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Abstract
Here, we used pre-treatment CT images to develop and evaluate a radiomic signature that can predict the expression of pro-
grammed death ligand 1 (PD-L1) in non-small cell lung cancer (NSCLC). We then verified its predictive performance by 
cross-referencing its results with clinical characteristics. This two-center retrospective analysis included 125 patients with 
histologically confirmed NSCLC. A total of 1287 hand-crafted radiomic features were observed from manually determined 
tumor regions. Valuable features were then selected with a ridge regression-based recursive feature elimination approach. 
Machine learning–based prediction models were then built from this and compared each other. The final radiomic signature 
was built using logistic regression in the primary cohort, and then tested in a validation cohort. Finally, we compared the 
efficacy of the radiomic signature to the clinical model and the radiomic-clinical nomogram. Among the 125 patients, 89 
were classified as having PD-L1 positive expression. However, there was no significant difference in PD-L1 expression lev-
els determined by clinical characteristics (P = 0.109–0.955). Upon selecting 9 radiomic features, we found that the logistic 
regression-based prediction model performed the best (AUC = 0.96, P < 0.001). In the external cohort, our radiomic signature 
showed an AUC of 0.85, which outperformed both the clinical model (AUC = 0.38, P < 0.001) and the radiomics-nomogram 
model (AUC = 0.61, P < 0.001). Our CT-based hand-crafted radiomic signature model can effectively predict PD-L1 expres-
sion levels, providing a noninvasive means of better understanding PD-L1 expression in patients with NSCLC.
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Introduction

Tumor immunotherapy has made progress in recent 
years with the development of programmed death ligand 
1 (PD-L1) or programmed cell death protein 1 (PD-1) 
inhibitors such as Nivolumab and Pembrolizumab [1, 
2]. These drugs have offered new hope for patients with 
non-small cell lung cancer (NSCLC), especially for 
those with multiple metastases or inoperable tumors. 
In-depth evaluation of PD-L1 expression and regulation 
in NSCLC patients is particularly important for deter-
mining treatment plans. However, immunohistochemistry 
is the current conventional method for detecting PD-L1 
expression, which requires an invasive biopsy or surgical 
samples. Biopsies increase the risk of cancer metastasis 
[3], and repeated tumor sampling is sometimes difficult 
to obtain a satisfactory tissue sample. Poor biopsy tissue 
quality [4] and relatively high costs for the procedures 
limit the detection efficiency and practicality of these 
methods [5]. In addition, analyzing PD-L1 expression 
by needle biopsy in a relatively small tissue sample size 
is often not representative of the entire tumor’s heterog-
enous expression profile. [6, 7]. Therefore, an accurate, 
noninvasive predictor of PD-L1 expression in patients 
with lung cancer is clinically desirable.

As radiomic technology has advanced in recent 
years, increased attention is being applied to its role 
in managing malignant cancer [8–11]. Several stud-
ies have hypothesized that genetic and cellular tumor 

characteristics reflect phenotypic patterns and can be 
captured with medical imaging [12–14]. Advanced, 
quantitative, high-throughput radiomic features can be 
extracted from the tumor volume in medical images 
which can be used to discover tumor characteristics that 
the naked eye cannot detect [15–17]. Radiomic is a pow-
erful approach for capturing intratumoral heterogeneity 
from features in radiological images, and has already 
aided the development of diagnostic, predictive, and 
prognostic models to advance personalized medicine 
[18].

Studies show that radiomics have effectively aided 
prediction of metastasis in lymph nodes and other organs 
by interpreting the gene-expression patterns and progno-
sis of various cancers [19–22]. CT imaging can therefore 
characterize both tumors and their microenvironments, 
allowing us to predict PD-L1 expression while consider-
ing intratumor heterogeneity. This non-invasive approach 
can ultimately provide information complementary to a 
biopsy [6, 17]. Previous studies using radiomics have 
mostly focused on EGFR genes [23–26]. However, there 
are few reports that use radiomics to predict PD-L1 
expression in lung cancer [27, 28], and they all lack 
external validation and detailed modeling analysis.

Our study aimed to develop and evaluate a hand-crafted 
radiomic signature using machine learning methods based 
on pre-treatment CT images of NSCLC patients to predict 
their level of PD-L1 expression. This predictive model 
could provide a noninvasive means to better evaluate 

Fig. 1   Study workflow overview. a Data acquisition, b tumor segmentation, c radiomic analysis including feature extraction and selection, and d 
modeling and validation
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PD-L1 expression in lung cancer and provide valuable 
information to direct personalized therapy.

Materials and Methods

This retrospective study was approved by the ethics com-
mittees, and the requirement for informed consent was 
waived. The workflow of the study is provided in Fig. 1.

Patient Population

A total of 125 patients who underwent surgical treat-
ment were included in this study (Fig. 2). The inclusion 
criteria were as follows: (1) patients with histologically-
confirmed primary lung adenocarcinoma, (2) patients 
without distant metastasis, (3) those who have under-
gone pathological examination of tumor specimens and 
PD-L1 expression detection, and (4) patients with pre-
operative CT data. The exclusion criteria were as fol-
lows: (1) patients lacking clinical data including age, sex, 
and staging; (2) those who have received preoperative 

antitumor therapy; (3) patients with more than one 
month between CT examination and surgery; and (4) 
those with insufficient CT image quality. We divided 
the patients into a primary cohort and an independent 
validation cohort according to the hospital where they 
received treatment. The primary cohort consisted of 91 
patients from hospital 1 treated between January 2018 
and March 2019, and the validation cohort included 34 
patients from hospital 2 treated between November 2018 
and March 2020. Clinical characteristics were acquired 
from all patients, see Table 1.

Detection of PD‑L1 Expression Status

PD-L1 expression was assessed in formalin-fixed paraffin-
embedded tumor samples acquired by surgical resection. 
Positive PD-L1 staining was defined as complete circum-
ferential or partial cell membrane staining. The positive 
expression rate of PD-L1 was calculated as the percentage of 
PD-L1 positive cells in the total tumor volume. We defined 
“PD-L1 expression positive” as ≥ 1%. The whole testing 
was implemented according to Chinese Expert Consensus 

Fig. 2   Patient inclusion and exclusion criteria flowchart
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on Standards of PD-L1 Immunohistochemistry Testing for 
Non-small Cell Lung Cancer [29]. Then, 89 total patients 
were classified as having PD-L1 positive expression (PE) 
and 36 patients as having PD-L1 negative expression (NE).

CT Image Acquisition

Spiral CT chest scans were performed on all patients 
(Brilliance 256 iCT, Philips Healthcare, Cleveland, 

OH, or Somatom Force, Somatom Flash dual-source 
CT, Siemens, Germany). Scanning parameters were 
as follows: tube voltage 120 kV; automatic tube cur-
rent, pitch 0.984 ~ 1.200, matrix 512 × 512, FOV 
350  mm × 350  mm. After the initial data collection, 
all patients underwent a no interval reconstruction of 
0.5 ~ 3.0  mm. A high-resolution lung algorithm was 
adopted. Breath-hold scans were performed with the 
patient in a supine position with both hands on both 

Table 1   Patient demographic characteristics

Differences were assessed by Mann–Whitney U test or Chi-squared test
LAC lung adenocarcinoma, LSC lung squamous carcinoma, EGFR epidermal growth factor receptor, PD-L1 programmed cell death protein 
ligand 1

Characteristics All patients (N = 125) Primary cohort (N = 91) Validation cohort (N = 34) P value

Age, mean (range) (years) 54.49 (27–80) 57.54 (27–80) 61.03 (38–74) 0.097
Gender, n (%) 0.250

  Male 63 (50.4) 43 (47.3) 20 (58.8)
  Female 62 (49.6) 48 (52.7) 14 (41.2)

Smoking status, n (%) 0.244
  Never 87 (69.6) 66 (72.5) 21 (61.8)
  Smoker 38 (30.4) 25 (27.5) 13 (38.2)

Location, n (%) 0.341
  Right upper lobe 46 (36.8) 33 (36.3) 13 (38.2)
  Right middle lobe 7 (5.6) 5 (5.5) 2 (5.9)
  Right lower lobe 24 (19.2) 15 (16.5) 9 (26.5)
  Left upper lobe 34 (27.2) 29 (31.8) 5 (14.7)
  Left lower lobe 14 (11.2) 9 (9.9) 5 (14.7)

CT pattern, n (%) 0.358
  Pure solid nodule 68 (54.4) 46 (50.5) 22 (64.7)
  Part-solid nodule 46 (36.8) 36 (39.6) 10 (29.4)
  Ground glass nodules 11 (8.8) 9 (9.9) 2 (5.9)

Diameter of nodule, mean 
(range) (cm)

1.66 (0.4–6.4) 1.48 (0.4–6.4) 2.14 (0.7–6.2) 0.006

Histological type, n (%) 0.836
  LAC 115 (92.0) 84 (92.3) 31 (91.2)
  LSC 10 (8.0) 7 (7.7) 3 (9.7)

Stage, n (%) 0.001
  Tis 4 (3.2) 4 (4.4) 0 (0.0)
  I 106 (84.8) 84 (92.3) 22 (64.7)
  II and III 15 (12.0) 3 (3.3) 12 (35.3)

EGFR gene, n (%) 0.432
  Mutant-type 66 (52.8) 50 (54.9) 16 (47.1)
  Wild-type 59 (47.2) 41 (45.1) 18 (52.9)

Ki-67 expression, n (%) 0.223
  Positive 41 (32.8) 27 (29.7) 14 (41.2)
  Negative 84 (67.2) 64 (70.3) 20 (58.8)

PD-L1 expression, n (%) 0.592
  Positive 89 (71.2) 66 (72.5) 23 (67.6)
  Negative 36 (28.8) 25 (27.5) 11 (32.4)
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sides of the head. The scanning scope ranged from above 
the apex of the lungs to below the diaphragm. All CT 
scans were retrieved from the picture archiving and com-
munication system for further feature extraction.

Tumor Segmentation

Region-of-interest (ROI) positioning was determined 
by two board-certified thoracic radiologists (with 9 and 
10 years’ experience in chest CT imaging, respectively), 
who were blinded to the clinical and histologic findings. To 
test the effect of inter-observer variability on ROI deline-
ation, which may affect radiomic feature extraction, two 

radiologists independently reviewed all CT images. Any 
discrepancies were resolved by agreement between the 
two radiologists. Tumor segmentation was implemented 
manually across the whole tumor using ITK-SNAP soft-
ware (version 3.8.0; www.​itksn​ap.​org).

Radiomic Feature Extraction and Selection

The determined ROIs were transferred into the Python 
Pyradiomics library (version 2.0.1; available at https://​
github.​com/​Radio​mics/​pyrad​iomics) for radiomic fea-
ture extraction. The detailed extraction settings were 
set as follows: without normalization (CT gray values 

Table 2   Comparison of clinical 
characteristics according to 
PD-L1 expression

Differences were assessed by Mann–Whitney U test or Chi-squared test
PD-L1 programmed cell death protein ligand 1, PE positive expression, NE negative expression, LAC lung 
adenocarcinoma, LSC lung squamous carcinoma, EGFR epidermal growth factor receptor

Characteristics All patients (N = 125) PD-L1 PE (N = 89) PD-L1 NE (N = 36) P value

Age, mean (range) (years) 54.49 (27–80) 58.85 (27–76) 57.58 (32–80) 0.451
Gender, n (%) 0.955

  Male 63 (50.4) 45 (50.6) 18 (50.0)
  Female 62 (49.6) 44 (49.4) 18 (50.0)

Smoking status, n (%) 0.206
  Never 87 (69.6) 59 (66.3) 28 (77.8)
  Smoker 38 (30.4) 30 (33.7) 8 (22.2)

Location, n (%) 0.840
  Right upper lobe 46 (36.8) 31 (34.8) 15 (41.7)
  Right middle lobe 7 (5.6) 6 (6.7) 1 (2.8)
  Right lower lobe 24 (19.2) 17 (19.1) 7 (19.4)
  Left upper lobe 34 (27.2) 24 (27.0) 10 (27.8)
  Left lower lobe 14 (11.2) 11 (12.4) 3 (8.3)

CT pattern, n (%) 0.713
  Pure solid nodule 68 (54.4) 48 (53.9) 20 (55.6)
  Part-solid nodule 46 (36.8) 32 (36.0) 14 (38.9)
  Ground glass nodules 11 (8.8) 9 (10.1) 2 (5.5)

Diameter of nodule, mean 
(range) (cm)

1.66 (0.4–6.4) 1.66 (0.4–6.4) 1.65 (0.6–6.2) 0.372

Histological type, n (%) 0.522
  LAC 115 (92.0) 81 (91.0) 34 (94.4)
  LSC 10 (8.0) 8 (9.0) 2 (5.6)

Stage, n (%) 0.909
  Tis 4 (3.2) 3 (3.4) 1 (2.8)
  I 106 (84.8) 76 (85.4) 30 (83.3)
  II and III 15 (12.0) 10 (11.2) 5 (13.9)

EGFR gene, n (%) 0.695
  Mutant-type 66(52.8) 46 (51.7) 20 (55.6)
  Wild-type 59(47.2) 43 (48.3) 16 (44.4)

Ki-67 expression, n (%) 0.109
  Positive 41 (32.8) 33 (37.1) 8 (22.2)
  Negative 84 (67.2) 56 (62.9) 28 (77.8)
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ref lect absolute world values), the bin size was 25, 
the voxel array shift was 1000 (minimum value in HU 
is − 1000, shift + 1000 to prevent negative values from 
being squared), and resampled pixel spacing was [1, 1, 
1] (using a linear interpolation method). We extracted 
1287 quantitative radiomic features (13 morphology 
features, 18 histogram features, 73 texture features, and 
1183 transform features) from each ROI. The details 
of features were provided in Pyradiomics documenta-
tion (https://​pyrad​iomics.​readt​hedocs.​io/​en/​latest/​index.​
html). Some of these features were described by the 
Imaging Biomarker Standardization Initiative (IBSI) 
[30].

The predictive performance of the features was evalu-
ated using the ridge regression-based feature recursive 
elimination (RFE), and valuable features were selected 
for modeling. RFE can select the best features based on 
feature coefficient after repeatedly building models [31]. 
To obtain reasonably stable estimates [32], 9 features with 
the highest representation were selected from the original 
1287 high throughput radiomic features for modeling. The 
correlation between the selected features was then ana-
lyzed, and clinical correlation analysis was performed to 
determine the biological significances [33].

Model Construction and Validation

The prediction models were built using machine learning 
models including random forest, decision tree, logistic 
regression, AdaBoost, Gaussian process, and support 
vector machine. The area under the receiver operating 
characteristic (ROC) curve (AUC) was used to compare 
the performance of each model. Finally, a logistic regres-
sion classifier with L2 regularization and a coefficient 
of 1 was developed based on the primary cohort using 
tenfold cross validation, as the final radiomic signature 

model. Radiomic score was calculated. To evaluate the 
stability of the model’s predictive performance, the final 
signature was tested in an external validation cohort. 
Additionally, the clinical model and radiomics-clinical 
nomogram were developed and compared to radiomic 
signature to determine the efficacy of prediction model.

Statistical Analysis

Statistical analysis was performed with SPSS (version 25; 
IBM Corporation, Armonk, NY, USA) and Python (version 
3.6.6, https://​www.​python.​org). The Kolmogorov–Smirnov 
test was performed to test the normal distribution of data. 
Differences in normally distributed data were tested 
using an unpaired t-test; non-normally distributed vari-
ables were tested using the Mann–Whitney U test. Differ-
ences in count variables were tested using the chi-squared 
test. Spearman’s test was used to assess the associations 
between different features. The RFE was used to reduce the 
dimensionality of the radiomic features. Logistic regres-
sions were used to establish the final prediction models and 
nomogram. The ROC curve, AUC, and confusion matrix 
were used to evaluate the predictive performance of differ-
ent classifiers. The Delong test was used to determine the 
difference in efficacy between different models. Tests were 
statistically significant at P < 0.05.

Result

Clinical Characteristics

Tables  1 and 2 show all the clinical characteristics 
acquired. There was no significant differences between 
the primary and validation cohorts (P = 0.097–0.836), 
except for the stage (P = 0.001) and diameter of 

Table 3   The details of the
selected hand-crafted radiomic 
features

† Spearman correlation coefficient with two-sided test
Log Laplacian of Gaussian, GLSZM gray-level size-zone matrix, GLCM gray-level co-occurrence matrix, 
Ngtdm neighborhood gray tone difference matrix

Feature Transformation Feature type Feature value r† P value

F1 Log-sigma-4–0-mm-3D GLSZM Small area low gray level emphasis  −0.299 0.004
F2 Wavelet-LHL GLCM Cluster shade  −0.202 0.054
F3 Wavelet-LHH First order Kurtosis 0.289 0.006
F4 Wavelet-LHH GLCM Idn 0.321 0.002
F5 Wavelet-HLL First order Root mean squared  −0.209 0.047
F6 Wavelet-HLL Ngtdm Complexity  −0.019 0.860
F7 Wavelet-HHH First order Median 0.078 0.464
F8 Wavelet-HHH First order Skewness 0.214 0.042
F9 Wavelet-HHH GLSZM Size zone non uniformity normalized 0.178 0.091
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nodule (P = 0.006). There was no significant difference 
in PD-L1 expression levels between clinical characteris-
tics (P = 0.109–0.955).

Valuable Radiomic Features

After feature selection process, 9 final radiomic features 
were acquired, which called F1–F9 (Table 3). All of these 
features were transform features, mainly from wavelet 
transformation (N = 8). Figure 3 shows the correlation 
analysis between these predictors. F3 and F4 had moder-
ate correlation (r = 0.75); F3 showed weak correlation with 
pathological type (r = 0.5), and F4 showed weak correla-
tion with Ki-67 expression (r = 0.47).

Development of Machine Learning Models

The ROC curves that were generated from different 
machine learning models are outlined in Fig. 4. All the 

Fig. 3   Correlation analysis of radiomic features. a The correlation heatmap between F1-F9. b The correlation heatmap between F1–F9 and 10 
clinical characteristics

Fig. 4   Graph shows the ROC curves of different machine learning 
models

Table 4   Radiomic score

The details of the F1–F9 are shown in Table 3

Radiomic score  = 

 − 1.09552856 × F1
 − 0.86632614 × F2
 + 0.58220868 × F3
 + 0.97471849 × F4
 − 0.77145334 × F5
 − 0.92267150 × F6
 + 0.84877258 × F7
 + 0.52749997 × F8
 + 0.77429202 × F9
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machine learning-based radiomic models can predict 
the PD-L1 expression levels (AUCs > 0.76), and that 
the logistic regression model had an AUC of 0.96 ± 0.01 
(mean ± standard deviation), which outweighed other 
machine learning models (P < 0.001).

The formula for the radiomic score is provided in 
Table 4, and Fig. 5 shows the significant difference in radi-
omic scores between the PE and NE in the primary and 
validation cohorts (P < 0.001). Considering all the data, the 
radiomic score was significantly higher in the PD-L1 PE 
group than the NE group (0.526 ± 1.13, versus − 1.30 ± 0.69, 
P < 0.001). With tenfold cross validation, the AUC of our 
radiomic signature used to predict PD-L1 expression levels 
was 0.96 ± 0.01 with a specificity of 80.0% and sensitiv-
ity of 98.5%. All the 10 folds had an AUC > 0.94. In the 
independent external cohort, our radiomic signature had an 
AUC of 0.85 (specificity 63.6%, sensitivity 91.3%), thus 
demonstrating the efficacy of our final radiomic signature 
(see Fig. 6).

Radiomic Signature, Clinical Model, 
and Radiomics‑Clinical Nomogram

The clinical model was built using 10 clinical charac-
teristics, and the radiomics-clinical nomogram was pro-
vided using the radiomic score, age, gender, and smoking 
status of each patient for convenient clinic application 
(see Fig.  7). Table  5 shows the performance metrics 
of radiomic signature, clinical model, and radiomics-
clinical nomogram. The radiomic signature showed the 
highest performance of all the models (AUC = 0.96, 

versus AUC = 0.77–0.82, P < 0.001, in primary cohort; 
AUC = 0.85, versus AUC = 0.38–0.61, P < 0.001, in vali-
dation cohort). This predictive advantage was also dem-
onstrated across other assessment indexes.

Discussion

Tumor immunotherapy has been improving year by year, 
and immunosuppressive checkpoint pathways are con-
sidered one of the most promising treatment methods. 
However, to achieve accurate application of anti-PD-1/
PD-L1 monoclonal antibody therapy in lung cancer 
patients, many challenges still need to be addressed, 
such as determining the expression levels of PD-L1 [34]. 
Due to tumor heterogeneity, reliability, and the high cost 
of biopsies, a non-invasive and easy-to-use method is 
needed to predict the expression of PD-L1 in lung can-
cer patients. Here, we developed and tested a CT-based 
hand-crafted radiomic signature, which can be used as a 
non-invasive tool to predict PD-L1 expression levels in 
non-small cell lung cancer.

To our knowledge, no imaging biomarker is currently 
used to identify PD-L1 expression levels. In our study, we 
found no significant difference in the PD-L1 expression 
levels between the clinical characteristics. And we found 
that combining radiomic score and clinical characteris-
tics was worse at predicting than analyzing the radiomic 
signature only. This indicates that uncorrelated features 
could reduce the predictive performance of the model as 
a whole. Additionally, the poor predictive performance of 

Fig. 5   Comparison of radiomic scores between NE and PE groups. a Primary cohort and b validation cohort
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clinical models indicated a need for a more accurate, non-
invasive radiomic signature approach.

Radiomics can be used to transform images into 
high dimensional quantitative feature data and mine 
data that can help guide clinical decisions [35]. The 
results from our modeling demonstrated that the radi-
omic features extracted from pre-treatment CT images 

noticeably correlated with PD-L1 expression levels in 
NSCLC patients, which could reflect the biological char-
acteristics and heterogeneity of tumors. We also found a 
weak correlation between radiomic and clinical character-
istics. However, we hope to continue finding stronger and 
more specific correlations to examine radiomic features in-
depth. Machine learning provides more complicated sta-
tistics capabilities, which can explore powerful prediction 

Fig. 6   The prediction performance of radiomic signature. The ROC curves in the a internal validation and c external validation cohorts. The 
confusion matrix in the b internal validation and d external validation cohorts
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patterns. Of the different machine learning models we 
examined, the logistic regression-based radiomic approach 
was superior at predicting PD-L1 expression levels. The 
internal and external validation of the final radiomic sig-
nature showed that it could be used as an effective and 
non-invasive predictor of gene expression levels.

Here, we provide evidence for an effective, non-
invasive application of CT radiomics to predict PD-L1 
expression levels. Given the relatively low cost of CT 

scans and the high accuracy of their assessments, our 
radiomic signature may provide a relatively reliable 
assessment that can be used to guide immune-related 
treatment decisions, especially in cases where biopsies 
are unsuccessful, require multiple biopsies, or cannot be 
performed. These radiomic features and the final radi-
omic signature enable us to more fully assess the dis-
tinct tumor heterogeneity by analyzing the ROI of the 

Fig. 7   Radiomics-clinical nomogram was built using 4 features in primary cohort. Rad means radiomic score. The risk coefficient mapped from 
total points means the potential for PD-L1 positive expression

Table 5   The performance metrics of radiomic signature, clinical model, and radiomics-clinical nomogram

AUC​ area under receiver operating characteristic curve, ACC​ accuracy, TPR true positive rate (sensitivity), TNR true negative rate (specificity), 
PPV positive predictive value, NPV negative prediction value

Index Primary cohort Validation cohort

Radiomic signature Clinical model Radiomics-clinical 
nomogram

Radiomic signature Clinical model Radiomics-clinical 
nomogram

AUC​ 0.96 0.77 0.82 0.85 0.38 0.61
ACC​ 93.41% 67.03% 89.01% 82.35% 61.76% 64.71%
TPR 98.48% 90.91% 95.45% 91.30% 91.30% 69.57%
TNR 80.00% 4.00% 72.00% 63.64% 0.00% 54.55%
PPV 92.75% 71.43% 90.00% 84.00% 65.63% 76.19%
NPV 90.91% 14.29% 85.71% 77.78% 0.00% 46.15%
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whole tumor. Figure 8 shows two successful prediction 
examples.

Despite these encouraging results, there are still some 
limitations to our current work. This study is a retrospec-
tive study, with its own potential bias, calling for further 
studies to prospectively validate our radiomic signature 
in an appropriate trial. Even so, this is a small but impor-
tant part of the pre-treatment evaluation. Second, texture 
features were extracted from manually segmented data, 
which makes it difficult to exclude the small vessels and 
bronchi inside the nodules. This may have affected the 
accuracy of some features. Third, there are several testing 
methods used for confirm PD-L1 positivity [36], and we 
only built the predictor from one method. Fourth, this 
work does not provide insights to post-treatment changes 
in the radiomic signatures, which may be important to 
determine if a certain course of treatment should be fol-
lowed or halted.

Conclusion

Our study demonstrated the feasibility of using CT-based 
hand-crafted radiomic signatures to effectively evaluate 
PD-L1 expression levels. Identifying PD-L1 expression 
using radiomic signatures can provide supplementary 
information for accurate medical treatment and clinical 
decisions.
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