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Abstract
The prediction and detection of radiation-related caries (RRC) are crucial to manage the side effects of the head and the neck 
cancer (HNC) radiotherapy (RT). Despite the demands for the prediction of RRC, no study proposes and evaluates a predic-
tion method. This study introduces a method based on artificial intelligence neural network to predict and detect either regular 
caries or RRC in HNC patients under RT using features extracted from panoramic radiograph. We selected fifteen HNC 
patients (13 men and 2 women) to analyze, retrospectively, their panoramic dental images, including 420 teeth. Two dentists 
manually labeled the teeth to separate healthy and teeth with either type caries. They also labeled the teeth by resistant and 
vulnerable, as predictive labels telling about RT aftermath caries. We extracted 105 statistical/morphological image features 
of the teeth using PyRadiomics. Then, we used an artificial neural network classifier (ANN), firstly, to select the best features 
(using maximum weights) and then label the teeth: in caries and non-caries while detecting RRC, and resistant and vulnerable 
while predicting RRC. To evaluate the method, we calculated the confusion matrix, receiver operating characteristic (ROC), 
and area under curve (AUC), as well as a comparison with recent methods. The proposed method showed a sensibility to 
detect RRC of 98.8% (AUC = 0.9869) and to predict RRC achieved 99.2% (AUC = 0.9886). The proposed method to predict 
and detect RRC using neural network and PyRadiomics features showed a reliable accuracy able to perform before starting 
RT to decrease the side effects on susceptible teeth.
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Background

Head and neck cancer (HNC) ranks first on the list of the most 
common cancers in the world, with an estimated US incidence 
over 134,000 new cases per year, considering the summation of 
the oral cavity, brain, and thyroid cancers [1, 2]. Despite improv-
ing treatment outcomes with multimodality treatment (surgery/ 
radiotherapy/chemotherapy), there is still a high rate of deaths 
from this disease [3]. Radiation therapy plays a pivotal role in 
HNC treatment [4–6]. The treatment options depend on sev-
eral factors, such as tumor stage, patient’s clinical condition, 
presence of comorbidities, technological resources availability, 
and local medical expertise [7, 8]. In this scenario, radiotherapy 
can be used alone or combined with chemotherapy or surgery, 
depending on the clinical situation. Currently, about 80% of the 
estimated HNC patients receive radiation therapy as a compo-
nent of their multidisciplinary treatment [8]. In the last decades, 
RT has passed through a tremendous technological advance, 
i.e., intensity-modulated radiation therapy (IMRT) [9]. IMRT 
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has contributed to the increase of the therapeutic index and, in 
some cases, improving HNC patients’ survival rates [9]. Despite 
technological evolution obtained with IMRT, the wide variety 
of structures located in this region makes adverse effects, one 
of the most significant therapeutic process challenges. The most 
common adverse effects are mucositis, xerostomia, trismus, sec-
ondary infections, radiation caries, dysgeusia, and osteoradione-
crosis [10].

Radiation caries is a type of dental caries that can occur in 
individuals undergoing RT in regions that include the salivary 
glands [11]. Patients undergoing RT in the oral cavity struc-
tures have increased in Streptococcus mutans, Lactobacillus, and 
Candida. Radiation-related caries (RRC) is the result of changes 
in salivary glands and saliva, including reduced flow, pH, and 
buffering capacity and increased viscosity alongside altered flora 
[11, 12]. Residual saliva with induced radiation xerostomia also 
has a low concentration of  Ca2+ ions resulting in higher solubil-
ity of tooth structure and reduced remineralization. In addition to 
the indirect effect of radiation, there is also increasing evidence 
showing that radiation directly affects teeth. For instance, the 
teeth become more prone to rupture with enamel peeling, espe-
cially in areas of strength or stress, such as the initial, cusp, and 
cervical regions of the teeth [10, 11]. Damage is observable at 
doses higher than 30 Gy, specifically when teeth receive more 
than 60 Gy [13, 14]. The location of teeth, rapid course, and gen-
eralized attack distinguish radiation caries of the others. In daily 
clinical practice, clinical judgment and panoramic radiograph 
detect caries induced by radiation therapy [12].

Even experienced clinicians have moderate accuracy and 
expertise in diagnosing proximal caries on a dental radiograph 
due to time, quality of the image, or teeth overlapping. Studies 
have reported a low sensitivity (40–60%) for the use of con-
ventional radiography in diagnosing caries [15–18]. Moreover, 
it has been shown that dentists misdiagnosed deep caries or 
healthy teeth, up to 40% and 20%, respectively [16]. Hence, it is 
not unusual if different dentists have different judgments about 
the same radiograph.

Recently, researches have conducted several attempts to 
improve the quality and accuracy of panoramic X-ray in caries 
detection. For instance, Gray et al. investigated whether the use 
of specific image enhancements and dual observers affects the 
detection of caries, dentin extension, and cavitation or not [19]. 
They used two approaches to detect caries with photostimulable 
phosphor plates (PSP) and Schick sensors. The authors observed 
no clinically significant differences using more observers, differ-
ent film receptors, or filters by comparing the methods.

Machine learning (ML) in the artificial intelligence (AI) con-
text consists of a class of algorithms that make computer pro-
cesses learn from data [20]. Regarding to computational meth-
ods, artificial neural network (ANN), with learning capability, 
has been used in the medical image diagnostic, and the diseases 
follow-up [21–23]. ANN are inspired by biological neural net-
works’ structure and functionalities to construct data models to 

find patterns. In contrast, few studies have been conducted based 
on deep ANN architectures in the dental field, and research inves-
tigating the detection and diagnosis of dental caries is also more 
limited [24, 25].

As HNC patients receiving RT tend to develop massive caries, 
and ANN has a potential application to improve caries detection, 
we designed a pipeline based on ANN algorithms combined with 
statistical and morphological image features of the teeth to detect 
and also predict RRC in panoramic radiograph of patients with 
HNC who received radiotherapy or going under RT process.

Methods

We developed this study, retrospectively, in a tertiary health 
institution from 2017 to 2020 on patients diagnosed with HNC 
treated by radiation therapy combined or not with cisplatin-
based chemotherapy. The eligibility criteria were patients 
without metastases, treated by radiation therapy with a total 
dose higher than 60 Gy. The exclusion criteria were patients 
with RT dose lower than 60 Gy, with distant metastases, with-
out panoramic radiograph images, and with all teeth extracted 
before the treatment. A pair of panoramic radiographs were 
acquired pre- and post-treatment. According to the institu-
tion’s treatment protocol, HNC patients are evaluated before 
the radiotherapy by a dentist. The dental evaluation includes a 
panoramic radiograph, teeth extraction, and restoration before 
the treatment.

During and after radiotherapy treatment, the dentist fol-
lowed the patients. In the follow-up period, patients were 
evaluated clinically and radiologically with a panoramic radio-
graph. Two dentists with more than 13 years of experience vis-
ually performed and double-checked the radiographic images 
to detect caries. During the RT treatment period, we selected 
15 patients who fit the inclusion criteria to be the subjects of 
this study. Among the subjects, 13 were males and 2 females 
with mean age of 58.7 (± 6.8). The subjects with squamous 
cell carcinoma (SCC) histology, submitted to a 66 Gy mean 
dose radiotherapy with or without combined chemotherapy. 
The most frequent tumor sites were the oropharynx, oral cav-
ity, and larynx. Oncologists diagnosed most patients (93.3%) 
with advanced tumor stages (stages III/IV). The primary used 
HNRT modality was 3-dimensional conformal radiotherapy 
by 80% and only 20% in intensity-modulated radiotherapy 
(IMRT). Radiation doses prescribed to the primary tumor 
volume varied from 60 to 70 Gy (mean dose 66 Gy).

Panoramic Radiograph Images

We obtained the radiographs using the Sirona digital panoramic 
radiograph machine, operating with tube voltage between 60 
and 80 kV, tube operating current between 1 and 10 mA, a focal 
point of 0.5 × 0.5 mm , and total filtration of 2.5 mm aluminum. 
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We used a default program of the device with a predefined mag-
nification of 1.3 times with a rotation time of 14 s for the radio-
graphic exposure. Each panoramic image has a 2440 × 1280 
resolution, 0.108 image spacing, and 0–65,535 range intensity.

The patients were positioned inside the digital panoramic 
device to align the device’s vertical line with the patient’s 
facial midline of the sagittal plane. Also, we positioned the 
Frankfort plane of these individuals parallel to the ground. 
We checked the patient’s alignment and positioning and 
visualized the computer screen images to verify all the 
anatomical structures necessary to perform quality control 
measurements.

The software tools used for manual labeling of teeth 
were 3D Slicer and its modules [26]. We also used the 
PyRadiomics package to extract the features of the 
labeled teeth [27]. The programming languages and the 
features selection tools used in this study were MAT-
LAB, Python, and Scikit-learn modules [27, 28]. The 
machine learning approach was employed to predict and 
detect caries, i.e., artificial  neural network classifier 
(ANN) in MATLAB [29].

Image Analysis Pipeline

Figure 1 describes the pipeline steps to design an artificial 
intelligence tool for caries detection.

We developed the pipeline with eight steps as explained 
item by item in detail below.

Step 1: Acquisitions

We explained the image acquisition step in detail on the 
“Panoramic Radiograph Images” section.

Step 2: Labeling

Two dentists (also authors) delineated manually all 420 teeth 
regions labeling them using editor tools in 3D Slicer. They 
labeled the images for two purposes, one for detection and 
another for prediction. For the detection approach (the first 
label map), each the healthy tooth was labeled “one” (class 1) 
and tooth with caries with “two” (class 2) on the images before 
and after RT. Once all teeth were labeled, the second dentist 
and a trained postdoc researcher in medical image processing 
double-checked the label attributed to teeth. For the second label 
map aiming to prediction, those healthy teeth that exposed by 
radiotherapy and decayed after receiving Gy dose were labeled 
“one” (class 1 or vulnerable teeth), but the healthy teeth that 
remained without caries after radiotherapy were labeled “two” 
(class 2 or resistant teeth).

Step 3: Feature Extraction

We extracted 105 features from each tooth image region using 
the PyRadiomics feature extraction package in the Python envi-
ronment. The 105 features included 12 shape-based, 16 Gy-
level run length matrix, 5 neighborhood gray tone difference 
matrix, 18 first-order statistics, 16 Gy-level size zone, 24 Gy-
level co-occurrence matrix, and 14 Gy-level dependence matrix 
features (see Appendix Table 5 for more details).

Step 4: Standardize

Once we extracted the features of the teeth, their values 
needed to be standardized. The method used to scale the 
values was min–max scaling. Therefore, we scaled all values 
to the range between 0.0 to 1.0.

Fig. 1  The proposed pipeline as a sequence of steps of the image and data processing to detect and predict caries. ANN = artificial neural net-
work classifier
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Step 5: Feature Selection

Using all features may not be a practical decision in classifiers 
since it may decrease the precision, increase the computation 
time, or induce to overfitting. We used two strategies to select the 
best features: the KBestSelect module in the Scikit-learn tool and 
another approach which we designed to use maximum weights in 
ANN. KBestSelect uses five functions, i.e., �2(Chi − squared) , 
mutual information (mutual_info_classif), ANOVA F values 
(f_classif), F-regression (F-value), and mutual information 
regression (mutual_info_regression), to calculate scores. Then, 
it selects K best (e.g., 1, 2, …, 104) among 105 feathers consider-
ing top K scores. In our maximum weights approach, we run an 
ANN to calculate the weights and then those weights lower than 
a specific threshold u are removed. Thus, classifying using ANN 
only applies to the remaining features.

Step 6: Learning Algorithm

We designed the ANN using two networks, as illustrated 
in Fig. 2.

In the first layer, i.e., hidden layer, all or selected features 
scores are taken as input. Then, we trained the hidden layer by 
updating the weight (W) and the bias (b) values following the 
gradient descent algorithm with momentum propagation. The 
output of the hidden layer is the input of the classifier layers. The 
classifier output layers have sigmoid functions as neuron transfer 
functions and were trained with the resilient back-propagation 
algorithm to overcome the known gradient descent problem 
when one uses the sigmoid function.

We used 70% of the teeth dataset to train both the hidden and 
the classifier layers. Thus, we used the remaining data for the test 

and cross-validation. The software randomly selected 15% for 
both the test and cross-validation as well as the training dataset.

Step 7: Perform the Classifier

Prediction and Detection of RRC  We employed the ANN clas-
sification method on the selected features scores to obtain each 
tooth’s resulting label on either the prediction and the detection 
of RRC. There is a limited range for the number of hidden lay-
ers (HL) to prevent overfitting in ANN [28] as follow:

where, Ni = number of input neurons, No = number of output 
neurons, Ns = number of samples in training dataset, and � is 
a value in interval � ∈ [2, 10] depends on the application of 
ANN. We used this limitation to investigate an equilibrium 
between the number of features and the number of HL.

Step 8: Evaluation

Since we already have the dentists’ gold standard labeling (pro-
vided in Step 1), we estimated the confusion matrix to assess 
ANN. The confusion matrix includes nine values: true-positive 
(TP), false-negative (FN), false-positive (FP), true-negative 
(TN), sensitivity (ST), specificity (SF), positive predictive 
(PP), negative predictive (NP), and accuracy (AC) positioned 
in a 3 × 3 matrix as shown in Fig. 3 where we define each ele-
ment of the matrix as the standard definition [30].

In addition to the confusion matrix, we provide receiver oper-
ating characteristic (ROC) of ANN’s best performance. Also, we 
compared our suggestion (ANN-PyRadiomics with maximum 

(1)Nh =
Ns

�.(Ni + No)

Fig. 2  We defined an ANN with 
a hidden layer in the MATLAB 
software. The ANN input is 
the selected feature scores, and 
the output is a label set of 1 
and 2 presenting dental caries 
vs healthy teeth or resistant 
teeth vs susceptible teeth. W = 
weights, b = bias
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weighting feature selection) to several methods at the end of the 
evaluation step.

Results

A total of 420 teeth, with 238 healthy teeth (class 1, green labels in 
Fig. 4B) and 182 dental caries (class 2, red label in Fig. 4B), were 
labeled manually by two dentists (with 0.5% variations between 
two labels). For the prediction, the dentist also labeled 119 teeth, 
75 vulnerable (class 1, green in Fig. 4C) and 44 resistant teeth 
(class 2, blue in Fig. 4C) as illustrated in Fig. 4 and Table 1.

As shown in Table 1, the number of teeth, before and after 
radiotherapy, is not the same since 18 teeth were no longer 
existing.

After, we extracted 105 features from each tooth indi-
vidually using label maps and original images in the PyRa-
diomics package. This package extracts the features in an 
undefined order in the resulting output sheet. Therefore, a 
direct comparison between values in the resulting sequence 
was not possible. Thus, we defined a fixed list of the fea-
tures and then set each feature’s values in the same name 
to solve this problem. All scores were scaled using the 
min–max method.

We used the SelectKBest to select only those features 
with higher scores using chi-squared, ANOVA F-value, 
mutual information (MI), F-value, and mutual info regres-
sion (MIR). We assessed the five functions and K numbers 
range to find the best features, as presented in Table 2.

The employed ANN has 105 weights, the same number of 
the available features. We removed the features with weights less 
than a minimum value to select the pipeline’s best features step. 
Since we decreased the number of features, then we are able to 
increase HL’s number using Eq. (1). The results of maximum 
weighting feature selection for the best, 5 and 10 best features 
are presented in Table 3.

As it can be seen in both Tables 2 and 3, the features are 
not the same, which shows the selection approach for the best 
features is crucial for the training step of NN classifiers. Even 
though SelectKBest module for each score function has different 
results which shows lower accuracy in feature selection decision.

Detection

We trained the ANN for detection approach using 70% of 
teeth which were randomly selected by software. We pre-
sent the confusion matrices for training, validation, test, and 
ANN’s total performance in Fig. 5,(A) and Table 6 in the 
Appendix including different selection features and hidden 

Fig. 3  Confusion matrix, a standard way to estimate a classifier’s perfor-
mance in labeling data into two classes. True-positive (TP), false-negative 
(FN), false-positive (FP), true-negative (TN), sensitivity (ST). specificity 
(SF), positive predictive (PP), negative predictive (NP), and accuracy (AC)

Fig. 4  An example of A) origi-
nal panoramic dental image, 
B) the first manual label map 
of healthy teeth (green) and 
dental caries (red) for detection 
approach, and C) the second 
manual label map of resistant 
(blue) and vulnerable (green) 
for prediction approach. In the 
second label map, caries dental 
before RT are excluded (gray)

Table 1  Manual labeling results of resistant vs susceptible teeth of 15 
patients with head-neck cancer under radiotherapy treatment

X-ray images Healthy teeth Dental caries Sum

Before radiotherapy 129 90 219
After radiotherapy 44 157 201
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layers. In addition to confusion matrices, the ROC curves of 
ANN’s best performance are shown in this figure individually.

The area under the curve (AUC) calculated for the ROC 
curve was 0.9869. Among 10 best features, five features 
with the highest weights, i.e., 2, 48, 77, 98, and 101, were 
selected due to their weights in the ANN training step. We 
explained these features in detail as follows.

Maximum2DDiameterRow (Feature 2)  Maximum 2D diameter 
(row) is the longest pairwise Euclidean distance between labeled 
teeth surface mesh vertices in the column-slice (usually the sagit-
tal) plane.

10Percentile (Feature 48)  The 10th percentile of the tooth’s 
intensity level is the third feature selected as another feature 
with a high weight. If one calculates each tooth’s histogram, 
the 10th percentile of those teeth with caries has the same 
result and the tooth without caries. Therefore, this feature will 
help to distinguish between dental caries and healthy teeth.

ID (Feature 77)  ID or (a.k.a. Homogeneity 1) is another meas-
ure of a tooth’s local homogeneity. With more uniform gray 
levels, the denominator will remain low, resulting in a higher 
overall value.

SmallDependenceLowGrayLevelEmphasis (Feature 98)  This 
feature measures small dependence’s joint distribution with 
lower gray-level values.

DependenceVariance (Feature 101)  Measures the variance 
in the dependent size of the region of interest, i.e., tooth. Like 
ID, this feature considers the diversity of gray levels in a 
tooth. Due to the difference in intensity levels of healthy teeth 

and dental caries, this feature had been selected as an excel-
lent feature to separate healthy teeth with caries dental teeth.

Prediction

We perform the ANN on the second label map to predict the 
RRC. As we expected, the selected features using maximum 
weights approach were not exactly the same as detection perfor-
mance. The results are shown in Appendix Table 7 and Fig. 6.

The area under the curve (AUC) calculated for the ROC 
curve was 0.9886. As the final evaluation of our suggestion, 
in Table 4, we reviewed several recent works to compare our 
suggestion with these methods.

Discussion

Radiography associated with clinical findings is considered a 
conventional diagnostic approach for caries detection [10, 11]. 
A substantial number of head and neck cancer patients (20–40%) 
receiving radiation therapy develops caries during the follow-up 
time, with the majority of cases occurring after 6 months from 
the end of radiotherapy [35]. The onset of RRC usually occurs 
after 6 months from the ending of RT. RRC starts as discreet 
enamel cracks and fractures and progresses to a brown/blackish 
discoloration [35]. Unfortunately, there is no method available 
to predict RRC at present. To the best of our knowledge, this 
study is the first to investigate the detection and prediction of 
RRC with machine learning in HNC patients treated by radiation 
therapy using panoramic radiograph images.

In medical literature, several research types investigate auto-
matic caries detection in healthy patients using various algo-
rithms to learn caries’ area features and specifications [31, 32, 
36]. Based on the relatively low accuracy achieved in previ-
ous studies that developed based on the periapical radiograph, 
micro-CT, hyperspectral imaging, and fluorescence, we decided 
to build an image dataset with healthy teeth and RRC teeth to 
assess the PyRadiomics features. We have chosen the panoramic 
radiograph for this pilot study for several reasons. First, the pan-
oramic radiograph provided valuable image information, and the 
demineralization induced by direct and indirect radiation effects 
on the enamel and the dentin layer conducting to RRC can be 

Table 2  Results of the SelectKBest module on 105 extracted features by PyRadiomic on the label map of teeth. The numbers of features are 
associated with the features in the Appendix Table 5

�
2 chi-squared, FV F-value, MI mutual information, MIR mutual information regression, NSF number of selected features

Score functions

NSF �
2 ANOVA-FV MI FV MIR

1 37 37 21 37 21
5 22, 37, 69, 72, 80 22, 37, 69, 72, 80 21, 22, 29, 40, 75 22, 37, 69, 72, 80 21, 22, 27, 40, 45
10 7, 22, 37, 44, 52, 69, 72, 

75, 80, 96
22, 37, 52, 69, 72, 75, 80, 

85, 87, 96,
21, 22, 27, 29, 40, 68,
75, 81, 87, 91,

22, 37, 52, 69, 72, 75,
80, 85, 87, 96,

21, 22, 27, 29, 39, 40,
68, 75, 87, 91,

Table 3  Results of select the 
best features using maximum 
weight approach

NSF number of selected features, 
NHL number of hidden layers, u 
upper bound used to remove the 
features with lower weights

u NSF Selected features

0.77 1 2
0.72 5 2, 48, 77, 98, 101
0.61 10 2, 33, 37, 48, 67, 77, 

93, 98, 101, 105
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captured by the PyRadiomics features. Second, the clinical prac-
tice widely employs a panoramic radiograph, and third, it has a 
reduced cost compared with other dental images.

Two experienced dentists provided the image dataset. They 
manually labeled the teeth and caries regions to extract the 

PyRadiomics features. During selecting the best features to either 
detect or predict the RRC, each selected feature’s raw scores 
showed low discrimination to separate the healthy teeth accu-
rately from RRC. We used the weights of each of the best features 
calculated in the ANN training step as a model parameter.

Fig. 5  A) Confusion matrix., B) ROC calculated for the best results of ANN on all 420 teeth in detection approach, generated by MATLAB. 
Class1 for healthy and 2 for dental caries

Fig. 6  A) Confusion matrices. B) ROC of the best performance of ANN Classifier on vulnerable (class 1) and resistant (class 2) patient teeth 
(219) under radiotherapy treatment

1243Journal of Digital Imaging (2021) 34:1237–1248
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Another essential step to achieving high accuracy was bal-
ancing the number of hidden layers and feature selection. In 
Appendix Table 6, we showed the tuning set of hyperparam-
eters to achieve the best model fit. According to the number of 
HL, the classifier variation occurs because of losing informa-
tion against improving depth learning training. Consequently, 
we found a relationship between the number of selected features 
and the number of HL to reach the best accuracy. We presented 
the balance between HL and the number of features in Eq. (1), 
increasing the number of HL from 1 to the maximum limit, i.e., 
the optimum accuracy.

The accuracy of the prediction process was 0.04% higher 
than the detection one. It can be explained by morphological 
and statistical features of vulnerable vs resistant teeth compared 
to healthy vs caries. That means the weights of the selected 
features for prediction were higher than the selected features 
for the detection pipeline (see Tables 5 and 6 in the Appendix).

In this pilot study, we chose a single dichotomy characteristic 
to examine ML’s feasibility, combined with PyRadiomics fea-
tures, to identify and predict RRC in a panoramic radiograph. 
This strategy has allowed us to understand the altered fea-
tures in images and the behavior of ML in patients with RRC. 
Another critical question frequently related to the ML is the 
sample size utilized for training and validation through a sample 
of the fifteen HNC patients with 420 teeth is valid to develop 
an ML algorithm with this method. The overfit is a frequent 
problem in ANN approaches, and it can occur even if there is no 
reasonable relationship between the input data and the outcome. 
The overfit is a concern, mainly when one uses an extensive 
database to train the ANN with many parameters inputted to 
identify a relationship. The searching for the radiomic features 
with more weight in the ANN limited the overfit in this study.

The outcomes obtained in our study have the potential to 
employ in clinical practice due to several reasons. First, one 
can extrapolate the method (ANN-PyRadiomics) to the other 
image sources such as computerized tomography, cone beam 
radiograph, digital radiograph, and intraoral radiograph. Sec-
ond, due to automating the process, which is the next step of 
our work, the AI tool can help the oral radiologist or dentist 
improve the accuracy of RRC detection quickly, improving the 

efficiency of health services. Third, with this method, it is pos-
sible to develop a quantitative classification system for RRC 
based on numerical data obtained from PyRadiomics features. 
Fourth, in the future, with more patients and with a prospective 
follow-up, it is possible to refine the ANN for the detection of 
non-cavitated caries, which makes it possible to preserve the 
tooth structure of HNC patients. Finally, one can train ANN to 
recognize other abnormalities on panoramic dental images such 
as a cystic lesion, restoration, and channels.

Under RT treatment at this institution, the patients with head 
and neck cancer are usually in an advanced stage, which makes 
the number of cases for the study difficult. Besides, according 
to caries of radiation, they spread quickly, causing many tooth 
losses. It results in a small number of teeth cases investigation. 
This limitation leads to the use of more features to improve 
accuracy. Therefore, the computation time increased consid-
erably. In addition, usually using intraoral radiography for the 
diagnosis of caries is the best examination. However, in each 
patient, 14 periapical radiographs before and 14 after RT would 
be necessary, which were not possible in our study as another 
limitation.

Conclusion

The present study is the first to develop a supervised machine 
learning system to detect and predict the RRC with high accu-
racy, i.e., 98.8% and 99.2%, respectively, in patients with HNC 
treated with radiation panoramic radiograph dental images. 
The neural networking obtained a high accuracy to select 
the best radiomic features to identify RRC from a panoramic 
radiograph. Our findings and methodology can be useful to be 
employed in other images to detect and predict the develop-
ment of the RRC. The findings observed here open a way to be 
explored in future studies for improving the dental care of HNC 
patients. However, as the present study was a pilot, it needs a 
validation in a large sample to confirm its high accuracy as the 
next step.

Table 4  Several NN approaches 
to either detect or predict caries 
in comparison to the proposed 
approach in this study

NA not applicable
* Genetic optimized neural networks (GONN), this method is used to predict fatigue not caries

Studies Number of teeth Method base Accuracy (%) AUC 

Prediction Detection

Oliveira et al. (2011) [17] 1084 ANN NA 98.7 NA
Lee et al. (2018) [31] 2400 CNN NA 86.3 0.884
Patil et al. (2019) [32] 120 images ANN NA 95 NA
Mohamed et al. (2020) [33] 120 images GONN* 98.1 NA 0.92
Falk et al. (2019) [34] 226 CNN NA 95 0.74
ANN-Radiomics (ours) 420 ANN 99.2 98.8 0.9886, 0.9869
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