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Abstract

Homologous recombination and DNA repair are important for genome maintenance. Genetic variations in essential
homologous recombination genes, including BRCA1 and BRCA2 results in homologous recombination deficiency
(HRD) and can be a target for therapeutic strategies including poly (ADP-ribose) polymerase inhibitors (PARPi).
However, response is limited in patients who are not HRD, highlighting the need for reliable and robust HRD
testing. This manuscript will review BRCA1/2 function and homologous recombination proficiency in respect to
breast and ovarian cancer. The current standard testing methods for HRD will be discussed as well as trials leading
to approval of PARPi’s. Finally, standard of care treatment and synthetic lethality will be reviewed.
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Background
DNA damage is inevitable, multifactorial, and dangerous.
Whether initiated by exogenous or endogenous sources,
inappropriate alterations to the human genome may result
in far-reaching, pathological consequence unless quickly
and accurately corrected. Homologous recombination
DNA repair (HRR) is a critically important mechanism by
which DNA damage can be corrected. Homologous
recombination DNA repair is a process by which double-
stranded DNA breaks and interstrand crosslinks use sister
chromatid as a template for repair [1] (Fig. 1A). In this
way, DNA damage is removed in an error-free fashion [2].
Additionally, during DNA replication, HRR pathways sup-
port the recovery of stalled replication forks [3]. Successful
HRR depends on several properly functioning proteins,
with BRCA1 and BRCA2 proteins playing particularly pro-
nounced roles [4]. BRCA1 is a tumor suppressor protein
central to several macromolecular complexes which drive
HRR and cell cycle progression [5]. After MRN and CtIP

mediated DNA resection (Fig. 1B), BRCA1 travels to sites
of double-stranded DNA breaks where it participates in
DNA damage signaling and coordinates DNA damage re-
pair [5, 6]. While the role of BRCA1 in HRR is well estab-
lished, emerging evidence suggests BRCA1 also regulates
cellular selection of double-strand break repair pathways.
By doing so, BRCA1 may influence a cell’s choice between
HRR and non-homologous DNA end joining (NHEJ)
DNA double-strand break repair mechanisms [6, 7]. Dur-
ing the synthesis phase of normal cell cycle progression, if
DNA becomes damaged, the BRCA1 protein complexes
recruit BRCA2 protein complexes to initiate strand inva-
sion and/or homology-directed repair [5, 6, 8] (Fig. 1C, D).
BRCA-dependent DNA double-strand break repair mech-
anisms can compensate for dysfunctional DNA single-
strand break repair mechanisms. When DNA single-
strand breaks accumulate and are converted to double-
strand breaks, HRR can repair DNA lesions and maintain
cell viability [9].
Poly (ADP-ribose) polymerase proteins (PARPs) are

nuclear enzymes integral to the base excision repair
pathway of single-strand DNA repair [10]. PARPs travel
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to sites of single-strand DNA breaks (Fig. 2A) where
they synthesize polymeric adenosine diphosphate ribose
chains for post-translational modification of nuclear pro-
teins [10, 11], in turn promoting downstream single
stranded repair processes [12]. Clinically, dysfunctional
DNA single-strand break repair may be pharmacologic-
ally elicited with PARPis. It is thought that these single-
stranded breaks are converted to double-stranded breaks
during replication. In cells with BRCA1/2 mutations
resulting in the inability to repair double-stranded
breaks, treatment with PAPRis results in synthetic lethal-
ity. Beyond its role in single-stranded DNA repair,
PARP1 is also involved in the alternative end-joining
(alt-EJ) double-strand break repair pathway [13]. PARPs
also play a role in homologous recombination, although
this role may be relegated to homologous recombination
mediated recovery of stalled replication forks, rather
than double-stranded break repair [14].

Main text
Homologous recombination DNA repair proficiency (HRP)
and Cancer
The ability of cancer cells to successfully perform HRR is
frequently used as a basis for patient stratification. By
grouping patients according HRR status, researchers and
clinicians can optimize disease treatments, improve out-
come prognostication, and design more informatic clinical
trials [15]. Cancer cells that demonstrate homologous re-
combination DNA repair proficiency (HRP) and cancer
cells that demonstrate homologous recombination defi-
ciency (HRD) may be treated using different therapeutic

strategies. While HRR status may have important implica-
tions for the clinical care of pancreatic cancer patients
[16], liver cancer patients [17], lung cancer patients [18],
and renal cancer patients [19], its relatively increased inci-
dence in breast and ovarian cancer provides the most ro-
bust data regarding treatment effects in this pathway.
Indeed, in a sample of 3504 patients with metastatic can-
cer, genomic footprints indicative of HRD were found in
only 6% of cancer cases, while approximately 30% of ovar-
ian cancers and 13% of breast cancers were HRD [20]. In
epithelial ovarian cancer (EOC), approximately 50% of
cases involve HRD due to alterations of HRR pathway
genes [21]. While HRD ovarian cancer cells usually harbor
mutations in BRCA1, BRCA2 or other genes with similar
features (traits which are collectively referred to as
“BRCAness”) [22–24], HRP ovarian cancer cells are often
driven by genetic alterations involving other pathways
contributing to cell cycle dysregulation, such as cyclin E1
(CCNE1) genes [21]. Indeed, CCNE1 amplification events
occur alongside BRCA inactivation at remarkably low fre-
quency [25], with Gorski et al. describing CCNE1 amplifi-
cation and homologous recombination pathway mutations
as “nearly mutually exclusive” [22]. CCNE1 is an import-
ant factor in G1/S cell cycle transition, as it activates
CDK2 thereby allowing the cell to enter S phase [26]. The
amplification of cyclin E1 increases the speed by which
cancer cells pass from the G1 to S phase. This can lead to
genomic instability and drive the dysregulation of genes
responsible for proliferation and cellular survival [22, 27].
Cyclin E1 amplification occurs in 19.1% of all ovarian can-
cers [22, 25] and 3.4% of breast cancers [28].

Fig. 1 Homologous recombination DNA repair (HRR). A double-stranded DNA break and sister chromatid that will be used as a template for
repair. B MRN and CtIP are involved in DNA resection. C HRR repair complex. D Schematic representation of BRCA1/2 mediated HRR
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Homologous recombination DNA repair deficiency (HRD)
and Cancer
Most HRD cancer cells have direct deficiency in a gene
or group of genes responsible for homologous recombin-
ation DNA repair, although upregulation of miRNAs can
also cause HRD [21]. Generally, the etiology of HRD can
be attributed to pathogenic germline variants, somatic
mutations, or epigenetic changes in HRR pathway genes.
Pathogenic or likely pathogenic germline BRCA1 or
BRCA2 variants are present in 18% of ovarian cancer
cases [29]. In breast cancer, pathogenic or likely patho-
genic germline BRCA1 or BRCA2 variants are present in
6.1% of all cases [30–36], and 10–20% of triple-negative
breast cancer cases [37]. Pathogenic or likely pathogenic
germline BRCA variants are more often associated with
the development of cancer at a younger age and present
with more aggressive disease phenotypes with worse
prognoses when compared to cancers caused by somatic
BRCA mutations [38, 39]. In Somatic BRCA1 and

BRCA2 mutations are identified in 3 % of high-grade
serous ovarian carcinoma cases [40]. In ovarian, fallopian
tube, and peritoneal carcinomas, the most common
somatic mutations in HR genes are BRCA1 (54% of som-
atic mutations) and BRCA2 (17% of somatic mutations)
[41]. Somatic mutations of BRCA1 and BRCA2 in breast
cancer are positively correlated with cancer survival [42–
44]. Identification of somatic mutations in cancer is gen-
erally associated with a better prognosis then cancers
involving pathogenic or likely pathogenic germline vari-
ants. Additionally, epigenetic causes of HRD involve the
silencing of BRCA genes by up or down regulated
miRNA activity or BRCA promoter hypermethylation
[45]. Analogous miR-1255b, miR-148b, and miR-193b
miRNA molecules targeting BRCAness genes have been
described in ovarian cancer [46]. In breast cancer, miR-
182 overexpression induces HRD by targeting BRCA1
[47]. Furthermore, BRCA expression may be inhibited by
epigenetic hypermethylation. In 11% of high-grade

Fig. 2 PARP inhibitors (PARPi) and mechanisms of PARPi resistance. A PARPs travel to DNA single-strand breaks. B PARP inhibitors can trap the
enzyme and prevent it from properly functioning. C-E Potential mechanisms of resistance to PARPi therapy. C PARPi may be blocked, D effluxed,
or E reversion of BRCA1/2 mutations
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ovarian carcinomas, BRCA1 expression is silenced by
hypermethylation [40]. Additionally, hypermethylation of
BRCA promoter regions are associated with more ag-
gressive disease. Hypermethylation of BRCA1 in ovarian
cancers correlate with significantly shorter median sur-
vival (n = 11, 35.6 months) compared to germline BRCA1
(n = 22, 78.6 months) and wild-type BRCA1 (n = 30, 63.3
months) [40]. HRD etiology may play a critical role in
clinical selection of therapeutics as well as overall patient
prognosis.

Role of BRCA1/2 in homologous recombination DNA
repair (HRR)
BRCA1 and BRCA2 mutations put individuals at higher
risk for developing certain malignancies, particularly
ovarian and breast cancer. The chance of developing
ovarian cancer if an individual has a BRCA1 mutation is
39–46% [48–52]. In women with a BRCA1 mutation, the
probability of developing breast cancer over her lifetime
is 57–65% [50, 53–55]. For BRCA2 mutations, the
chance of developing breast cancer is 45–49%, and for
ovarian cancer it is 11–18% [39, 50, 53]. Further, pa-
tients demonstrate high prevalence of BRCA mutations
in triple negative breast cancer (TNBC), which is nega-
tive for estrogen receptors (ER-), progesterone receptors
(PR-), and excess human epidermal growth factor recep-
tor 2 (HER2) proteins. In fact, 80% of women with a
pathogenic mutation in BRCA1 who develop breast can-
cer have triple negative disease [56, 57].
Within the genes BRCA1 or BRCA2, cancer cluster re-

gions are genetic regions containing a disproportion
amount of gene mutations. A risk hazard ratio (RHR)
quantifying the chances of developing cancer is used
below to evaluate breast versus ovarian cancer for differ-
ent cancer cluster regions. In ovarian cancer, there is a
single ovarian cancer region: c.1380 to c.4062 (RHR =
0.62; 95% CI, 0.56–0.70; P = 9 × 10− 17) in BRCA1 [58]. In
breast cancer, there are three breast cancer cluster re-
gions in BRCA1: c.179 to c.505 (RHR = 1.46; 95% CI,
1.22–1.74; P = 2 × 10− 6), c.4328 to c.4945 (RHR = 1.34;
95% CI, 1.01–1.78; P = .04), and c.5261 to c.5563 (RHR =
1.38; 95% CI, 1.22–1.55; P = 6 × 10− 9). There are also
three identified breast cancer cluster regions in BRCA2:
c.1 to c.596 (BCCR1; RHR = 1.71; 95% CI, 1.06–2.78;
P = .03), c.772 to c.1806 (BCCR13; RHR = 1.63; 95% CI,
1.10–2.40; P = .01), and c.7394 to c.8904 (BCCR2; RHR =
2.31; 95% CI, 1.69–3.16; P = .00002). The cancer cluster
region for BRCA2 in ovarian cancer is located from
c.3249 to c.5681 (RHR = 0.51; 95% CI, 0.44–0.60; P = 6 ×
10− 17) and c.6645 to c.7471 (; RHR = 0.57; 95% CI, 0.41–
0.80; P = .001) [58]. These breast and ovarian cancer
cluster regions are shown below in Table 1. The prob-
ability of developing cancer and which type of cancer

depends, in part, on the particular cancer cluster region
affected within the BRCA genes.
There are also some regions of BRCA that are more

commonly mutated in certain populations. The founder
mutations, including the BRCA2 region of c.3249 to
c.5681 associated with the c.5946del mutation, is com-
mon in patients with Ashkenazi Jewish ancestry [39, 58,
59]. Individuals with this mutation are more prone to
develop ovarian cancer than breast cancer. Another
founder mutation is the c.5266dupC mutation in
BRCA1. It is also associated with individuals of Ashken-
azi Jewish ancestry as well as European ancestry. This
mutation is associated with higher risk of ovarian cancer
[39, 60]. The third founder mutation is c.68_69delAG
which is located in exon 2 of BRCA1; this is more com-
monly seen in patients with Ashkenazi Jewish ancestry
as well as Indian ancestry; which occurs at a frequency
of 16.4% in these populations [39]. The mutation is asso-
ciated with increased sensitivity of ovarian cancer cells
to cisplatin therapy, independent of wild-type BRCA1 al-
leles [61, 62]. One possible mechanism for this involves
the BRCA c.68_69delAG mutation increasing expression
of maspin, a mammary serine protease inhibitor, as it is
a novel downstream target of the BRCA c.68_69delAG
mutation [62]. The increased expression of maspin
causes a decreased expression of inhibitor of apoptosis
proteins [63]. Increased expression of maspin is associ-
ated with increased response to cisplatin therapy; as
such, it is also associated with a more favorable progno-
sis in ovarian cancer [39, 62].
Dysfunction in “BRCAness” genes, such as RAD51 and

CDK12, can also cause HRD and is an important pathway
in the development of ovarian [21] or breast [64] cancer.
CDK12, which promotes transcription in several HR path-
way genes, such as BRCA1, is one of the most frequently
mutated genes in ovarian cancer [65, 66]. Inactivation of
CDK12 leads to suppression of HRR. Between BRCA1
exons 11 and 13, there is a binding site for RB1, PALB2,
and RAD51 [39, 67]. Interaction between BRCA1 and
BRCA2 is mediated by PALB2. This interaction is critical
in the RAD51-mediated HRR of damaged DNA [39].
RAD51’s activity is modulated by BRCA2 and the correl-
ation between RAD51 and BRCA2 is important for the
repair of double-strand DNA breaks [68].
Homozygous loss of PTEN and amplification of EMSY

may also be involved in HRD, although this is debated
as there is not enough information to classify PTEN or
EMSY as a HRD or HRP related defect. EMSY colocal-
izes with BRCA2 at sites of DNA damage and is located
at 11q13 [69]. Most sources do describe EMSY amplifi-
cation or overexpression as a mechanism underlying
HRD, although this is controversial and varies from
source to source [21]. An EMSY amplification is associ-
ated with a poor prognosis in breast and ovarian cancer
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[70]. Amplification or overexpression of the EMSY tran-
scriptional repressor leads to BRCA2 silencing in ap-
proximately 20% of high-grade ovarian carcinoma cases
[40]. PTEN acts as a tumor suppressor gene in its regu-
lation of the cell cycle [71]. It is not clear whether PTEN
is involved in HRD [21, 41]. PTEN deficiency has been
shown to be synthetically lethal with PARP inhibition
but this may be due to the downregulation of RAD51, a
gene that assists in the repair of double strand DNA
breaks [72, 73]. PARP-1 recognizes DNA breaks and is
involved in early recruitment of factors facilitating
double-strand break repair, and inhibition of PARP can
cause cell death as PARP can no longer recruit factors
for cell-repair [74].

HRR status determination

BRCA testing Given the significance of BRCA1/2 gene
integrity in HRR functionality, BRCA1/2 are often used
as a metric for determining a tumor’s HRR status [75–
77]. Because the nature of a given BRCA1/2 variation
may predict patient response to certain therapies, it has
been shown to be beneficial to differentiate between
pathogenic germline variants, somatic mutations, or epi-
genetic changes. Assessments of pathogenic germline
variants require blood or saliva samples, while somatic
mutations require direct biopsy or circulating tumor
DNA analysis [29]. Epigenetic testing typically relies on
formalin-fixed paraffin-embedded (FFPE) tissue samples
[78]. However, recent studies are exploring the use of
blood samples [79] to identify BRCA1/2 epigenetic
changes, with one such study successfully identifying
epigenetic changes using hair, buccal mucosa, and blood
samples [80].
For years, Sanger sequencing was the gold-standard to

detect single-nucleotide alterations, insertions, and dele-
tions in BRCA1/2 genetic sequences, while large genomic
alterations were detected using multiplex ligation-
dependent probe amplification (MLPA) [81]. However,
Sanger sequencing and MLPA are time-consuming and
costly. Today, samples are typically analyzed using massive
parallel sequencing (MPS) [82]. Multiple studies report
that using MPS to analyze BRCA1/2 mutations yields

comparable results to Sanger sequencing but on a faster
time scale and more cost effective. These factors have con-
tributed to MPS becoming standard practice in recent
years [83, 84]. The high-throughput process of MPS al-
lows for the discovery of tiny variants in an individual’s
DNA. These variants can be categorized on a spectrum
from benign to pathogenic, or they can be categorized as
variants of unknown significance (VUS). The identification
of VUS results pose a dilemma for both clinicians and pa-
tients: additional screening and testing based on a VUS
can lead to overtreatment and mismanagement, while pa-
tients carrying VUS may experience additional anxiety
about potential implications of the variants. In general,
known VUS are disclosed to patients, although VUS alone
should not change the management of a patient. Attempts
are typically made to classify VUS as either benign or
pathogenic, although further research and guidelines are
needed to determine how best to proceed following the
discovery of VUS [85].
Regardless of how mutations are sequenced, the high

prevalence of BRCA1/2 mutations necessitate genetic
testing in individuals at risk for ovarian or breast cancer.
In high-grade serous ovarian cancer (HGSOC), patho-
genic germline variants and somatic BRCA1/2 mutations
can be found in 17–25% of patients, and 18–30% of all
BRCA1/2 variations are somatic in origin [41, 86, 87].
However, germline DNA tests are more sensitive and
less invasive than somatic DNA tests, and therefore
germline testing is prioritized [21]. However, if germline
DNA testing is negative for BRCA variants, the Ameri-
can Society of Clinical Oncology (ASCO) guidelines rec-
ommend a tumor sample be harvested and tested for
somatic mutation [75, 88, 89]. .At the present time, most
laboratories do not test for epigenetic changes such as
BRCA promoter hypermethylation, although there is evi-
dence supporting an improved response to certain thera-
peutic agents for such mutations [90].
Determining a tumor’s HRR status can aid clinicians

and patients in the selection of potential therapeutic
strategies, but inconsistencies in laboratory testing pro-
cedures detract from their overall utility. Although la-
boratories across the world have been evaluating
BRCA1/2 genes for over two decades, the extent to

Table 1 Location of cancer cluster regions in BRCA1 and BRCA2 for breast and ovarian cancer [58]

BRCA 1 Exon Domain BRCA 2 Exon Domain

Breast Cancer Cluster Region c.179 to c.505 5 RING c.1 to c.596 1 –

c.4328 to c.4945 13 Serine Cluster c.772 to c.1806 3 –

c.5261 to c.5563 19 BRCT c.7394 to c.8904 14 DNA binding

Ovarian Cancer Cluster Region c.1380 to c.4062 11 Part of region contains Serine Cluster c.3249 to c.5681 11 BRC

c.6645 to c.7471 11 BRC
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which BRCA1/2 variations are measured, consideration
of non-coding DNA regions in genetic sequencing, and
which technologies are used to identify large genetic re-
arrangements all fluctuate drastically between laborator-
ies [82]. Improved institutional guidelines standardizing
BRCA1/2 testing may improve the sensitivity of these
tests, particularly in identifying mutations that might not
have been discovered without uniform guidelines.
Clinically, BRCA testing is vastly underutilized. Only

20% of women eligible for genetic testing based on age
at diagnosis and family history per 2017 NCCN guide-
lines have been tested [79, 91], and it is estimated that
over 97% of BRCA carriers in the population remain un-
identified [80]. Various reasons for low detection rates
include small family size, which makes it difficult to
identify patterns in hereditary genetic variants, lack of
consideration for paternally inherited genetic variants,
incomplete penetrance, population migration, limited
public awareness about BRCA, and poor referral guide-
line implementation by both primary care providers and
oncologists. Other limitations include socioeconomic
and geographic factors including limited access to gen-
etic counseling in rural areas, lack of insurance coverage
and reimbursement for genetic counseling services, and
the time requirement to counsel patients [92–94].
While BRCA mutations are more commonly associ-

ated with breast and ovarian cancers, men are also af-
fected by the presence of a BRCA mutation. Male breast
cancer is overall rare, with a lifetime risk of 0.1%. How-
ever, the lifetime risk of breast cancer is significantly
higher in men with BRCA1 or BRCA2 mutation, with a
incidence of 1.2% in men who carry a BRCA1 mutation
and 6.8% in men who carry a BRCA2 mutation [95].
.Men with BRCA mutations are also at increased risk for
other cancers, such as prostate, pancreatic, and gastric
cancers, as well as melanoma of the skin and eye [96].
.By improving and increasing access for BRCA testing,
men and women alike can be informed about their
potential risks of developing cancer.

Non-BRCA testing The need for HRR tests evaluating
non-BRCA1/2 genetic abnormalities is growing with our
understanding that HRD may be caused by other dys-
functional “BRCAness” proteins, such as RAD51. Indeed,
ovarian and breast cancer patients without BRCA1/2
mutations demonstrate positive, yet variable, clinical re-
sponses to therapeutic agents that target HRD [25]. This
supports non-BRCA1/2 etiologies for HRD and suggests
that identification of non-BRCA1/2 etiologies may pro-
vide relevant information for therapeutic selection and
may thereby impact clinical prognosis. Improved labora-
tory testing procedures which evaluate other genes im-
plicated in HRR could result in the development of
more personalized, comprehensive treatment plans for

patients with cancer. RAD51, for instance, is critically in-
volved in HRR processes [97]. RAD51 mutations are im-
plicated in the development and progression of ovarian
and breast cancer [98–100]. Mutational analysis of
RAD51 in 125 families from 12 countries across Europe
and North American found an association between
RAD51C/D mutations and increased risk of ovarian can-
cer (RAD51C: p < 0.001, RAD51D: p < 0.001) [101]. Pre-
clinical models also suggest RAD51 mutations may be
associated with resistance to anti-cancer therapeutics
that target the HRR pathway [102]. Data such as these
suggest that pathogenic germline RAD51 variants may
be an effective biomarker for HRD. Accordingly, many,
but not all, breast and ovarian cancer panels include as-
sessment of RAD51 [103]. Inclusion of genes such as
RAD51 in HRR testing procedures may increase detec-
tion of HRD in patients without BRCA1/2 mutations
[104] and act as a determinant of therapeutic efficacy
and prognosis [105].

Other testing strategies As an alternative to gene-
specific testing practices, HRR can also be evaluated by
measuring genomic scarring—broadly defined as gen-
omic aberrations of a known origin [106]. More specific-
ally, genomic scarring can be defined here as HRD-
related genomic aberrations or large-scale DNA alter-
ations [107]. These scars are associated with unrepaired
damage within a patient’s genome resulting from an in-
ability to successfully repair double-strand breaks [107].
This method is used by Myriad in the MyChoice® CDx
assay, which is approved as a companion diagnostic for
ovarian cancer treatment with olaparib and niraparib.
MyChoice® CDx evaluates genomic scarring by measur-
ing loss of heterozygosity (LOH), telomeric allelic imbal-
ances, and large-scale state transitions. A tumor is
considered HRD if there is a BRCA1/2 mutation, or a
genomic instability score (GIS) of ≥42. In the QUADRA
trial, patients with recurrent platinum sensitive HRD
ovarian cancer who had undergone at least 3 lines of
prior therapy without prior exposure to PARP inhibitor
demonstrated a significant response to niraparib (ORR
29%; 95% CI 16–44; p = 0.0003) [108]. Patients with
ovarian cancer who received frontline niraparib also
demonstrated an improved PFS of 21.9 months versus
10.4 months (HR = 0.43; 95% CI 0.50–0.76; p = < 0.001)
for tumors which were HRD. However, veliparib, an-
other PARP inhibitor which was evaluated in combin-
ation with chemotherapy in first-line ovarian cancer,
used a threshold score of ≥33 after retrospective analysis
of this cutoff in triple negative breast cancer, and dem-
onstrated increased sensitivity [109, 110]. When veli-
parib is combined with first line chemotherapy followed
by veliparib maintenance, patients demonstrated a pro-
gression free survival benefit of 31.9 versus 20.5 months
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(HR 0.57; 95% CI 0.43–0.76; p = < 0.001) in the HRD
≥33 cohort [109].
Without focusing on a specific gene, these metrics ap-

proximate the burden caused by dysfunctional repair
pathways and allow indirect identification of HRD.
Therefore, choosing a cutoff may be therapy- or assay-
dependent. For instance, Foundation Medicine identifies
HRD through mutation in BRCA1/2 or an LOH score of
> 16. While Foundation Medicine is not an FDA-
approved companion diagnostic for PARPi, it may be
used to inform decision making.
Genomic scarring acts as an objective indicator of gen-

omic abnormalities, compared to gene mutations which
can be influenced by a variety of factors. Thus, genomic
scar biomarkers have strong negative predictive value
(NPV) for response to HR-deficiency therapies--meaning
individuals without genomic scarring biomarkers will
likely not benefit from HR deficiency-targeting drugs.
However, they are also poor positive predictive value
(PPV) biomarkers, as high levels of genomic instability
do not account for mutations that may restore HR profi-
ciency [106]. While genomic scarring has been used to
predict HRD in conjunction with other companion diag-
nostics, improved screening methods and appropriate
definition of HRD positivity using genomic scarring
represent an active area of research.

Homologous recombination ability and cancer therapeutics

Standard of care for breast and ovarian cancer Im-
proved mechanistic understanding and higher resolution
laboratory identification of BRCA1/2 genetic variation
subtypes and non-BRCA1/2 genetic aberrations contrib-
ute to the clinical care that breast and ovarian cancer pa-
tients receive. In fact, of the 5–10% of breast cancer
cases that are related to genetic mutations, 67% of those
cases are due to BRCA1/2 mutations [108]. Broadly, the
standard of care for breast and ovarian cancer patients
depends on many factors. The standard of care for
breast cancer depends on classification, receptor status,
and whether it has become invasive or metastatic. Based
on these factors, recommendations for breast cancer pa-
tients may include a surgical excision and lymph node
evaluation, radiation and medical therapy [111]. The
standard of care for patients with epithelial ovarian
cancer includes maximal surgical cytoreduction and sys-
temic platinum-based chemotherapy [112]. The chemo-
therapeutic agent and whether chemotherapy is
undergone prior to surgery are both determined by the
stage and histology of the tumor [113] Stage IIIC and IV
ovarian cancers are treated with chemotherapy, either
after surgery or before, as neoadjuvant therapy [114]. In
both diseases, medical therapy is almost always initiated
[111, 113]. However, clinical selection of

chemotherapeutic agents depends on various factors,
one of which being the HRR status of the cancer cells.
Medical therapyis an important component of breast

and ovarian cancer management.. Because HRD cancer
cells are more sensitive to certain anti-cancer drugs,
such as platinum chemotherapy, the HRR status of a pa-
tient’s tumor may influence chemotherapeutic selection.
Past research has shown that ovarian cancer patients
with BRCA mutations are more susceptible to platinum-
based chemotherapeutic agents. These agents, such as
carboplatin, damage DNA and induce double-strand
breaks, which HRD cancer cells cannot repair, which
lead to apoptosis [115]. However, platinum-based agents
are not without their drawbacks. These agents are asso-
ciated with significant neurotoxicity, ematogenecity, and
marrow suppression which can impact a patient’s quality
of life [116]. Like platinum-based agents, other chemo-
therapeutic agents also function by inducing double-
strand breaks, whether it be directly, like doxorubicin, or
by crosslinking DNA through alkylation, like cyclophos-
phamide. One study involving triple negative breast can-
cer demonstrated that patients with HRD biomarkers
were more susceptible to adjuvant doxorubicin and
cyclophosphamide combination therapy. Moreover, the
HRD patients undergoing the combination chemother-
apy demonstrated better disease-free survival than those
who were not HRD [117]. .Given evidence of HRD can-
cers manifesting increased sensitivity to chemotherapy
agents that target malignant cell defective repair mecha-
nisms, the identification of biomarkers for HRD could
lead to more effective treatment for this subset of
patients.
While PARP inhibition has shown promising results in

the treatment of HRD cancers, more research is needed
in order to establish optimal treatment regimens for
HRP cancers. Gemogenovatucel-T, or Vigil, is a vaccine
composed of autologous tumor cells, transfected with a
plasmid containing GM-CSF and bi-shRNA to decrease
furin activity. Decreased furin expression subsequently
down-regulates TGF-β1 and TGF-β2 expression [118].
Safety and efficacy of Vigil has been demonstrated in nu-
merous solid tumors [119–123]. A recent study explor-
ing the efficacy of gemogenovatucel-T in ovarian cancer
patients demonstrated significant differences in RFS and
OS in patients with BRCA wild-type tumors when com-
pared to those who had BRCA mutations [124]. Subse-
quent analysis of patients who were HRP versus HRD
revealed further RFS (10.6 vs 5.7 months; HR = 0.386
90% CI 0.199–0.750 p = 0.007) and OS (NR vs 26.9
months; HR = 0.342 90% CI 0.141–0.832 p = 0.019) bene-
fit [125]. To compare, BRCA-wt/HRP patients treated
with niraparib who had a response to first line chemo-
therapy in the PRIMA trial had a PFS of 8.1 versus 5.4
months for placebo (HR 0.68 95% CI 0.49–0.94 p =
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0.020) [126]. Patients with HRP or unknown HR status
treated with olaparib and bevacizumab as first line main-
tenance had a median PFS of 16.9 months vs 16.0
months in placebo treated (HR 0.92 95% CI 0.72 to 1.17)
[77]. Vigil demonstrated improved clinical benefit com-
pared to niraparib or olaparib and bevacizumab with no
grade 3/4 adverse events reported in patients receiving
Vigil. Both niraparib and olaparib plus bevacizumab re-
sult in a large amount of drug related grade 3/4 adverse
events (65.3 and 57.0% respectively) and dose discon-
tinuation (14.7 and 41.0% respectively) [77, 126]. Add-
itionally, there has been some concern regarding the rate
of treatment related myelodysplastic syndrome and acute
myeloid leukemia (tMDS/AML) following PARPi. In a
recent meta-analysis, risk of tMDS/AML was increased
in patients receiving PARPi compared to placebo (Peto
OR 2.63 95% CI 1.13–6.14; p = 0.026) [127]. Prognosis
for tMDS/AML is typically poor, with a 5 year survival
of less than 10% [110]. Therefore, Vigil is an attractive
therapeutic option for frontline ovarian cancer mainten-
ance with improved efficacy and robust safety.
The mechanism for Vigil benefit in HRP patients re-

mains unclear; however, the level of clonal neoantigens
present in cells that are capable of homologous recom-
bination may play a role. Colon cancer tumors with mis-
match repair deficiency (MMR) have a high proportion
of neoantigens. Neoantigens have, therefore, been inves-
tigated as a predictive biomarker for response to im-
munotherapies [128, 129]. However, the amount of
neoantigens present in a tumor may not be the sole pre-
dictor of response to immunotherapies, and may differ
based on immunotherapy mechanisms. Activated and
primed T cells may not recognize all neoantigens with
the same affinity. McGranahan et al. found that T cells
recognize clonal neoantigens compared to subclonal
neoantigens preferentially to target the tumor [130].
Vigil has also shown the ability to increase circulating
CD3+/CD8+ T cells in advanced cancer patients [131].
Likely these CD3+/CD8 + T cells have been primed to
the relevant clonal neoantigens present in higher quan-
tity and concentration in HRP tumors. Therefore, tu-
mors that are HRP may have more clonal neoantigens
and may derive clinical benefit from immune based ther-
apies such as vaccinations which increase the primed
CD8+ T cell population.

Synthetic lethality Research shows that identification of
HRD tumors leads to more effective chemotherapeutic
regimens for this subset of patients. Moreover, the un-
derstanding of the molecular mechanisms by which
HRD cells are defective also gives way to the use of
drugs which exploit the phenomenon of synthetic lethal-
ity. In this context, synthetic lethality refers to situations
in which a single genetic aberration or chemical

perturbagen is individually tolerated by a cell, but be-
comes lethal when combined with another genetic aber-
ration or chemical perturbagen [132]. First described by
Bridges in 1922 [133, 134], synthetic lethality now serves
as the basis of pharmacological strategies targeting HRD
tumor cells. Synthetic lethality may be pharmacologically
realized in a number of ways. One of the most well stud-
ied involves the genetic aberrations that drive HRD, and
PARP inhibitors that suppress single strand break repair
mechanisms. While PARP functions in single-strand
break repair, homologous recombination repairs double-
strand breaks. Therefore, by inhibiting both mechanisms,
the cancer cell is effectively unable to repair DNA dam-
age, which then leads to apoptosis [135]. The therapeutic
implications of successful HRD-PARPi synthetic lethality
reinforces the need for enhanced definition of HRD
biomarkers.
PARP inhibitors are being studied and are currently

approved for used in the management of breast and
ovarian cancer. There are multiple PARP inhibitors that
have been approved by FDA for use in cancer treatment,
including olaparib, niraparib, rucaparib, and talazoparib.
Three of the four drugs, olaparib, rucaparib, and nira-
parib, are approved for the treatment of ovarian cancer.
PARP inhibitors, such as the ones mentioned above,
function by way of PARP-trapping. The PARP inhibitors
can act on both PARP1 and PARP2 at the location of
DNA damage, effectively trapping the enzymes from
functioning (Fig. 2B). Since the PARP enzyme is non-
functional, it can no longer recruit any other enzymes to
repair the damage, and cell death ensues. The trapping
mechanism makes PARP inhibition more effective than
a knockout of the PARP enzyme because the PARP1-
DNA complex demonstrates more cytotoxicity than the
original unrepaired single-strand break [136]. Resistance
to PARP inhibitors may develop via a number of mecha-
nisms [56, 137] (Fig. 2C, D, E).
While the therapeutic value of PARP inhibitors is

often determined based on BRCA1/2 mutational status,
other clinically important tumor suppressor genes also
contribute to synthetic lethality. One such example is
RAD51, another enzyme involved in double-strand break
repair. BRCA2 signals RAD51 to travel to sites of DSBs.
At these sites, RAD51 will eventually signal strand inva-
sion and subsequent homologous strand exchange for
successful damage repair. A study combining the PARP
inhibitor olaparib with BRCA2-RAD51 disruption
showed synthetic lethality [138]. Another clinically sig-
nificant relationship is that of DNA-PK, an enzyme that
has an essential role in non-homologous end joining.
When the subunit Ku on DNA-PK binds to double-
strand breaks, it recruits a host of NHEJ proteins that
can function to repair the DNA. The combined inactiva-
tion of DNA-PK and BRCA1 also results in synthetic
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lethality. Research has shown that the DNA-PK inhibi-
tor, AZD7648, used in combination with olaparib, leads
to cell death [139]. The synergistic effect between so
many of these genes and the BRCA proteins expands the
possibility of ovarian and breast cancer combination
therapies.

Conclusions
Proficiency or deficiency in HRR is a critical metric of
therapeutic selection and prognosis for ovarian and
breast cancer patients. Techniques for determining HRR
status in patients are currently underutilized, inconsist-
ently implemented, and produce results that are often
reduced to binary HRD or HRP designations in clinical
practice. The designation of a patient’s tumor for indi-
vidual HRR status assessment is important because
therapeutic efficacy or patient prognosis vary according
to the identification of genetic variations (e.g. BRCA1/2;
RAD51, CDK12), the nature of these variations (i.e.
pathogenic germline variant, somatic mutation, epigen-
etic change), and the site of these mutations (e.g. c.179
to c.505, c. 4328 to c. 4945). Optimal clinical outcomes
require testing which consistently generate these data,
and careful consideration of each patient’s tumor’s
unique HRR status and etiology. Evidence of therapeutic
impact based on HRR status are established in ovarian
cancer and likely will have further impact in several
other solid tumors.
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