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Abstract
Several noise sources, such as the Johnson–Nyquist noise, affect MR images disturbing the visualization of structures and 
affecting the subsequent extraction of radiomic data. We evaluate the performance of 5 denoising filters (anisotropic diffu-
sion filter (ADF), curvature flow filter (CFF), Gaussian filter (GF), non-local means filter (NLMF), and unbiased non-local 
means (UNLMF)), with 33 different settings, in T2-weighted MR images of phantoms (N = 112) and neuroblastoma patients 
(N = 25). Filters were discarded until the most optimal solutions were obtained according to 3 image quality metrics: peak 
signal-to-noise ratio (PSNR), edge-strength similarity–based image quality metric (ESSIM), and noise (standard deviation 
of the signal intensity of a region in the background area). The selected filters were ADFs and UNLMs. From them, 107 
radiomics features preservation at 4 progressively added noise levels were studied. The ADF with a conductance of 1 and 2 
iterations standardized the radiomic features, improving reproducibility and quality metrics.
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Introduction

Magnetic resonance (MR)–reconstructed images from differ-
ent scanners, series, and patients have different noise levels 
that reduce the quality of the images, affect the signal-to-
noise ratio (SNR), and decrease reproducibility of imaging 
biomarkers. The noise reduces the visibility in low-contrast 
structures and blurs the edges, having an impact on both the 
qualitative radiological reporting and the quantitative meas-
urements extracted from either feature extraction or dynamic 
signal fitting [1].

Reducing noise and increasing SNR and final image qual-
ity are common goals in precision imaging. At the acquisi-
tion level, MR parameters are adjusted to improve the SNR. 
Unfortunately, this usually results in increased acquisition 
time and in sensitivity to motion artifacts. New MR develop-
ments reconstructing the k-space with artificial intelligence 
methods have been proposed as an efficient way to acquire 
faster and almost noise-free images. In daily practice, MR 
images need to improve their quality by removing noise 
applying computer vision techniques known as denoising 
[2]. Denoising filters face the challenges of maximizing 
noise removal, smoothing homogenous regions, and preserv-
ing morphological detail [3].

The Johnson–Nyquist noise is one of the common source 
of noise, being induced by thermal fluctuations and mod-
elled as a Rician distribution in the magnitude images [4, 
5]. This noise can be approximated as Gaussian spreading 
in areas with high SNR. Noise is responsible of the low 
reproducibility of imaging biomarkers in the phenotyping, 
treatment prediction, and patient’s prognostication in oncol-
ogy, as image quality variability affects the related radiomics 
features and dynamic parameters.

We hypothesize that the use of MR denoising filters 
will increase the precision and reproducibility of extracted 
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computational metrics, lowering biases when obtaining radi-
omic biomarkers. Our primary objective was to measure the 
impact of different denoising filters on the final image qual-
ity and on the stability of radiomic metrics to finally select 
the optimal filter parameters in both physical phantoms and 
real-world data from patients with neuroblastic tumors. Sec-
ondary objectives were to evaluate the MR image quality by 
different signals (PSNR, peak signal-to-noise ratio), border 
(ESSIM, edge-strength similarity–based image quality met-
ric), and noise (SD, standard deviation of the signal intensity 
of the background area) metrics, and to assess the impact of 
the filters on the radiomics characteristics [6].

Material and Methods

Image Database

Phantom

A 200-mm MR head phantom (Philips Healthcare, The 
Netherlands) was used. The phantom was composed of 4 
different modules: the geometric module, consisting of a 
cube; a homogeneous cylinder having a central hole with a 
ramp, referred to as the slice thickness module; a homogene-
ous cylinder, referred to as the SNR module; and the spatial 
resolution module consisting of a set of rods (Fig. 1) [7].

MR images were obtained on a 3-T magnet (Philips 
Achieva, Philips Healthcare, The Netherlands) with a head 
coil using a T2-weighted turbo spin echo sequence with 
the following parameters: TR = 3000 ms, TE = 120 ms, 
flip angle = 90°, anteroposterior axis encoding, field of 
view = 270 mm, acquisition matrix = 630 × 630, interslice 
gap = 2.75 mm, and voxel size = 0.421 × 0.421 × 2.5 mm. A 
total of 7 MR acquisitions were performed, split in two dif-
ferent days, 1 week apart. To avoid partial volume effects, 
only the 4 central slides were analyzed from each module.

Patients

Patients were stratified into two groups: discovery and vali-
dation databases. The MR discovery database consisted of 
15 children, 12 females and 3 males, having a neuroblas-
tic tumor: neuroblastoma (8 patients) and ganglioneuroma 
(7 patients). The mean age was 4.5 ± 3.1 years old (range, 
1 month to 10 years old). The validation database consisted 
of 10 children, 7 females and 3 males, with a diagnosis of 
neuroblastoma (8 patients) and ganglioneuroma (2 patients). 
The mean age was 3.4 ± 5.3 years old (range, 1 month to 
15 years old).

All childhood cancer patients had an MR study of the pri-
mary tumor before treatment from different MR machines. 
Images were centralized at the PRIMAGE platform 

repository [8]. This repository includes clinical, molecu-
lar, genetic, and imaging data of children with neuroblastic 
tumors, having been developed in the context of the Hori-
zon 2020 PRIMAGE Project. All MR images from different 
vendors (General Electric (GE), Siemens, and Philips) and 
field strengths (1.5-T and 3-T magnets) were acquired with 
a surface coil. The turbo/fast spin echo T2-weighted images 
were used for this study.

MR Image Preparation

In order to measure the performance of the filter at different 
noise levels, artificial Rician noise was added to the phantom 
and patient’s databases at four different noise levels (σ = 0.005, 
σ = 0.01, σ = 0.02, and σ = 0.05) (Fig. 2) [5, 9]. The noise is 
added to the original images, which were visually classified 
by an experienced radiologist as noise-free or very low-noise 
images. From now on, the original databases are referred to  
as Original Phantom database, Original Patients Discovery 
database, and Original Patients Validation database. The  
databases to which noise has been added are referred to  
as Noised Phantom database, Noised Patients Discovery  
database, and Noised Patients Validation database.

Denoising Filters

Five of the main denoising filters were used: Gaussian fil-
ter (GF) [10], curvature flow filter (CFF) [11], anisotropic 
diffusion filter (ADF) [12], non-local means filter (NLMF) 
[13], and unbiased-non-local means filter (UNLMF) [14]. 
All these filters belong to the group of “edge-preserving” fil-
ters, with the exception of the Gaussian filter which attempts 
to remove noise while preserving morphological structures.

The low-pass GF removes speckle noise. The filtered 
image was the result of applying three Gaussian distribu-
tion kernels with standard deviations of σx, σy, and σz at 
the frontal, sagittal, and longitudinal axes, respectively. The 
main disadvantage of this kind of filter is that it tends to 
blur the edges while it removes the noise. Despite this, it 
is widely used as a preprocessing before the extraction of 
imaging biomarkers or segmentation due to its simplicity 
[15–17]. Four different GFs were applied by varying the 
sigma value [σx, σy, σz] to [0.4, 0.4,0.2], [0.5, 0.5,0.2], [0.6, 
0.6,0.2], and [0.7, 0.7,0.2].

The CFF is characterized by preserving the edge defini-
tion smoothing perpendicular to the isointensity contours 
[11]. CFF preserves sharp edges while regions between 
edges are smoothed. However, these edges can be removed 
with the repetition of the process, shrinking the informa-
tion until its disappearance. Original voxels with low signal 
intensity may be transformed to negative values when the 
filter is applied. Different CFFs were applied by modifying 
the number of iterations (1 to 5) with a step of one iteration.
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The ADF associates images with the thermodynamic 
behavior of fluids. Noise voxels act as small volumes of 
fluid which need less time to homogenize their tempera-
ture while edges act as big containers which need more time 
[12]. Thus, ADF acts as a high-pass filter, removing high-
frequency noise while edges are preserved. Two parameters 
were tuned for the optimization of this filter: the number of 
iterations, which took a value from 1 to 3, and the diffusion 
rate or conductance, which took values of 0.5, 1, 1.5, and 2. 
This last parameter tends to preserve features of the image 
as high gradients or curvature when its value its low.

The NLMF calculates a weighted image average. The  
weighted function measures the similarities between the  
neighborhood of filtered voxel and each neighborhood of 
voxels inside a window centered in filtered voxel, no matter  
the distance to it [13]. Two ways of implementing this filter  
were carried out: a three-dimensional approach in which the 
entire volume was processed, and a two-dimensional approach 
in which the filter was applied slide-by-slide in the transversal 
plane. The window size was set to 3 voxels and the strength 
of the filter took values of 0.001, 0.0025, 0.005, and 0.01 
in the three-dimensional approach, and 1.2 and 2.4 times  

Fig. 1   MR Phantom distribution: 1) Image of the Phantom; 2) Sagittal MR survey; and the 4 modules: a geometry, b slice thickness, c SNR, and 
d spatial resolution

Fig. 2   Original and Noised databases examples: 1) Physical Phantoms; 2) Patient Discovery; Noise level: a  original, b σ = 0.005, c σ = 0.01, 
d σ = 0.02, and e σ = 0.05
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the standard deviation of the image background in the two-
dimensional approach.

The UNLMF is an evolution of the NLMF that manages 
effectively the effect of Rician noise [14]. This filter takes 
advantage of the fact that Rician noise becomes independ-
ent of the signal by using the square of the signal, so it can 
be removed by subtracting twice the standard deviation of 
the background volume. The same fitting parameters and 
approaches used in NLMF were used in this filter.

Noise Filters’ Performance Metrics

To evaluate the performance of the filters, three different 
metrics were selected and measured: PSNR, ESSIM, and the 
standard deviation of a background area representing noise 
(RSD). Background noise was defined by the standard devia-
tion of the signal intensity of a ROI located in the background 

outside the patient or phantom area. ROIs were located in two 
different places depending on the database. In the Phantom 
database, two ROIs of 60 × 630 voxels were delimited at the 
right and left sides of the image outside the phantom. The ROI 
in the Patient databases was delimited at the right posterior 
corner of the field of view (FOV) with an area of 30 × 30 vox-
els along the longitudinal axis. In order to compare the differ-
ences between the SD of the original image and the denoised 
images, the RSD ratio was calculated as follows, where the 
lower the ratio, the more noise is removed:

The PSNR is a metric commonly used to estimate image 
quality based on the mean squared error (MSE) [9]. The PSNR 
is expressed in decibels and it is defined as:

RSD =
SDdenoised − SDoriginal

SDoriginal

Fig. 3   Phantom database RSD × ESSIM results where each line repre-
sents R_SD × ESSIM value for each image; a) slice thickness module; 
b) SNR module; c) geometric module; d) spatial resolution. I is the 

number of iterations for ADF and CFF, DF is C is the conductance 
for ADF, σ is σx, σy, σz for GF and S is the strength of the NLMF or 
UNLMFF, and std is the standard deviation of the background
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where L is the dynamic range of the voxel intensity of the 
original image. The MSE was calculated between the origi-
nal image and the filtered one. Large values of the PSNR 
are associated with a better quality image or image recovery. 
This metric is one of the most common to measure the per-
formance of denoising filters [3, 9, 18–22].

The ESSIM uses the edge strength of each pixel of an image 
to represent its semantic information in order to measure the 
edge preservation between two images (original vs. filtered) 
[3, 23]. ESSIM is defined as:

where E is the edge strength and is calculated as the average 
of a Prewitt kernel applied in two perpendicular orientations, 
f and g are the two images to be compared, i is the ith voxel, 
and C is a parameter introduced to avoid 0 in the denomi-
nator. In the patient’s database, the ESSIM was calculated 
as the average of the ESSIM in each slide. The closer the 
ESSIM to 1, the better edge preservation.

Two combined metrics were used, defined as follows: RSD 
× ESSIM and PSNR × ESSIM. These two metrics weighted 
the RSD and the PSNR with the ESSIM level ([0–1]), cal-
culated as their corresponding product for each patient by 
averaging over all slices. The higher these metrics are, the 
better the performance of the filter.

The concordance correlation coefficient (CCC) was  
used to investigate the recovery of the radiomics features 
calculated on the tumors. The CCC was calculated between 
Original and Noised Patients database radiomics features 
(original-noise features) and between Original and Noised 
filtered Patients database radiomics features (original- 
filtered features) and was calculated as:

where s is the covariance, σ is the standard deviation, and � 
corresponds to the mean value of the features. The extracted 
features were normalized using the natural logarithm due to 
the huge variability in the images’ dynamic range. Values 
of CCC above 0.8 indicated a strong correlation, implying 
the stability of the radiomic features [24]. Furthermore, the 
CCC of original-noise features was compared to the CCC  
of original-filtered features. If the CCC of the original- 
filtered features are higher than the CCC of the original-noise  
features, it can be assumed that the application of the cor-
responding filter has managed to recover the value of the 
original features.

PSNR = 10log10

(

L2

MSE

)

,

ESSIM(f , g) =
1

N

N
∑

i=1

2E(f , i)E(g, i) + C

(E(f , i))2 + (E(g, i))2 + C
,

CCC =
2sxy

�2
x
+ �2

y
+ (�x − �y)

2

Finally, 107 radiomics features were analyzed: 14 shape 
features, 18 first-order features, 24 Gy-level co-occurrence 
matrix (GLCM) features, 14 Gy-level dependence matrix 
(GLDM) features, 16 Gy-level run length matrix (GLRLM) 
features, 16 Gy-level size zone matrix (GLSZM) features, 
and 5 neighboring gray-tone difference matrix (NGTDM) 
features.

The effects of the filtering process on image quality  
(signal, edges, and noise) were evaluated with a Friedman 
test, firstly, and with a Tukey–Kramer test for post hoc  
analysis. CCC was calculated to compare the effect of the 
different types of filters between original-noise features and 

Fig. 4   a) Noised Phantom database PSNR results, b) Noised Phan-
tom database ESSIM results. Crosses correspond to values equal to 
or inferior to noise level and circles to higher values. Each line rep-
resents a noise level. I is the number of iterations for ADF and CFF, 
C is the conductance for ADF; S is the strength of the NLMF or 
UNLMFF; and std is the standard deviation of the background
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original-filtered features. Comparisons between the effect 
of MR acquisition (e.g., different vendors) on image quality 
(ESSIM × PSNR) were performed with a Kruskal–Wallis 
test, and with a Tukey–Kramer test for post hoc analysis. 
Statistical significance was established at p < 0.05.

Evaluation Stages

The study considered different stages:

•	 Selection of the most optimal filters using Original Phan-
tom database was performed by discarding one-third of 
the filters, focusing on the RSD × ESSIM metric;

•	 PSNR and ESSIM analyses in the Noised Phantom data-
base discarding filters that had lower values than the 
unfiltered noise cases;

•	 Mean PSNR × ESSIM metric analysis of the different 
noise levels, resulting in the selection of two filters of 
each type;

•	 Visual inspection of the Original Patients Discovery 
database by a radiologist to exclude filters with over-
smoothing;

•	 Evaluation of the Original and Noised Patients Discovery 
database to select the best filter performance, focusing on 
the RSD × ESSIM and the PSNR × ESSIM metrics and 
the recovery of original radiomics features value; and

•	 Validation of the results with the Original and Noised 
Patients Validation database.

Results

Original Phantom Database Results

Initial experiments performed with the Original Phantom 
database constituted a controlled study scenario (same 
object, equipment, and acquisition conditions). The filters 
that removed less background noise and did not preserve 

Table 1   Noised Phantom dataset PSNR × ESSIM mean results. 
Selected filters are shown in bold. I is the number of iterations for 
ADF, C is the conductance for ADF, S is the strength of the NLMF or 
UNLMFF, and std is the standard deviation of the background

PSNR × ESSIM 
mean for noise 
σ ≤ 0.02

PSNR × ESSIM 
mean for noise 
σ ≤ 0.05

ADF I 2 C 0.5 40.8 ± 0.6 34.8 ± 0.9
ADF I 2 C 1 40.8 ± 0.5 35.5 ± 0.7
ADF I 3 C 0.5 40.9 ± 0.5 35.0 ± 0.9
NLMF 3D S 0005 41.2 ± 0.5 34.8 ± 0.9
NLMF 3D S 001 41.3 ± 0.4 35.8 ± 0.6
NLMF 2D S 1.2 std 41.8 ± 0.6 36.9 ± 0.7
NLMF 2D S 2.4 std 41.3 ± 0.6 37.1 ± 0.7
UNLMF 3D S 0.005 41.6 ± 0.4 35.1 ± 0.9
UNLMF 3D S 0.01 41.7 ± 0.3 36.0 ± 0.6
UNLMF 2D S 1.2 std 41.0 ± 0.5 35.9 ± 0.6
UNLMF 2D S 2.4 std 41.0 ± 0.6 36.0 ± 0.6

Fig. 5   Denoising example from 
Original Patients Discovery 
database: a original, b ADF I2 
C1, c ADF I3 C0.5, d NLMF 
2D S 1.2 std, e NLMF 2D S 
2.4 std, f UNLMF 3D S 0.005, 
g UNLMF 3D S 0.01. I is the 
number of iterations for ADF; C 
is the conductance for ADF; S 
is the strength of the NLMF or 
UNLMFF; and std is the stand-
ard deviation of the background
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the edges were discarded, regarding a combination of the 
RSD and the ESSIM. One-third of the filters were discarded, 
including the GF filter and a few iterations of the CFF and 
ADF filters. It should be mentioned that the variability of 
the evaluated metrics was very small (σ < 7.61), with the 
exception of the UNLMF filter where the RSD increased con-
siderably (σ > 18.32) due to the differences between each 
phantom module and the sensitivity of the UNLMF to the 
background signal (Fig. 3).

Noised Phantom Database Results

The Noised Phantom database allowed a second filter 
discard. The PSNR and ESSIM metrics were calcu-
lated between the Original and Noise Phantom database 
(original-noise metric) and between the Original Phan-
tom database and the result of filtering this database 
(original-filtered metric). The performance of the fil-
ters selected in the previous stage is shown in Fig. 4. 
All cases with lower original-filtered metrics than 
original-noise metric were discarded. At low noise lev-
els (σ ≤ 0.01) the more aggressive ADF and CFF filters 
resulted in a worsening of both metrics. As the noise 
level increased, the NLMF and UNLMF filters showed 
a loss in effectiveness, obtaining values similar to the 
noise, thus discarding the NLMF and UNLMF filters 
with low strength. The case of higher noise (σ = 0.05) 
has not been taken into account when discarding fil-
ters since this level of noise does not normally occur 
in clinical practice. Therefore, a total of 11 filters were 
discarded.

From those 5 filters and 33 final settings, only two filters 
of each type with the best performance at different noise 
levels were selected to finally select the best ones. For this 
purpose, the average of the combination of the PSNR and 
ESSIM metrics of low and medium noise levels was calcu-
lated as well as for all levels. The selection was made based 
on the average of medium and low noise metrics and, in case 
of doubt, the average of the metrics for all levels (including 
high noise levels) was analyzed (Table 1). Thus, the filters 
finally selected were the ADF filter with 2 and 3 iterations 
and a conductance of 1 and 0.5, respectively, the 2D NLMF 
and the 3D UNLMF filters.

Patient Discovery Database Results

Before studying the behavior of the metrics in the 
Patients Discovery database, a visual inspection was car-
ried out to check the effect of the filters on the images 
of Original Patients Discovery database. In this analy-
sis, the NLMF filters were discarded due to excessive 
smoothing of some cases, as shown in Fig. 5.

For each of the four remaining filters, RSD × ESSIM 
as well as PSNR × ESSIM was calculated between Origi-
nal and Noised Patients Discovery database and between 
Original Patients Discovery database and the result of fil-
tering Noised Patients Discovery database. These results 
are shown in Table 2 and Fig. 6. The UNLMF filters 
provided the best results in terms of the RSD × ESSIM 

Table 2   Original Patient Discovery dataset RSD × ESSIM results. I is 
the number of iterations for ADF; C is the conductance for ADF; S is 
the strength of the NLMF or UNLMFF; and std is the standard devia-
tion of the background

ADF I 2 C 1 ADF I 3 C 0.5 UNLMF 3D S 
0.005

UNLMF 3D S 
0.01

 −15.05 ± 12.15  −17.02 ± 13.77  −47.55 ± 45.30  −48.25 ± 44.78

Fig. 6   a  Noised Patient Discovery database PSNR × ESSIM results; 
b Noised Patient Validation database PSNR × ESSIM results. I is the 
number of iterations for ADF; C is the conductance for ADF; S is the 
strength of the UNLMF
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metric, achieving the best performance with the one with 
a strength of 0.005. This confirms the results obtained 
from the Phantom database. Figure 6 shows that for low 
noise levels, the UNLMF filter with a strength of 0.005 
has the best PSNR × ESSIM metric performance, and 
this effect is attenuated as the noise level increases. It 
is observed that the ADF filter with 3 iterations and a 
conductance of 0.5 has a similar pattern and behavior. 
On the opposite side, the UNLMF filter with a strength 
of 0.01 and the ADF filter with 2 iterations and a con-
ductance of 1.0 improve their performance by increasing 
the noise level.

The percentage of invariable characteristics (CCC ≥ 0.8) 
per type of radiomics features is shown in Table 3. The 
results obtained show that the four selected filters restore 
some of the modified values of radiomics features after add-
ing artificial noise. The filter’s behavior was similar within 
the same group of filters, but the ADF filters presented a 
better general preservation of the characteristics, especially 
the ADF filter of 2 iterations and a conductance of 1.0, 
which showed the best results.

Shape characteristics remained constant as expected 
due to the fact that the tumor delimitation is not affected 
by the application of filters. The GLCM, GLDM, GLRLM, 
and GLSZM were the groups of radiomics features mostly 
affected by the presence of high noise levels, but seem to 
stay invariant at low noise levels. These alterations were 
corrected by both types of filters at medium noise levels and 
by the ADF filters for high noise levels.

Patient Validation Database Results

The results from the patient validation database are shown 
in Table 4 and Fig. 6 supports the results obtained from the 
Original Patient database (2.19 maximum difference of 
PSNR × ESSIM metric and 1.87% maximum features recovery 
difference between Discovery and Validation databases).

MR Vendors Influence Results

The influence of the MR vendor company on the filter 
performance was analyzed using the neuroblastoma data-
bases with a Kruskal–Wallis test and the Tukey–Kramer 
test as a post hoc analysis. The results showed that there 
were no significant differences for any filter at any noise 
level except for the 0.005 and 0.01 UNLMF strengths at a 
noise level of σ = 0.01 between Philips and GE (p = 0.046 
and p = 0.023, respectively). GE images showed the best 
performance.

Discussion and Conclusion

This study proposes a novel methodology for the selection 
of the optimal denoising filter based on two new approaches: 
the use of real phantoms instead of digital phantoms and the 
analysis of radiomics recovery.

The phantom acquisition sequence simulates as closely 
as possible the MR sequences used in the evaluation of 
neuroblastoma patients, allowing to simulate real scenarios 
(noise, bias field inhomogeneities) under similar conditions, 
obtaining a homogeneous database on which to perform the 
first approximations in a controlled context. For a clinically 
applicable solution, the selected filters were finally tuned in 
the neuroblastoma database of patients to bring the results 
closer to clinical reality. Many reported studies used digital 
phantoms or simulated MR for this type of analysis [3, 14, 
18, 25]. In [3], it is reported that the results obtained in 
digital phantoms do not necessarily support those obtained 
in real cases of RM. Considering the similarities between 
phantoms’ and patients’ MR acquisitions, we assumed that 
the filters that work best for one database will work for the 
other unlike what may happen with digital phantom.

Quality metrics analysis showed, both in the phantom and 
patient databases, a strong dependence between the noise 
level and the used filter. More aggressive filters worsen the 
behavior of quality metrics for low noise levels and improve 
it at high levels, unlike those that produce less aggressive 
smoothing. This occurs for both the UNLMF and the ADF 
filters, although with some important differences. While 
UNLMF filters delivered a general better performance in 
the case of quality metrics, the ADF filters showed better 
results in the preservation of radiomics.

A closer analysis shows that at low noise levels the qual-
ity metrics with the UNLMF filter are higher than those 
obtained with the ADF, but this difference decreases as the 
noise level increases. In the case of radiomics, the results 
are good and similar for both filters at low noise levels, but 
at high noise levels the UNLMF filter no longer recovers 
them. This is because the amount of noise that the UNLMF 
is able to remove is directly related to the strength value of 
the filter, not being able to perform effectively when noise 
levels exceed the filter’s capacity. While the ADF is able to 
better adapt to the level of noise in the image, the UNLMF 
fails to perform this task successfully.

The study of the preservation of radiomics features for the 
evaluation of different filters is novel. Several articles assessed 
the reproducibility and robustness of radiomics after apply-
ing different preprocessing techniques, such as denoising or 
normalization, on the original source images [24, 26–28], 
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although there are no references evaluating the impact of 
denoising filters on radiomics after adding artificial noise. 
We directly evaluated the impact of denoising on the pos-
terior extraction of image biomarkers. Our results showed 
that the application of some denoising filters, such as ADF, 
improved the recovery of radiomics features. This improve-
ment is mainly observed on second-order radiomics features, 
which are based on the computation of gray matrices (GLCM, 
GLDM, GLRLM, and GLSZM features). These matrices 
measure the relationship between a voxel and its neighboring 
voxels; therefore, changes in voxel intensity due to an increase 
of noise modify the value of these features. ADF filters are 
particularly efficient at removing these changes, restoring 
the original intensity values by smoothing slightly the image 
while preserving its structural information.

It is important to note that a small distortion of the  
radiomics characteristics was observed at low noise lev-
els. In this case, filters may remove not only the artificially 
added noise, but also some intrinsic noise of the image as 
the Johnson–Nyquist noise [4, 5], by modifying the original 
radiomics of the image, which does not imply a necessarily 
worse result. Similarly, quality metrics could be affected by 
this fact because images are not noise-insulated.

Considering the large variance between cases and there 
are no significant differences between filters, we used an 
external validation database to support the selected filter 
reproducibility (extrapolation to independent cases and over-
fitting avoidance). The additional Patient Validation data-
base supported our results by showing the independence and 
robustness of the selected filter, ADF with a conductance 
of 1 and 2 iterations, against the database used. In addition, 
the performance of the filters is practically unaffected by the 
type of vendor.

The study has some limitations. Original clinical images 
have different noise levels. We do believe that noise distribu-
tion was small and similar between groups. Also, the pro-
portion of cases from the different vendors was unbalanced 
(18 GE, 4 Philips, 3 Siemens), although we do not see this 
might affect our results.

In conclusion, the comparison of 5 different filter fami-
lies (ADF, CFF, GF, NLMF, and UNLMF) in T2-weighted 
MR images from both phantoms and pediatric patients 
with neuroblastoma showed that the ADF, with a conduct-
ance of 1 and 2 iterations, should be used for a more repro-
ducible extraction of radiomics features and determination 
of imaging biomarkers in oncology.
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