balanced workload) using the LBE algorithm supplemented with our new Mod Distance 
metric in Superstep 1 (Methods, Figure 1a, Supplementary Figure 6). The correctness of the 

LBE algorithm for load balancing is proven in Supplementary Section 6. In future, we plan 

to devise and develop dynamic load balancing techniques for better results.

7.7.4 Sampling—Sampling is used to reduce the inter-process communication required 

in result assembly (superstep 4) without compromising on the assembly accuracy. For 

each experimental spectrum, the HiCOPS processes (pi) produce a local resultc consisting: 

number of local hits, hyperscore for the top hits etc. (12 bytes), and the local null 

distribution histogram of hyperscores (2048 bytes). Communicating this, the size of each 

data packet (1 per batch) will be: ~20MB, which can result in serious overheads. It has 

been shown that the null distribution hyperscore (and several other scoring algorithms) 

in database peptide search follow a log-Weibull or Gumbel curve [41]. This means that 

most of the data are localized around the mean. We exploit this information to reduce 

the communication footprint as follows: We first locate the mean of the local null 

distribution and sample most intense non-zero data points around it. If the total number 

of non-zero samples exceed s(=120 default), we prioritize the samples towards the head 

of the distribution as we can reconstruct the tail fairly accurately through curve fitting. 

The sampled data are further encoded into unsigned short instead of int to fit inside a 

buffer of 256 bytes resulting in a 1.5MB data packet size which is instantly written/read 

from the shared file system reducing the overhead costs including tx(k) (see Equation 20). 

Supplementary Figure 7 illustrates an example of sampling.

7.8 Detailed Experimental Setup

The two databases (i.e. D1 and D2) were digested in-silico using Trypsin as enzyme 

(fully tryptic) with 2 allowed missed cleavages, peptide lengths between 6 and 46 

and peptide masses between 500 and 5000Da. The pseudo-spectra were simulated by 

generating b- and y-ions up to +3 charge with zero isotope error and no decoys. Cysteine 

carbamidomethylation was set as fixed modification for all experiments whereas the variable 

modifications were chosen from the combinations of Methionine oxidation, Arginine and 

Glutamine deamidation, Serine, Threonine and Tyrosine phosphorylation, Cysteine and 
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Lysine gly-gly adducts, and Tyrosine Biotin-tyramide across experiments. The maximum 

number of allowed modified residues (amino acid letters) per peptide was set to 5. The 

number and type of PTMs used in database expansion, and the search settings including 

peptide precursor mass tolerance (δM) were varied across experiments to cover both 

the open-: δM ~ ±500Da and closed-search: δM ≤ ±10Da scenarios. The closed-search 

criterion was set to a few Daltons (≤1Da in correctness analysis and ≤10Da in performance 

evaluation) instead of 10-20ppms to cover the differences in calculated peptide precursor 

masses due to monoisotopic or average masses and isotopic masses across search tools. 

The four experimental MS/MS datasets were converted to MS2 format before use. The 

experimental MS/MS spectra pre-processing settings for all tools were set to minimal so 

that all tools execute a nearly identical algorithmic work (fairness). Some of these settings 

are listed as follows: allowed precursor masses: 500 to 5000Da, precursor charges: +1 to 

+4, min matched peaks for PSM candidacy: 4, min database hits for statistical scoring: 

4, de-noising: only top 100 peaks picked (by intensity), peak transformations: none, mass 

calibration: no, precursor peak removal: no, partial spectrum re-construction: no, clip n-term 

M: no.

8 Code Availability

The HiCOPS software has been implemented using object-oriented C++17, MPI, OpenMP, 

Python, Bash and CMake. Instrumentation interface is implemented via Timemory [42] 

for performance analysis. Command-line tools for MPI task mapping (Supplementary 

Section 7), database processing, file format conversion and result post-processing are also 

distributed with the software. HiCOPS is under active development and all documentation 

updates, source code releases etc. will be updated on the same web page. The source 

code is available open-source at https://doi.org/10.5281/zenodo.5094072 [50] and https://

github.com/hicops/hicops. Please refer to the software web page: https://hicops.github.io for 

detailed documentation, licensing and future software updates.

9 Data Availability

All datasets used in this study are publicly available from Pride Archive and can be accessed 

via https://www.ebi.ac.uk/pride/archive/projects/<AccessionNum> where Accession Num 
is the accession number for each dataset mentioned in the text. For example, to access 

the dataset S1: PXD009072, use the link: https://www.ebi.ac.uk/pride/archive/projects/

PXD009072. Homo sapiens protein sequence database can be downloaded from UniProtKB 

using the link: https://www.uniprot.org/proteomes/UP000005640. The UniProt SwissProt 

(reviewed) database can be downloading using the link: https://www.uniprot.org/uniprot/?

query=reviewed:yes. Source data for Figures 2, 3, 4, 5 are also available with this 

manuscript as well as on [39].

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Methods Overview.
(a) Superstep 1: The massive theoretical spectra database (spectra shown as shapes) is 

partitioned among parallel processes and locally indexed. Partitioning is done in a load 

balanced fashion (similar shapes clustered and scattered across processes). (b) Superstep 
2: The experimental MS/MS spectra data are indexed, tagged, pre-processed and written 

back to a shared memory in data parallel. (c) Superstep 3: Asynchronous parallel database 

peptide search is executed by all processes. On each process, three parallel sub-tasks 

R, I and K work in a pipeline to load the pre-processed data, execute a local database 

search, and write the produced (sampled) local results to the shared memory respectively. 

Task scheduler manages the parallel threads between the pipeline tasks. (d) Superstep 4: 
Local/intermediate results are assembled followed by curve fitting and expected value (es) 

computation in data parallel fashion. Results with es < 0.01 are communicated to their origin 

processes.
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Figure 2: Correctness Analysis.
(a,b) Comparison of 5K out of 251K data samples of hyperscores and expected values 

(expectscores), computed by HiCOPS in serial (x-axis) and parallel (y-axis) runs is shown. 

Note that all 251K samples depict the same consistency across parallel runs [39], only 

infeasible to plot. (c to h) Correlations between hyperscores computed by HiCOPS (x-axis) 

and MSFragger (y-axis) under restricted-search (c, d, e) and corresponding open-search (f, 
g, h) settings are shown along with Pearson correlation coefficients (R).

Haseeb and Saeed Page 24

Nat Comput Sci. Author manuscript; available in PMC 2022 February 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3: Speed Comparisons.
(a to f) Speed comparison between HiCOPS and other tools with increasing number of 

parallel nodes is shown. The gray dotted line tracks the ideal speedup times for each 

tool (log-log scale) in experiments. The δM window for MSGF+ and Comet was further 

tightened in some experiments (indicated by ’@’ in labels) due to tool limitations. (g to i) 
The percentage I/O and load imbalance overheads exhibited by HiCOPS and MS-Fragger 

for experiments in sub-figures (c, d, e, and f), are shown with increasing number of parallel 

nodes.
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Figure 4: Performance Metrics.
Performance metrics including (a) parallel speedup, (b) strong-scale efficiency, (c) 
instructions per cycle (ipc), (d) last level cache miss per total cache misses (lpc), and 

(e) write stalls per total stalls (wps) respectively are shown with increasing parallel nodes 

for all performance evaluation experiments (labeled as tuples: expn in section: Performance 

Evaluation). The black dotted lines (ref) show the ideal speedup and efficiency in (a) and (b) 
respectively.
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Figure 5: Overhead Analysis.
Overhead costs including (a) load imbalance, (b) I/O, (c) communication, and (d) 
pipeline halt time are shown with increasing parallel nodes for all performance evaluation 

experiments (labeled as tuples: expn in section: Performance Evaluation). (e) The time series 

shows the per-batch sub-task pipeline halt time (scheduling performance) in Superstep 3 

when searching datasets of sizes 15GB, 41GB, and 71GB in open-search using 64 nodes. 

The wait time shows the time the pipeline sub-tasks in Superstep 3 waited for corresponding 

data batches.
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Table 1:

Summary of the execution times for three large-scale database search experiments using HiCOPS and 

MSFragger is shown. Peptide precursor mass tolerance and fragment-ion tolerance in Daltons (Da) are given 

as δM and δF respectively. Single node version of the second experiment using MSFragger (i.e. 2*) was run 

on the local (raptor) server. The third experiment was not run using MSFragger due to feasibility issues.

Experiment
Number Tool Name Nodes

Dataset
size

(GB)

Database
size

(GB)

δM
(Da)

δF
(Da)

Runtime
(min)

1 HiCOPS 64 20 780 500 0.01 14.55

1 MSFragger 64 20 780 500 0.01 158.8

2 HiCOPS 72 15 1692 500 0.05 103.5

2 MSFragger 72 15 1692 500 0.05 1074.45

2* MSFragger 1 15 1692 500 0.05 51130

3 HiCOPS 64 41 4000 500 0.01 27.3
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