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Abstract

High-throughput experimentation (HTE) methods are central to modern medicinal chemistry. 

While many HTE approaches to C-N and Csp2-Csp2 bonds are available, options for Csp2-Csp3 

bonds are limited. We report here how the adaptation of nickel-catalyzed cross-electrophile 

coupling of aryl bromides with alkyl halides to HTE is enabled by AbbVie ChemBeads 

technology. Using this approach, we were able to quickly map out the reactivity space at a global 

level using a challenging array of 3 × 222 micromolar reactions. The observed hit rate (56%) 

is competitive with other often-used HTE reactions and the results are scalable. A key to this 

level of success was the finding that bipyridine 6-carboxamidine (BpyCam), a ligand that had not 

previously been shown to be optimal in any reaction, is as general as the best-known ligands with 

complementary reactivity. Such “cryptic” catalysts may be common and modern HTE methods 

should facilitate the process of finding these catalysts.

Graphical Abstract

High-Throughput Experimentation, shaken, not stirred. Coating reductants onto glass beads 

simplifies µmol-scale cross-electrophile coupling, enabling the rapid survey of 222 different 

reactions and the discovery of a new, useful catalyst. Although the reactions are hetereogeneous, 

the glass beads enable the use of shakers instead of complex micro stirrers.
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High-throughput experimentation (HTE) methods have become a key component of drug 

development,[1] facilitating the rapid exploration of structure-activity relationships (SAR) in 

medicinal chemistry and the rapid optimization of reactions in process development.[2] In 

industrial and academic labs, HTE methods are increasingly used in reaction optimization,[3] 

reaction discovery,[4] and the discovery of new ligands.[5] Translation of methods from 

academic labs to medicinal chemistry can be accelerated by HTE assessments using 

arrays of representative substrates tested against arrays of the best available catalysts and 

conditions.[6] To date, most of the methods adapted to HTE at AbbVie for medicinal 

chemistry have been C–N, C–O, and Csp2–Csp2 bond-forming reactions (Figure 1).[7] HTE 

methods to explore SAR while increasing Csp3 character in molecules would be valuable 

because increased saturation generally improves parameters important to drug discovery.[8]

Nickel-catalyzed cross-electrophile coupling of alkyl electrophiles with aryl electrophiles[9] 

has become an increasingly used approach to the formation of Csp2–Csp3 bonds in the past 

decade[10,11] because it is compatible with many functional groups and the pool of available 

substrates is large (Figure 1).[12] The stability and availability of organic electrophiles is 

especially attractive for HTE in medicinal chemistry, where many analogs must be generated 

quickly. A recently published survey of available methods for Csp3-Csp2 cross-coupling 

in medicinal chemistry demonstrated the potential of cross-electrophile coupling in library 

synthesis and its complementarity to other approaches.[13] In that study, however, the scope 

of the survey was limited by the format – standard parallel library synthesis in 4 mL vials 

at 0.1 mmol scale. HTE library generation is generally conducted on orders of magnitude 

smaller scale (micromole to nanomole) because only small amounts of material are needed 

for initial screening and, in early stages of a project, available starting materials may be 

limited.

The primary challenge to implementing cross-electrophile coupling chemistry in an HTE 

format suitable for medicinal chemistry applications at AbbVie was the heterogeneous 

nature of these reactions – dispensing the solid metal reductants (Zn or Mn powders) 

in parallel at micromolar scale[14] and efficiently stirring the reactions in multiwell plates.
[15,16] The challenges of heterogeneity have motivated the development of homogeneous 

conditions that employ organic terminal reductants,[17] sometimes using photoredox co

catalysis[13,18] or electrochemistry[19] to help drive the reaction. While avoiding some of 

the challenges of dispensing and stirring, these approaches often have different scope than 

metal-reductant conditions and some could be a challenge to adapt to parallel plates.[13] 

We report here the successful application of the AbbVie ChemBeads HTE platform[20] to 

cross-electrophile coupling, providing a general solution to Csp2–Csp3 bond formation and 

facilitating the discovery of a new, general ligand (Scheme 1).

To overcome the challenges associated with weighing solids and stirring heterogeneous 

reactions, we turned to our AbbVie ChemBeads technology. While we had not previously 
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coated beads with malleable metals,[21] we found that Zn coats on glass beads well (4.8 

mass%, “Zn@ChemBeads”), as long as activated Zn powder is used. While an acoustic 

mixer is generally required for reliable coating, Zn coated well even using a simple vortexer. 

In addition, we found that shaking plates on a modified orbital shaker (Torrey Pines SC20) 

with glass beads is a general replacement for the use of specialized stirrers and micro stir 

bars (Scheme 2A). Pre-coated ChemBeads are still advantageous because they simplify 

working on µmol scale and with solid-handling robots or calibrated scoops.

In order to examine the suitability of nickel-catalyzed coupling of aryl halides with alkyl 

halides for medicinal chemistry applications, an array of 222 different products was chosen 

to represent the diversity of aryl and alkyl coupling partners of interest to medicinal 

chemistry: 6 aryl halides × 37 alkyl halides (Scheme 1). While a wide array of heteroaryl 

halides have been explored recently in cross-electrophile coupling,[22] alkyl halides have 

been more limited: even in our recent study,[13] 40% of the 20 alkyl bromides tested 

were simple hydrocarbons. In this study, we emphasized alkyl bromides of interest to 

medicinal chemistry that we expected to be particularly challenging, including: neopentyl 

substrates,[23] tertiary alkyl substrates,[24] substrates with β-leaving groups,[25] substrates 

prone to methylcyclobutane radical rearrangement,[26] reactive heteroarylmethyl chlorides,
[27] basic tertiary amines,[28] and precursors to valuable four-membered rings.[29] For 

the HTE experiments run at AbbVie, catalysts and additives were coated onto beads, 

substrates were dispensed as solutions, and plates were set up using a robotic solid handling 

system (Chemspeed Technologies). Even without a robot, Zn@ChemBeads simplify small

scale reaction setup in parallel because a calibrated scoop can be used in place of 

individual weighing or inaccurate zinc slurries. Initially, we chose our published optimal 

conditions for the coupling of aryl bromides with alkyl bromides (L = 4,4´-di-tert-butyl-2,2

´-bipyridine, dtbbpy, L10)[9] and heteroaryl bromides with alkyl bromides (L = 2,6-bis(N

cyanocarboxamidine)pyridine, PyBCamCN, L1).[22b] Preliminary examination of optimal 

ligands from published reports (phenantholines, bipyridines, pyridine carboxamidines, 

terpyridines) and exchanging Mn for Zn did not provide substantial improvements in the 

observed hit rate beyond 46%. A major breakthrough was achieved when we examined 

non-optimal ligands derived from our Pfizer collaboration.[5a] We found that the ligand 

bipyridine-6-carboxamidine (BpyCam, L13) proved to be general and, in some cases, 

complementary to dtbbpy and PyBCamCN (Scheme 2B and 2D).

The success of L13 was surprising because, while pyridine carboxamidines and pyridine 

bis(carboxamidine) ligands have proven to be useful in several cross-coupling reactions,
[5a,10d,22b] the value of (BpyCam)NiCl2 was only evident when tested against a diverse, 
challenging library. In analogy to similar situations in biology, we term this a “cryptic” 

catalyst.[30]

The overall hit rate for the 222-member µmol-scale library with the addition of L13 rose 

from 46% to 56% (124/222 product ions detected) (Schemes 1 and 2B). This hit rate is 

higher than what we had found previously using micro stir bars and a less diverse substrate 

set,[13] suggesting that some of the improvement is due to better mixing/activation with 

ChemBeads. This number is also impressive when considered in context: even methods 

considered reliable can give moderate hit rates in diverse medicinal chemistry libraries. 
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For example, Merck noted only 45% of metal-catalyzed C-N bond forming reactions on 

complex, polar substrates succeeded.[1b] Similarly, internal AbbVie data for Pd-catalyzed 

amine arylation[31] gave a 55% hit rate.

Examination of the array reveals the differences and similarities between the three catalysts. 

For example, reactions conducted with each ligand had a similar level of success: 

79/222 (36%) for PyBCamCN (L1), 61/222 (27%) for dtbbpy (L10), 62/222 (28%) for 

BpyCam (L13) (Scheme 2B). There was also considerable heterogeneity in what substrate 

combinations were successful with each ligand. For example, reactions of Core 2 did not 

work at all with L1, but L13 had a reasonable hit rate. On the other hand, L13 was a 

poor choice for Core 6, but reactions with L1 worked well. Finally, we note that the 

hit rate of this approach could be further improved by the use of additional modified 

conditions to accommodate the alkyl bromides in this study that provided no product 

(e.g., for adamantyl bromide,[24,32] 2,2,2-trifluoroethyl bromide,[33] MOM-Br,[34] and (1-(2

bromoethyl)-2-methylpyrrolidine)[35]). These alkyl coupling partners accounted for 24% of 

the reactions that failed to show any product in HTE screening. The use of even ten different 

sets of conditions is routine and not a barrier in HTE approaches.

Cross-couplings conducted at 10 µmol scale translated to larger scale (10× and 50× scale) 

as well as a normal vial/stir bar format. A subset of these reactions were performed at 

100 µmol scale followed by mass-directed purification resulted in the isolation of 72/124 

products with >95% purity and an additional 14 products with <95% purity. The other 

37 products were not isolated because the reactions had low conversion and/or isolation 

was hindered by overlapping peaks. We further scaled three reactions to 500 µM scale 

using standard lab techniques (4 mL vials with stirbars, isolations by standard flash 

chromatography (19, 130, 139)). Of the 87 isolated products, 27 products were fully 

characterized (see Supporting Information for additional details). As the main purpose of 

this study was to obtain a global overview of currently accessible scope, we did not focus 

on reaction optimization. In our study, the reactions were carried out in parallel, with fixed 

concentration, temperature and reaction time, and purification was optimized for purity and 

speed over yield. Further optimization would presumably improve on these yields, as would 

the inclusion of additional conditions for specialized substrates.

These results demonstrate the power of using µmol scale high throughput experimentation 

to quickly identify workable conditions and map out the reactivity space of the substrates 

of interest. The sensitivity of the analysis tool (UPLC-MS) ensured even a trace amount 

of product peak signal could be detected, thus greatly eliminating the possibility for false 

negative findings on the micromole scale. This workflow, which is accessible with a minimal 
investment, allows researchers to get a global understanding of gaps in scope while using 
minimal amounts of material (for 666 reactions, 1.11 mmol of each core, 0.36 mmol of each 
alkyl halide, and 0.16 mmol of each ligand) and time (the screens were conducted over about 
two weeks).

We anticipate that the use of Zn@ChemBeads for cross-electrophile coupling will be 

broadly useful in HTE. Indeed, based on this study and the promising results we obtained, 

this methodology has become one of the few methods we use in screening aryl-alkyl 
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coupling conditions for complex med-chem substrates. In addition, this study suggests that 

HTE libraries could be used to find catalysts that are general, but whose value is not evident 

with relatively simple substrate pairs. A corollary to this suggestion is that collections of 

ligands should be focused on diversity as much as performance in one or two test reactions. 

Ligands that might appear to be poor choices, and are thus not routinely screened, might 

in fact be just as useful as optimal ligands. These “cryptic catalysts” only show their value 

when challenged with the correct prompts, a task that is now possible with modern HTE.
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Figure 1. 
ChemBeads-Enabled High-Throughput Cross-Electrophile Coupling.
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Scheme 1. 
Results of HTE Library Survey of 222 Different Products Utilizing ChemBeads and three 

different cross-electrophile coupling catalysts (L1, L10, L13). Green denotes molecular ion 

for product observed by LC-MS at 10 µmol scale and verified by isolation at 100 µmol scale; 

Yellow denotes molecular ion observed at 10 µmol scale, but isolation at 100 µmol scale did 

not provide >95% pure product; Red denotes no ion observed. Yields reported are isolated 

yields after isolation by mass-directed HPLC. Ligands only noted if a large difference was 

noted or if the product was isolated. No noted ligand means that all three ligands worked 

well. See Supporting Information for experimental details.
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Scheme 2. 
Analysis of HTE Library Results. A. Comparison of Zn powder vs Zn@ChemBeads. 

Yields are GC corrected against a 1,3,5-trimethoxybenzene internal standard. B. Library 

coverage by ligand class. C. Library coverage by aryl bromide core. D. New chemical space 

accessible with L13. Yields are isolated from scaled up reactions after observing a hit on 

HTE screens. [a] Isolated yield on 0.1 mmol scale using ChemBeads. [b] Isolated on 0.5 

mmol scale using Zn powder and stir bars.
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