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Ferroptosis regulators, especially SQLE, play
an important role in prognosis, progression
and immune environment of breast cancer
Wenqing Tang1,2†, Fangshi Xu1†, Meng Zhao1 and Shuqun Zhang2*

Abstract

Background: Ferroptosis, a new form of programmed cell death, has great potential for cancer treatment.
However, the roles of ferroptosis-related (FR) genes in breast cancer (BC) remain elusive.

Materials and methods: Using TCGA database, a novel FR risk signature was constructed through the Lasso
regression analysis. Meanwhile, its prognostic value was assessed by a series of survival analyses. Besides, a
nomogram was constructed to predict the overall survival rate (OSR) of individual at 1,3,5 year. Four validation
cohorts (n = 2248), including METABRIC, GSE58812, GSE20685 and ICGC-KR datasets, were employed to test the
prognostic value of FR risk signature. The effects of FR risk signature on BC immune microenvironment were
explored by CIBERSORT algorithm and ssGSEA method. The histological expressions of FR risk genes were
presented by HPA database. The biofunctions of SQLE were determined by qPCR, MTT, wound-healing and
Transwell assays.

Results: We constructed a novel FR risk signature consisting of eight genes. High FR risk led a poor prognosis and was
identified as an independent prognostic factor. Besides, A higher proportion of patients with luminal A type was
observed in low-risk group (53%), while a higher proportion of patients with basal type in high-risk group (24%). FR risk
score could discriminate the prognostic difference of most clinical subgroups, except for M1 stage, HER2 and basal
types. Moreover, its prognostic value was successfully validated in other four cohorts. Through immune analyses, we
found that the reduced infiltration levels of CD8+ and NK cells, whereas the enhanced activity of antigen presentation
process appeared in high FR risk. Then, FR risk score was found to weakly correlate with the expressions of six immune
checkpoints. Through the experiments in vitro, we confirmed that overexpression of SQLE could promote, whereas
blocking SQLE could inhibit the proliferative, migrative and invasive abilities of BC cells.

Conclusions: FR risk signature was conducive to BC prognostic assessment. High FR risk level was closely associated
with BC immunosuppression, but may not predict ICIs efficacy. Moreover, SQLE was identified as a crucial cancer-
promoting gene in BC. Our findings provide new insights into prognostic assessment and molecular mechanism of BC.
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Introduction
Breast cancer (BC) is the most common cancer in
women worldwide, accounting for 25.4% of all female
cancer cases, which places a heavy burden on patients’
health and economy [1]. In United States, the number of
new cases of BC in 2020 was about 27,000, and led up to
42,000 cancer-related deaths, contributing to 14.7% of
the total cancer-associated mortalities [2]. It is alerting
that the incidence of BC has a non-neglected growth in
past decade (an average of 0.3% per year). Its age-
standardized incidence rate (ASR) increased from 39.2/
100,000 to 45.9/100,000 [3, 4]. Although the treatment
strategy and approach of BC have been greatly im-
proved, the mortality rate of BC is still up to 1.34 per
million in 2019, what’s more, its cancer-related deaths
do not decrease [5]. Metastasis is the primary cause of
death in BC patients, whereas, about 15% of patients
present locally advanced or metastatic symptoms at the
time of diagnosis, which brings great challenges for can-
cer treatment. Therefore, it is extremely urgent and sig-
nificant to explore the molecular mechanism of BC
progression, search for novel therapeutic targets and es-
tablish a precise prognostic analytical system.
Ferroptosis is a mode of programmed cell death.

Distinct from apoptosis and autophagy, ferroptosis
commonly does not cause nuclear condensation and
fragmentation, but exhibits mitochondrial abnormal-
ities as the dominant features, such as rupture of the
outer membrane, mitochondrial condensation and di-
minished or vanished of mitochondria crista etc [6].
Since the term was first coined by Dixon SJ et al. in
2012, ferroptosis has been proven to be closely re-
lated to cancer progression and has great potential to
conquer the tumor [7]. Iron ion transport, lipid oxi-
dation and dysfunction of antioxidant pathways act as
three crucial links of ferroptosis, which are regulated
by ferroptosis-related (FR) genes. It has been found
that these regulators are involved in the onset and
development of multiple cancers [8]. For example,
NCOA4, a gene with the ability to facilitating the re-
lease of Fe2+ ion through ferritinophagy, is down-
regulated in renal cancer tissue, and its deletion leads
unfavorable prognosis and immune tolerance [9]. Al-
though recent studies have preliminarily investigated
the actions of FR genes in BC [10–13], there are still
some issues worthy of further discussion and im-
provement, such as screening strategy of FR gene set,
constructing and assessing process of prognostic
model, and functional validations of hub FR genes
etc. Herein, we made reasonable improvements on
these issues. Meanwhile, we explored the relationships
between FR risk score and molecular subtypes of BC
for the first time and contrasted the similarities and
differences between our work and recent studies.

In the present study, a novel FR risk signature was
constructed by using 1109 BC samples from TCGA data-
base. Afterwards, we explored the effects of FR risk sig-
nature on prognosis and immune microenvironment of
BC, and its prognostic value was also validated in
METABRIC, GSE58812, GSE20685 and ICGC-KR co-
horts. As for treatment, given that only a small subset of
patients can benefit from immune checkpoint inhibitors
(ICIs), the potential links between FR risk and the ther-
apy of ICIs were investigated. Furthermore, due to the
eager attention attracted from SQLE in oncology field,
its pro-oncogenic biofunctions in BC cells were also
confirmed. Hence, we believe that our findings will pro-
vide valuable insights into the prognostic analysis, thera-
peutic selection, and molecular mechanism of BC.

Materials and methods
Data source
In the present study, the TCGA dataset was used as train-
ing cohort, while METABRIC, GSE58812 [14], GSE20685
[15] and ICGC-KR datasets were applied as validation co-
horts. In TCGA database, the types of transcriptome and
clinical data were set as ‘HTSeq-FPKM’ and ‘Bcr-Xml’, re-
spectively. There were no limits on the pathological type
of BC. A total of 1109 BC and 113 normal samples were
preliminarily included in the training cohort. Among that,
80 BC samples were excluded due to their too short
follow-up period (less than 30 days) or abnormal survival
information (survival time is negative value). METABRIC
dataset provided transcriptomic and survival information
of 1764 BC samples. GSE58812 and GSE20685 datasets
consisted of 107 TNBC (triple-negative breast cancer) and
327 BC samples, respectively. ICGC-KR dataset offered
another validation cohort containing a total of 50 BC sam-
ples. The clinical characteristics of these datasets were
shown in Table 1. All gene expression data was processed
through log2 transformation.

Screening for ferroptosis regulators
In the current study, we established a ferroptosis-related
gene (FRG) set based on four sources (Fig. 1A): [1]
FerrDb database is the world’s first database of ferropto-
sis regulators and markers, which provides 108 ferropto-
sis driver, 69 ferroptosis suppressors, and 111 ferroptosis
markers in total (http://www.zhounan.org/ferrdb/) [16].
After removing duplicate genes, the database provides a
FR gene set containing 259 genes. Zhu L et al. and Wu
Z et al. both adopted this gene set to constructed FR risk
signatures [12, 13]. However, FerrDb gene set includes
not only human species, but also mice and drosophila
species. In the present study, we just selected human fer-
roptosis regulators (n = 214) into our FR gene set, which
is strikingly different from previous strategy [12, 13]. Sie-
gel et al. [2] The Molecular Signatures Database
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Table 1 The clinical characteristics of TCGA, METABRIC, GSE58812, GSE20685 and ICGC-KR cohorts

TCGA METABRIC GSE58812 GSE20685 ICGC-KR

Sample

Tumor 1109 1764 107 327 50

Normal 113 148 0 0 50

Survival Status

Dead 144 1027 29 83 10

Alive 933 737 78 244 40

Age (Median) 58.38 61.41 59.96 47.89 31.81

<60 575 761 64 278 50

≥ 60 502 1003 43 49 0

Grade

G1 / 154 / / /

G2 / 664 / / /

G3 / 882 / / /

Unknown / 64 / / /

T

T1/Tis 275 / / 101 19/3

T2 624 / / 188 24

T3 136 / / 26 3

T4 39 / / 12 1

Unknown 3 / / / /

N

N0 507 / / 137 /

N1–3 550 / / 190 /

Unknown 20 / / / /

M

M0 897 / 76 244 /

M1 21 / 31 83 /

Unknown 159 / / / /

Clinical Stage

Stage I 179 436 / / 13

Stage II 609 745 / / 28

Stage III 246 111 / / 6

Stage IV 19 7 / / 0

Unknown 24 465 / / /

Subtype

Luminal A 497 679 / / /

Luminal B 197 461 / / /

Basal 171 199 / / /

Her2 77 220 / / /

Unknown 135 claudin-low = 199
Unknown = 6

/ / /

OS (Year) Median = 3.273 Median = 10.428 Median = 6.035 Median = 7.89 Median = 7.558

PFS (Month) Median = 37.859 / / / /

DFS (Month) Median = 37.851 / / / /

OS overall survival, PFS progression free survival, DFS disease free survival
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(MSigDB) is a collection of annotated gene sets for use
with GSEA software [17], which provides a FR set con-
sisting of 40 genes [3]. Several crucial reviews have elab-
orated the molecular mechanism and regulatory process
of ferroptosis [18–22]. Chen et al. [4] Some bioinfor-
matic research focusing on ferroptosis has offered differ-
ent referencing strategies (Fig. 1A). In a pan-cancer
study, Liu Z et al identified 24 critical genes in
ferroptosis-process [23]. Wang D et al. and Li H et al.
applied a completely same FR gene set consisting of 60
regulators to explore the roles of FR genes in BC [10,
11]. Wu G et al. constructed a FR gene set consisting of
36 regulators in renal cancer research [24]. Finally, in
light of these research, we constructed an improved FRG
set containing 256 genes which almost covered all ge-
nomes above. The establishment process of our FRG set,

and the member information of all FRG sets above were
presented in Fig. 1A and Supplementary Table 1.

The construction of ferroptosis-related risk signature
The expressive difference of FRGs between BC tumor
and normal samples was compared using ‘Limma’ pack-
age in R software (Ver 3.6.3). When absolute value of
Log2FC ≥ 1.0 and adjusted p value < 0.05 were satisfied
simultaneously, the genes were regarded as the differen-
tial expressed genes (DEGs). Next, we screened out the
genes affecting BC prognosis by performing cox univari-
ate regression analysis, namely prognostic FRGs. Venn
diagram was employed to identify the intersection be-
tween FR DEGs and prognostic FRGs. Finally, based on
the Lasso regression analysis, these intersection genes

Fig. 1 Ferroptosis is a new form of programmed cell death. (A) The establishment of FR gene set. (B) The flow chart of the present study. (C) The
regulatory mechanism of ferroptosis. BC, breast cancer; FR, ferroptosis-related; DEGs, differentially expressed genes; PCA, principal component
analysis; t-SNE, t-distributed stochastic neighbor embedding; DCA, decision curve analysis; ROC, receiver operating characteristic curve; ICIs,
immune checkpoint inhibitors; ROS, reactive oxygen species
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were used to construct a novel FR risk signature via the
“glmnet” R package.

Model assessment
The predictive accuracy of FR risk signature was evalu-
ated through the receiver operating characteristic curve
(ROC). Principal component analysis (PCA) and t-
distributed stochastic neighbor embedding (t-SNE) can
show the stratifying performance of FR prognostic
model. Furthermore, when we introduced FR risk score
into BC prognostic analysis, its clinical benefit was quan-
tified through decision curve analysis (DCA).

Survival analyses
Survival analysis was based on the Kaplan–Meier
method and was conducted through ‘survminer’ and
‘survival’ R packages. The optimal cutoff value of risk
score was used as grouping criteria through ‘Cutoff
Finder ’ online tool (https://molpathoheidelberg.
shinyapps.io/CutoffFinder_v1/) [25]. Cox univariate and
multivariate analyses were successively conducted to
confirm that whether FR risk score was an independent
prognostic factor of BC. To determine the applicable do-
main of the novel FR prognostic model, we compared
the survival difference between high- and low-risk
groups in the same clinical subgroup. Moreover, we
established a nomogram combining BC clinicopathologi-
cal features and FR risk signature to predict the overall
survival rate (OSR) of individual at 1,3,5 year. Calibration
plot was implemented to test whether the nomogram
can well compare with an ideal prognostic model. The
risk plots were displayed by using ‘pheatmap’ R package.
Besides, the distributions of genetic expressions, survival
outcomes and clinicopathological features in different
risk groups were also presented via ‘pheatmap’ R
package.

Immune analyses
We evaluated the effects of high FR risk on BC immune
microenvironment in three aspects. First, the immune
abundances of 22 lymphocyte subtypes in each BC sam-
ple were calculated based on the CIBERSORT algorithm
[26]. The difference in immune cell infiltration between
high and low risk groups was tested via the ‘Limma’
package in R software. Second, we determined the corre-
lations between FR risk score and the infiltration levels
of six crucial cancer-related immune cells based on
Spearman method. Third, the active scores of 13
immune-related pathways were calculated based on
single-sample gene set enrichment analysis (ssGSEA)
[27]. Then, we evaluated the alteration in pathway activ-
ity brought by high FR risk through ‘Limma’ and ‘ggra-
dar’ R packages.

To speculate the roles of FR risk signature in predict-
ing the efficacy of ICIs, we investigated the relationships
between FR risk level and six pivotal immune check-
points (PD-L1, CTLA4, BTLA, LAG3, HAVCR2 and
TIGIT). Their expressive correlations with FR risk score,
and the expressive distributions in different FR risk
levels were both confirmed via ‘ggplot2’ and ‘ggpubr’ R
packages.

HPA database
The human protein atlas (HPA) database can achieve
spatial localization of proteins down in the single-cell
level and provide histological expression information of
genes (https://www.proteinatlas.org/) [28]. The protein
expression levels of FR risk genes in BC and normal tis-
sues were visualized via the immunohistochemistry im-
ages in HPA database [29].

Cell culture and transfection
One normal human breast cell line (MCF-10A) and two
breast cancer cell lines (MCF7 and MDA-MB-231) were
purchased from Procell Life Science and Technology
Company (Wuhan, China). MCF-10A cells were cul-
tured in Dulbecco’s Modified Eagle’s Medium (DMEM)
containing 10% fetal bovine serum (FBS) and 1% Penicil-
lin/Streptomycin (P/S). MCF7 cells were cultured in
Minimum Essential Medium (MEM) containing 10%FBS
and 1% P/S. MDA-MB-231 cells were cultured in Leibo-
vitz’s L-15 medium containing 10%FBS and 1% P/S. All
cells were incubated at 37 °C with 5% CO2 and 95%
humidity.
We applied siRNAs to inhibit the mRNA expression of

SQLE. Specific interfering RNA fragment target SQLE
(si-SQLE) was designed and synthesized by GenePharma
Biotechnology (Shanghai, China). Lipofectamine™ 2000
was employed to perform transfection (Thermo Fisher
Scientific, Waltham, MA, USA). The plasmids pcDNA-
SQLE were designed and purchased from GeneChem
(Shanghai, China) for SQLE overexpression.

Real-time quantitative PCR (RT-qPCR)
Total RNA was extracted through TRIzol reagent (Thermo
Fisher Scientific, Waltham, MA, USA). RT (Reverse Tran-
scription) reagent Kit (Takara, Japan) was applied to synthe-
sized cDNA. Target sequence was amplificated via SYBR-
Green reagent (Takara, Japan) and PCR reaction was
detected on the ABI PRISM 7900 System (Thermo Fisher
Scientific, CA, USA). Expression levels were normalized to
GAPDH and the relative mRNA levels were calculated based
on 2−ΔΔCt method. Primer list was presented in Supplemen-
tary Table 2.
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MTT assay
Transfected cells were seeded in 96-well culture plates
with the concentration of 5 × 103/well and were culti-
vated for 24, 48, 72 and 96 h. At each time point, MTT
Reagent (Solarbio Life Science co, Beijing, China) was
added in plates and treated cells for 4 h, at 37 °C. Then,
the medium was discarded and 150 μL DMSO was
added. The absorbance was measured by a microplate
reader (ThermoFisher, Waltham, MA, USA) at 490 nm.

Wound-healing assay
Transfected cells (1 × 104/well) were seeded in 6-well
plates and 2ml medium was added in each well. After
overnight incubation, the cells were stably adherent on
the plates. Discarding medium and creating a linear
wound via a sterile 200 μL pipette tip. Floating cells and
cellular debris were removed by twice PBS washing and
serum-free medium was added. After 24 h incubation,
cell migration process was observed under a microscope.
Cell migrative ability was quantified by calculating the
wound width rate. The wound width rate = (the scratch
width at 0 h minus that at 24 h divided by initial width) ×
100%.

Transwell invasion assay
Transwell chambers (Corning, NY, USA) were placed in
24-well plates. One hundred μL DMEM/MEM-diluted
Matrigel (Corning, NY, USA) was added in each chamber
and incubated overnight for gelling. Transfected cells (5 ×
10 4/ well) were seeded in upper chamber with serum-free
medium. The lower chamber contained 500 μL DMEM/
MEM with 10% FBS. After incubation for 36 h at 37 °C,
medium in upper chamber was removed and Transwell
chambers were washed twice by PBS. The invasive cells
were fixed by paraformaldehyde for 20min and stained by
0.1% crystal violet for 20min. Then, remaining non-
invasive cells were wiped out by a cotton swab. The inva-
sive cells per three random fields of view were counted
under a microscope at 100 ×magnification.

Statistical analysis
All statistical analyses were conducted using R software
(Version 3.6.2) and GraphPad Prism (Version 8.01). Stu-
dent’s t-test or Chi-square test were used to determine
the differences among variables. P-value < 0.05 was
regarded as statistically significant. All in vitro assays
were repeated in triplicate.

Results
Using 1222 samples from TCGA database, we con-
structed a novel FR risk signature (including SQLE,
ALOX15B, ANO6, TP63, JUN, PLIN4, ACSL1 and
CHAC1). Its prognostic value, effects on immune micro-
environment and associations with immune checkpoint

markers were all explored. The predictive ability of FR
prognostic model was also validated in four extra co-
horts. Given that the great potential of SQLE in cancer
therapy and the close attention to SQLE from oncology
field, its expressions and biofunctions were investigated
through a series of experiments in vitro. The flowchart
of the current study was shown in Fig. 1B.

Ferroptosis is a distinct mode of programmed cell death
In 2003, Dolma, S et al. firstly found that erastin can in-
duce a nonapoptotic cell death process [30]. However,
until 2013, Dixon, S et al. just formally designated the
new type of cell death as ‘Ferroptosis’ [18]. Ferroptosis
involves three crucial processes, including iron ion trans-
port, lipid oxidation and dysfunction of antioxidant
pathways. First, lipid oxidation of cell membranes pro-
motes the accumulation of reactive oxygen species
(ROS), which drives ferroptotic cell death. However, not
all kinds of fatty acids (FAs) can be oxidized in ferropto-
sis process, only polyunsaturated fatty acids (PUFAs) in
phospholipids are susceptible to oxidative damage [31].
ACSL and ALOX families both participated in the syn-
thesis of lipid precursor required for ferroptosis [19]. Be-
sides, LPCAT3 is also proven to make prominent
contributions through lipid remodeling in above process
[32]. Second, Fe2+ ion is responsible for receiving elec-
tron needed for lipid oxidation, hence, iron transport
can markedly regulate ferroptosis process. Fe3+ binds to
transferrin (TF) in the serum and can be recognized by
TFRC (transferrin receptors) in the cell membrane. On
one hand, the intracellular Fe3+ locating in endosome re-
duces to Fe2+ via the catalyzing of STEAP3 [33], and re-
leases it into the cytosol through SLC11A2 [34]. On the
other hand, ferritin, namely the iron-storage protein,
also can release Fe2+ through NCOA4-mediate ferritino-
phagy [35]. Third, GPX4 can serve as a reductase to
antagonize lipid oxidation, whose expression and activity
are controlled by GSH [20]. While the precursor of GSH
originates from cystine, which is transported by
SLC7A11 and SLC3A2 [22]. Therefore, GSH depletion
and GPX4 inactivation facilitate ferroptosis. The main
mechanism of ferroptosis was exhibited in Fig. 1C.

A novel ferroptosis-related risk signature is constructed
Comparing to normal samples, 60 of 256 FRGs (23.4%)
were differentially expressed in BC samples (Fig. 2A).
Among 22 DEGs, 27 FRGs were upregulated, and others
were downregulated. Through cox univariate analysis, 36
of 256 FRGs (14.1%) were found to be closely related to
BC prognosis (Fig. 2B). Fifteen FRGs favored patients’
prognosis. In contrast, other 21 FRGs were unfavorable
for patient survival. Then, we identified 11 intersection
genes between FR DEGs and prognostic FRGs, contain-
ing SQLE, CHAC1, ACSL1, ALOX15B, ANO6, TP63,
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Fig. 2 (See legend on next page.)
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JUN, SLC7A5, PLIN4, NGB and HBA1(Fig. 2C). Of note,
NGB (n = 333) and HBA1(n = 388) expressions in more
than one-third of BC samples presented zero FPKM
values. To preventing their interference with establishing
FR prognostic model, they were not filtered by LASSO
regression analysis.
Finally, a novel ferroptosis-related risk signature was con-

structed based on Lasso regression analysis (Supplementary
Fig. 1), as follows: FR risk score = 0.0583 × (relative expression
of SQLE) + (− 0.0583) × (relative expression of ALOX15B) +
0.373 × (relative expression of ANO6) + (− 0.0984) × (relative
expression of TP63) + (− 0.0458) × (relative expression of
JUN) + (− 0.0064) × (relative expression of PLIN4) +
0.0411 × (relative expression of ACSL1) + (0.0906) × (relative
expression of CHAC1).

Ferroptosis-related risk signature contributes to
prognostic assessment of breast cancer patients
Using FR risk signature, the risk score of each BC sam-
ple in TCGA cohort was calculated (Fig. 2D). 1015 BC
patients were stratified into high- (n = 484) and low-risk
groups (n = 531) according to the optimal cutoff value of
risk score (4.292). High risk level led a poor survival out-
come with a 5-year OSR of 78.1%, whereas that in low-
risk group was 89.6% (Fig. 2E). Moreover, there was a
significant survival advantage on PFS (progression-free
survival) in low-risk group compared to high-risk group
(Fig. 2F). Nevertheless, this trend was not observed in
DFS (disease-free survival) (Fig. 2G). Next, we evaluated
the predictive accuracy of the novel prognostic model.
An area under the ROC (AUC) of risk score was 0.702,
which suggested a better prognostic analytical perform-
ance of risk score than that of other traditional clinical
parameters (Fig. 2H). PCA and t-SNE analyses indicated
that patients with different risk groups possessed notably
different prognostic clustering (Fig. 2IJ). It is worth men-
tioning that there was a markedly difference in the dis-
tribution of BC molecular subtypes between high- and
low-risk groups (Fig. 2K). A higher proportion of pa-
tients with luminal A type was observed in low-risk
group (53%), while a higher proportion of patients with
basal type in high-risk group (24%) (Fig. 2K).
Going one step further, risk score and age were both

identified as independent prognostic factors of BC
(HRriskscore = 1.245, P<0.001; HRage = 1.824, P = 0.002)
(Fig. 3AB). Meanwhile, FR risk signature was proven to
have a good applicable range. It could discriminate the

prognostic differences of BC patients with most clinical
subgroups (Fig. 3C-K), except for patients with M1 stage
(Fig. 3L). DCA analyses revealed that introducing FR risk
into traditional prognostic model (model A or B) could
slightly increase clinical benefit when making clinical-
decision (Fig. 3Q). As for different molecular subtypes,
the FR prognostic model was able to effectively work in
luminal A and B types, but not in basal and HER2 types
(Fig. 3MP).
Finally, we established a nomogram to predict the

1,3,5-year OSR of BC patients (Fig. 3R). For example, a
70-year old (40 points) BC patient who was diagnosed as
clinical stage II (12.5 points) and tested with a risk score
of 8 (50 points) will get a total point of 102.5, whose 5-
year OSR is estimated less than 70%. Calibration plots
revealed that predicted OSRs were similar to the actual
survival rate (Fig. 3S-U). In a word, all these results reit-
erated that FR risk signature could contribute to prog-
nostic assessment of BC patients.

The prognostic value of risk signature is successfully
verified in multiple validation cohorts
In order to validate the prognostic value of FR risk sig-
nature, we have conducted the prognostic analyses in
four distinct datasets which contained a total of 2248
samples. In GSE20685 cohort, high FR risk offered an
unfavorable survival outcome (Fig. 4A). Nonetheless, FR
risk score did not have a preponderance on prognosis
prediction compared to TNM staging system (AUC =
0.581) (Fig. 4B). In GSE58812 and ICGC-KR cohorts, al-
though high FR risk both resulted in poor prognosis
(Fig. 4CE), their predictive accuracy were still not excel-
lent (AUC = 0.598 and 0.628) (Fig. 4DF).
METABRIC dataset served as a core validation cohort

for its sufficient sample information (n = 1764). As previ-
ously found in other cohorts, high FR risk was an ad-
verse prognostic factor (P < 0.001, HR = 1.30) (Fig. 4G).
Regarding prediction accuracy, FR risk signature pos-
sessed an AUC of 0.555, which was lower than that in
TCGA cohort (AUC = 0.702). Moreover, FR risk level
was also closely associated with molecular subtypes of
BC. The FR model could distinguish the prognostic dif-
ferences of patients with luminal A and HER2 types,
whereas failed to work in patients with luminal B, Basal
and claudin-low types (Fig. 4I-M). Basal type accounted
for a higher proportion in high-risk group than that in
low-risk group (Fig. 4N). Altogether, the prognostic

(See figure on previous page.)
Fig. 2 The construction of FR risk signature. (A) The heatmap of FR DEGs. (B) Identification of prognostic FR genes via cox univariate analysis. (C) The intersection
genes between FR DEGs and FR prognostic genes. (D) The risk plots of FR risk signature. (E) The overall survival difference between high- and low-FR risks. (F) The
progression-free survival difference. (G) The disease-free survival difference. (H) The ROC of FR risk signature. (I) The PCA of FR risk signature. (J) The t-SNE analysis of FR
risk signature. (K) The distributions of molecular subtypes in different risk groups. FR, ferroptosis-related; DEGs, differential expressed genes; PCA, principal component
analysis; t-SNE, t-distributed stochastic neighbor embedding; ROC, receiver operating characteristic curve; Lum A, luminal A; LumB, luminal B
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Fig. 3 (See legend on next page.)
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value of FR risk signature was successfully verified in
multiple validation cohorts, but its predicting perform-
ance decreased.

High ferroptosis-related risk is unfavorable for antitumor
immune response
Further, we evaluated the impact of FR risk level on
tumor immune microenvironment (TIM) based on the
CIBERSORT algorithm. The immune abundances of 22
leukocyte subtypes in each BC sample were exhibited in
Supplementary Fig. 2. The infiltration levels of B naive
cells (P<0.001), plasma cells (P<0.001), T cells CD8 (P<
0.001), T cells CD4 memory resting (P = 0.024), NK cells
activated (P<0.001), dendritic cells (dendritic cells) rest-
ing (P<0.001) and Mast cells resting (P<0.001) in high
risk group were significantly higher than that in low risk
group. On the contrary, the high risk level was closely
associated with the higher immune abundances of T
cells CD4 memory activated (P<0.001), NK cells resting
(P<0.001), Monocytes (P = 0.033), Macrophages M0 (P<
0.001), Macrophages M2 (P<0.001) and Neutrophils
(P = 0.039). In addition, the enrichments of CD8+ T
cells, DCs, NK cells and TILs (tumor-infiltrating lym-
phocytes) were all negatively correlated with FR risk
score (Fig. 5B-E). Conversely, the ratio of Th1/Th2 cells
and the enrichments of Tregs (T cells regulatory) were
positively correlated with FR risk score (Fig. 5FG). As ac-
knowledged, the changes in infiltration levels of immune
cells will lead a complex alteration of TIM. Referring to
some immune related studies [36–47], we found that the
changes in most immune cellular components were det-
rimental to antitumor process, whereas were conducive
to antigen-presenting process and adaptive antitumor
immune response (Table 2).
Meanwhile, FR risk level could exert an observable ef-

fect on the activities of immune related pathways. As
shown in Fig. 5H, cytolytic activity and Type-II IFN re-
sponse were both suppressed in high FR risk level. Re-
ciprocally, APC co-stimulation, MHC class I, and Type-I
IFN response were all facilitated in high FR risk level.
These findings reiterated that high FR risk level heralded
the weakened antitumor cellular immune but enhanced
antigen-presenting process.

Although there is no definitive agreement on bio-
markers for predicting ICIs efficacy, patients with PD-
1 overexpression commonly present a good thera-
peutic response to ICIs treatment [48]. Therefore, we
investigated the correlations between six crucial im-
mune checkpoints (ICs) and FR risk level. The results
revealed that FR risk score was weakly correlated with
the expressions of BTLA (R = -0.01) and HAVCR2
(R = 0.110), while it was not associated with other ICs
(Fig. 5I-N). Similarly, BTLA expression was signifi-
cantly lower in high-FR-risk group than that in low
risk group (Fig. 5H). An inverse situation was ob-
served in HAVCR2. Combined with the results above,
we speculated that FR level may not serve as a pre-
dictive biomarker of ICIs efficacy.

Some ferroptosis-related risk genes differentially express
in histological level
The histological expressions of FR risk genes were displayed
in Fig. 6. ALOXB15, TP63 and PLIN4 were obviously down-
regulated in tumor samples compared to normal ones. JUN
presented low-expression in both normal and tumor tissues,
whereas ANO6 presented high-expression. Reciprocally,
SQLE, ACSL1 and CHAC1 were significantly upregulated
in BC tissues compared to normal counterparts.

SQLE can promote the proliferation, migration and
invasion of breast cancer cells
Among five FR risk genes, SQLE, a key rate-limiting enzyme
in cholesterol biosynthesis, attracts our attention. In recent
years, cholesterol metabolism is proven to play an important
role in oncogenic process, ferroptosis, and tumor micro-
environment [49]. And its regulatory gene, SQLE, has re-
cently emerged as a promising approach against cancer [50].
Therefore, we further investigated its biofunctions in BC.
As previously found in public databases, SQLE was

significantly upregulated in BC cells (MCF7 and MDA-
MB-231) compared with normal breast cell line (MCF-
10A) (Fig. 7A). Next, si-SQLE and pc-SQLE were shown
to effectively alter the expression of SQLE in MCF7 and
MDA-MB-231 cell lines (Fig. 7 BC). MTT assays re-
vealed that SQLE overexpression could promote,
whereas blocking SQLE could inhibit the proliferation of
BC cells (Fig. 7DE). Moreover, SQLE was observed to

(See figure on previous page.)
Fig. 3 FR risk signature provides an important supplement to prognostic analysis of BC. (A) The result of cox univariate analysis in TCGA cohort.
(B) The result of cox multivariate analysis in TCGA cohort. (C-L) FR risk signature can distinguish the prognostic differences of BC patients with
most clinical subgroups. (M-P) The overall survival differences of patients with four molecular subtypes between high- and low-FR risk groups. (Q)
The DCA of FR risk signature. Different curves represent four kinds of BC prognostic models based on multivariate logistic regression analysis.
Model A represents the prognostic model composed of age and TNM stages. Model B represents the prognostic model composed age and
clinical stage. Complex A represents the improved model A that added FR risk score. Complex B represents the improved model B that added FR
risk score. (R) The nomogram composed of age, clinical stage, and FR risk score. (S-U) The calibration curves. FR, ferroptosis-related; BC, breast
cancer; DCA, decision curve analysis
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significantly facilitate the migrative ability of BC cells
through wound- healing assays (Fig. 7FGH). As for cell
invasion, SQLE overexpression has a stimulative effect
on MCF7 and MDA-MB-231 cells, conversely, silencing
SQLE has an inhibitory effect (Fig. 7IJK).

The comparison between four related research and our
study
Recently, there are four research have successively
probed into the roles of FRGs in prognosis, immune
microenvironment of BC. Therefore, we compared

Fig. 4 The prognostic value of FR risk signature is validated in multiple cohorts. (A) Survival difference in GSE20685 cohort. (B) ROC curve in GSE20685
cohort. (C) Survival difference in GSE58812 cohort. (D) ROC curve in GSE58812 cohort. (E) Survival difference in IGCG-KR cohort. (F) ROC curve in ICGC-
KR cohort. (G) Survival difference in METABRIC cohort. (H) ROC curve in METABRIC cohort. (I-M) The survival differences of patients with five molecular
subtypes in METABRIC cohort. (N) The heatmap for FR gene expressions and clinical features in METABRIC cohort. FR, ferroptosis-related; ROC, receiver
operating characteristic curve; * means P<0.05; ** means P<0.01
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these studies with ours, and some improvements in
study design and data processing could be noted
(Table 3). First, different FR gene sets. The establish-
ment of gene set is the foundation of constructing
prognostic model. Li H et al. [10] and Wang D et al.
[11] applied a completely same FR gene set (n = 60)
that may originate from a hepatocellular carcinoma
study [51]. Obviously, this gene set could not com-
prehensively embody the landscape of ferroptosis
regulation. FerrDb, the first database of ferroptosis
regulators and markers, efficiently compensates for

the deficiency. Zhu L et al. [13] and Wu Z et al. [12]
both employed FerrDb database to construct a FR
gene set containing 259 genes. Nonetheless, this gene
set not only contains the ferroptosis regulatory genes
derived from human species, but also those derived
from mice and drosophila species. In view of these,
we constructed a new and improved FR gene set in
reference to FerrDb database, MSigDB database and
previous research. Second, validation cohorts with
maximum sample size. As shown in Table 3, we used
four validation cohorts from three sources, including

Fig. 5 The effects of FR risk levels on TIM and the expressions of immune checkpoints. (A) The differences in infiltrating levels of 22 immune cells between
high- and low-risk groups. High-risk group is red and low-risk group is green. (B-G) The correlations between FR risk score and the enrichments of six core
immune cells. (H) The differences in activities of 11 immune signaling pathways between high- and low-risk groups. (I-N) The expressive correlations between
FR risk score and six immune checkpoints. (H) The expressive differences of six immune checkpoints between high- and low-risk groups. FR, ferroptosis-related;
TIM, tumor immune microenvironment; APC, antigen presentation cell; IFN, interferon; MHC, major histocompatibility complex; PD-1 (CD274), programmed cell
death 1; * means P<0.05; ** means P<0.01; *** means P<0.001
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METABRIC, ICGC and GEO databases, to test the
prognostic value of FR model. Undoubtedly, it ex-
panded the validation range to increase the credibility
of FR model. Third, support from experiment
in vitro. Zhu L et al. [13] have detected the changes
in mRNA expressions of 11 FR risk genes under Era-
stin, a ferroptosis inducer, exposure, but not further
verified their biofunctions in BC cells. In the present
study, we confirmed the oncogenic effects of SQLE in
BC progression, whereas other three studies did not
perform any experimental validation. Fourth, com-
pared with other existing research, we investigated
the links between FR risk level and molecular sub-
types of BC. Patients with high risk level possessed a
greater propensity for categorizing into basal type, a
treatment-resistant subtype (Fig. 2K). Meanwhile, the
FR model had a preponderance of prognosis analytical
ability in luminal A type over that in basal type (Fig.
3M-P). Besides, we adopted a more reasonable ap-
proach of data processing, such as grouping criterion,
standardization of expression matrix, and deletion of
abnormal samples (Table 3).
It is noteworthy that the predictive performance of our

model was not optimal. It has a slight disadvantage over
Zhu L’s and Wu Z’s models (0.702 vs 0.749/0.719). How-
ever, the gene number of our model is smaller than that
of Zhu L’s and Wu Z’s models (8 vs 11/15) (Supplemen-
tary Table 3). Taking this fact into account, the

calculation of FR risk score based on our model is sim-
pler than that based on their models. Collectively, our
findings provide some new insights into FR research.

Discussion
Breast cancer is most common tumor in women. Al-
though the therapeutic means has been obviously im-
proved, the number of cancer-related death is not yet
significantly decreased and there is still much room for
improving patients’ prognosis, especially for metastatic
cases. Therefore, it is still worthy of exploring the mo-
lecular mechanism of BC progression and establishing
reasonable prognostic assessment system. Ferroptosis is
an iron-dependent, lipid oxidation-driven pattern of cell
death, which offers a new landscape for treating cancer.
Unfortunately, its roles in BC are not yet fully clarified.
Hence, the original intention of this study was to prelim-
inarily reveal the effects of FRGs in prognosis, progres-
sion and immune microenvironment of BC.
It is defective to performing prognostic analysis of BC

patients solely depend on TNM staging system. In fact,
the eighth edition of the AJCC TNM system has already
integrated some crucial biomarkers with anatomic defi-
nitions, the added ones including estrogen receptor (ER),
progesterone receptor (PR) and HER2 [52]. When we
obtain the information of these biomarkers postopera-
tively and proceed pathologic staging, it will change the
initial staging of 40% of patients, which undoubtedly

Table 2 The effect of alteration of TIM on antitumor immunity

Immune cell Variation trend in high FR
risk

Basic immune function Final effect on anticancer
process

T cells CD8 Decreasing CD8+ T cells are the main effector cells responsible
for killing tumour cells and virally infected cells.

Unfavorable

T cells CD4
memory

Activated Type
Increased

Memory CD4 T cells play a crucial role in adaptive
immune response.

Beneficial

Resting Type
Decreasing

NK cells Activated Type Decreasing NK cells can provide host defense against tumour through
their potent cytolytic function.

Unfavorable

Resting Type Increased

Macrophages M2 Increased M2 cells can facilitate tumor cells proliferation and repair. Unfavorable

Dendritic cells Activated Type
No change

DCs specialize antigen-presenting process and contribute to
adaptive immune response, but may induce immune tolerance.

Uncertain

Resting Type Decreasing

Mast cells Activated Type No change Mast cells possess pro-tumor or anti-tumor bi-directional abilities
via secreting different factors.

Uncertain

Resting Type Decreasing

Plasma cells Decreasing Plasma cells commonly serve a positive role in antitumor
immunity.

Unfavorable

TILs Negative Correlation TILs play a specific killing effect on tumors. Unfavorable

Tregs Positive Correlation Tregs play an immune suppressive role through expressing
the transcription factor FoxP3.

Unfavorable

Th1/Th2 Positive Correlation Th1/Th2 balance toward Th1 is beneficial for antitumor immune
process.

Beneficial

TIM tumor immune microenvironment, NK cells natural killer cells, Tregs T cells regulatory, DCs Dendritic cells, TILs tumour-infiltrating lymphocytes
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increases the accuracy of prognostic assessment [52]. In
the current study, the novel FR risk signature we con-
structed was not only identified as an independent prog-
nostic factor of BC, but also could distinguish the
survival differences of patients in most clinical sub-
groups (Fig. 3). DCA analysis also indicated that the risk
signature could increase the net benefit when making
clinical decision (Fig. 3Q). Furthermore, the prognostic
value of FR risk signature was also validated in a TNBC
cohort (GSE58812). TNBC is a special subtype of BC
with highly aggressive and metastatic abilities, account-
ing for 15 to 20% of all BC patients. Due to its high het-
erogeneity, selecting the effective biomarkers for
predicting survival outcomes is not easy, meanwhile, sev-
eral promising biomarkers have not yet been validated
through clinical trials [53]. Hence, our FR risk signature
may provide some new insights to the issue. Besides, we
developed a nomogram so that we could straightfor-
wardly and conveniently predict the 1,3,5-year OSR of

BC patients, which has a certain clinical application.
Altogether, the novel FR risk signature is an important
supplement for the prognostic evaluation of BC.
Intriguingly, we found a closely relationships between

FR risk score and BC molecular subtypes. Different mo-
lecular subtypes herald distinct prognosis, more import-
antly, guide strikingly different therapeutic strategies.
For metastatic BC patients, median survival of luminal A
types is 2.2 years, whereas that of basal type is just 0.5
years [54]. Besides, Luminal subtype cases receiving
endocrine and chemotherapy monotherapy, or
combined-therapy commonly achieve a long overall sur-
vival time of 5 to 10 years [55]. However, basal-like cases
present resistance to multiple treatments, whose OS
time is commonly less than 5 years [55]. In the present
study, the proportion of basal types in high risk group
was much higher than that in low risk group (Fig. 2K
and Fig. 4N). It suggests that patients with high FR risk
score have a greater tendency to be accompanied with

Fig. 6 The histological expressions of FR risk genes. The top of the figure indicates the category of tissue specimen. The name of FRG, the antibody
type, patient ID, and staining degree are all shown at the bottom of each image. FR, ferroptosis-related; FRG, ferroptosis-related gene
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Fig. 7 (See legend on next page.)
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the worse-prognosis and treatment-resistant subtype,
such as basal type. Regrettably, FR prognostic model
could not effectively distinguish the survival differences
of basal type patients (Fig. 3O and Fig. 4L), which is a
nonnegligible defect.
Except for prognosis, FR risk level also has a tight link-

age with tumor immune microenvironment (TIM). As
observed above (Fig. 5 and Table 2), the reduced infil-
trating levels of CD8+ T and NK cells, which are the
main immune effector cells, appeared in high FR risk
group. One the other hand, an increment on the im-
mune activity of APC co-stimulation was presented in
high FR risk group (Fig. 5H). Considerable evidence in-
dicates that hyperactivation of APC process will lead to
immunologic tolerance [45]. It is conceivable that fer-
roptosis regulatory genes may mediate the formation of
immunosuppressive microenvironment and induce im-
mune escape. In fact, iron metabolism extensively partic-
ipates in the regulation of innate and adaptive immune
responses, and there is indeed a crosslink between fer-
roptosis and TIM [56]. For example, a microarray study
has reported that FTL, a gene responsible of encoding
the light subunit of the ferritin protein, may be

implicated in immune escape and defects of the DNA
repair process [57]. In brief, our findings provide some
initial clues for elucidating the mechanism of immune
tolerance and immune escape in BC. ICIs therapy brings
a breakthrough for cancer treatment, especially for
metastatic patients. However, only a small fraction of pa-
tients can benefit from the promising approach.
KEYNOTE-086 study revealed that only 21.4% of TNBC
patients present objective responses after receiving pem-
brolizumab treatment [58]. Unfortunately, through our
bioinformatic analyses, FR risk score was weakly associ-
ated with the expressions of immune checkpoints. These
findings indicated that FR risk may not act as a bio-
marker for predicting ICIs efficiency.
Recently, cholesterol metabolism is found to play an

important role in cancer regulation, and is regarded as a
new therapeutic approach [49]. Therefore, SQLE, a key
enzyme responsible for cholesterol synthesis, has be-
come a research hotspot gradually. SQLE exerts a com-
plex function in cancer occurrence and development,
but commonly serves as a proto-oncogene. In squamous
cell lung carcinoma (SCLC), the expression of SQLE was
significantly higher in tumor tissues than that in

(See figure on previous page.)
Fig. 7 SQLE exerts pro-oncogenic abilities in BC cells. (A) The mRNA expression levels of SQLE in different cells. (B-C) The tests of transfection
efficiency in MCF-7 and MDA-MB-231 BC cells. (D-E) The proliferative abilities of MCF-7 and MDA-MB-231 BC cells were assessed through MTT
assays. (F-G) The quantitative results of wound-healing assays in 2 BC cells. (H) The images of wound-healing assays. (I-J) The quantitative results
of transwell assays in 2 BC cells. (H) The images of transwell assays

Table 3 The comparison between four related research and our study

Item/Study Li H et al Wang D et al Zhu L et al Wu Z et al Ours

PMID 33,672,990 34,059,009 34,222,241 33,947,836 NA

Publishing date 2021.02 2021.06 2021.07 2021.05 NA

FR gene set 60 60 259 259 256

Species of
FRGs

Human Human Human/Mice
/Drosophila

Human/
Mice
/Drosophila

Human

Risk signature 8 9 11 15 8

Grouping
criterion

Median Median Median Median Optimal cutoff value

ROC
(1Y/2Y/3Y)

None 0.618/0.653/0.663 0.7/0.749/0.72 0.719 0.702

Validation
cohorts

METABRIC
(n = 1904)

GSE42568
ICGC
(n = 154)

GSE20685
GSE20711
GSE42568
(n = 519)

None METABRIC
GSE20685
GSE58812
ICGC
(n = 2248)

Experiments
in vitro

None None Alterations of FRGs expressions under
Erastin inducing

None SQLE biofunctions

Data screening None Exclude samples follow up
with 0 day

None None Exclude samples follow up less
than 30 days

FR ferroptosis-related, FRGs ferroptosis-related genes, NA not applicable, 1Y/2Y/3Y time-dependent ROC, AUC at 1-year/2-year/3-year
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pericarcinoma tissues, and overexpression of SQLE was
closely related to poor clinical stages and lymphatic me-
tastasis [59]. In esophageal squamous cell carcinoma
(ESCC), SQLE, as a downstream target gene of miR-
133b, can induce epithelial-to-mesenchymal transition
(EMT) to promoting tumor metastasis [60]. Moreover,
prostate cancer patients with high SQLE expression are
8.3 times more likely to have lethal outcomes than that
with low SQLE expression [61]. In pancreatic cancer,
SQLE plays as a pivotal components of FR prognostic
model and is proven to have cancer-promoting functions
[62, 63]. In the present study, we confirmed the overex-
pression of SQLE in mRNA and histological levels, and
demonstrated that SQLE was capable of promoting the
proliferative, migrative and invasive abilities of BC cells.
These findings clarified the biofunctions of SQLE in BC
for the first time, and indicated that SQLE may involve
in BC progression and hold promise as a potential thera-
peutic target.
Naturally, this study also has certain limitations.

First, the prognostic value of FR risk signature needs
further validation in a real clinical cohort. Second, the
expression of SQLE is not confirmed through clinical
tissues, and its cancer-promoting effects are yet to be
demonstrated in vivo. Third, except for SQLE, we
have not yet determined the functions of other hub
genes in FR risk signature (ALOX15B, ANO6, TP63,
JUN, PLIN4, ACSL1 and CHAC1). Therefore, further
research is still needed to dissect the roles of ferrop-
tosis regulators in BC.
In conclusions, we constructed a novel FR risk signa-

ture. The risk signature was identified as an independent
prognostic factor of BC and could increase clinical net
benefit. As for immune effect, high FR risk indicated the
decreased infiltration levels of NK and CD8+ T cells,
whereas promotive that of APCs and their functions.
Meanwhile, FR risk score may not serve as a biomarker
for predicting ICIs efficacy. Furthermore, we investigated
the biofunctions of SQLE in BC cells, which revealed
that SQLE possessed the cancer-promoting abilities. In a
word, our findings light on future directions for using
ferroptosis against breast cancer.
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