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Abstract

Objective: Study the impact of local policies on near-future hospitalization and mortality rates.

Materials and Methods: We introduce a novel risk-stratified SIR-HCD model that introduces 

new variables to model the dynamics of low-contact (e.g., work from home) and high-contact 

(e.g., work on-site) subpopulations while sharing parameters to control their respective R0(t) 
over time. We test our model on data of daily reported hospitalizations and cumulative mortality 

of COVID-19 in Harris County, Texas, from May 1, 2020, until October 4, 2020, collected 

from multiple sources (USA FACTS, U.S. Bureau of Labor Statistics, Southeast Texas Regional 

Advisory Council COVID-19 report, TMC daily news, and Johns Hopkins University county-level 

mortality reporting).

Results: We evaluated our model’s forecasting accuracy in Harris County, TX (the most 

populated county in the Greater Houston area) during Phase-I and Phase-II reopening. Not only 

does our model outperform other competing models, but it also supports counterfactual analysis 
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to simulate the impact of future policies in a local setting, which is unique among existing 

approaches.

Discussion: Mortality and hospitalization rates are significantly impacted by local quarantine 

and reopening policies. Existing models do not directly account for the effect of these policies on 

infection, hospitalization, and death rates in an explicit and explainable manner. Our work is an 

attempt to improve prediction of these trends by incorporating this information into the model, 

thus supporting decision-making.

Conclusion: Our work is a timely effort to attempt to model the dynamics of pandemics under 

the influence of local policies.
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1. Introduction

COVID-19 has taken the international community by surprise [1]. At the time of writing 

this paper, the COVID-19 pandemic has reached almost 100 million confirmed cases and 

surpassed two million deaths worldwide [2]. COVID-19 has had a dramatic impact on 

health care systems in even the most developed countries [3]. Without effective vaccines 

and treatments in sight, the only effective actions include containment, mitigation, and 

suppression [4].

The infection, hospitalization, and mortality trends of COVID-19 across different countries 

vary considerably and are affected mainly by policy-making and resource mobilization 

[5]. A recent study, which spatiotemporally analyzed COVID-19 related tweets, found that 

the evolution of social distancing facets significantly affects potential pandemic hotpots 

[6]. Predicting local trends of the epidemic is critical for the timely allocation of medical 

resources and for evaluating policy changes to curtail economic impact [7]. In the United 

States, policies vary by state and city, and therefore, robust local models are essential for 

learning fine-grained changes that meet the needs of local communities and policymakers.

Under appropriate intervention, early studies observed a downward trend on COVID-19 

epidemic curves near the end of the eight-week post-outbreak period (following classical 

epidemiology models) [8]. However, traditional models do not account for the impact 

of local policies, such as a multi-phase reopening. Due to varying restrictions, the local 

hospitalization and mortality trends in Texas have experienced multiple upward and 

downward trends. The large variations between different counties in Texas during the 

months from May to October motivated the need to study the underlying impact of policy on 

local mortality and hospitalization trends. In this paper, we present the design of our regional 

model and demonstrate its use by applying them to the Harris County, TX area marking their 

difference from global trend estimation models.

According to the 2019 census, Harris County is the most populous county in Texas and the 

third most populous county in the United States. The hospitalization and mortality rate in 

Harris County is large enough to support model optimization during the training process, 
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and avoid excessive overfitting issues. In order to evaluate the model ability of fitting the 

trends followed by changing policies, we assembled COVID-19 epidemic data in Harris 

County from the beginning of the reopening phase (May 1, 2020) to October 4, 2020.

Owing to the lack of accepted estimations of infection rates in asymptomatic individuals 

(using, e.g., random serological testing [9]), we focused on the more reliable mortality and 

hospitalization rates. We developed a forecasting model using local fine-grained hospital­

level data to track the changes in hospitalization and mortality rates owing to reopening 

orders in the greater Houston area encompassing nine counties in the state of Texas, 

USA. The modeled area consists of 4,600 km2, incorporating a population of 4,713,325 

people (by the 2019 census) and includes over 100 hospitals with a total bed capacity 

of 23,940 [10,11]. Our methodological contribution is by incorporating the impact of 

phased reopening into the model. We achieve it by splitting the targeted population into 

low-contact and high-contact groups (determined by job category and the subpopulations 

from that job category that return to work at different phases of the reopening, e.g. health­

care provider or public transportation workers). The mechanism adjusts the proportion of 

infectious subpopulations (determined by their job category) to quantitatively represent 

the policy impact on the epidemiological dynamical system (refer to Fig. 1 for a high­

level overview). We demonstrate our new approach using a policy-aware risk-Stratified 

Susceptible-Infectious-Recovered Hospitalization-Critical-Dead (SSIR-HCD) model, which 

compares favorably to existing models.

2. Background and related work

There are many predictive models for COVID-19 trend prediction. The Center for Disease 

Control (CDC) already hosts 37 different trend predictors [14] to forecast total death, and 13 

different forecasting models for total hospitalization [15]. They belong to four l categories:

• Data-driven models (with no modeling of dynamic population compartments s), 

which includes regression-based parametric and non-parametric models (Auto­

Regressive Integrated Moving Average or ARIMA, Support Vector Regression, 

Random Forest), Double Exponential Model built by Sampaio [16], neural 

network (deep learning) based trend prediction (e.g., GT-DeepCOVID [17]), 

VDM-based machine learning model [18], among others.

• Epidemiology based dynamic models based on grouping populations into a 

discrete set of compartments (i.e., states), and defining ordinary differential 

equations (ODE) rate equations describing the movement of people between 

compartments: SEIR (Susceptible, Exposed, Infected, Recovered) models and 

their myriad variants are examples in this category.

• Individual-level network-based models: fine-grain modeling of a population 

through agent simulation, including NetLogo by Marathe et al. [19] and 

NotreDame-FRED [20].

• Ensemble and hybrid models: including the Imperial College London short-term 

ensemble forecaster [14] and the IHME model [21] that combines a mechanistic 

disease transmission model and a curve-fitting approach.
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Among existing models, the ODE compartment-based models occupy a middle ground 

between network models at the individual-level and count-driven statistical analyses that 

are disease-dynamics-agnostic. ODE compartment-based models will thus be our main 

focus in this paper. Compartment models, which originated in the early 20th century 

[22], still represent the mainstream in epidemiological studies of infectious disease. They 

make a critical mathematical simplification by decomposing the entire population into 

compartments (i.e., states), e.g., susceptible, infectious, recovered, and use ODEs to model 

the transitions between the compartments (Table 1). These compartment models make 

assumptions that the observation counts in the various compartments naturally reflect the 

reproduction number R0 that changes over time. The recent COVID-19 pandemic, however, 

has introduced the need to incorporate knowledge about lockdown policy interventions (i.e., 

how long the population will remain at home), which existing compartment models do 

not take into account. We observe different patterns of hospitalization and mortality even 

within a single metropolitan area such as Harris County in the greater Houston area, TX, 

which poses challenges to traditional epidemiological models. While it is expected that 

local policies (shutdown and reopening) introduce perturbations to the disease dynamics, 

it is not clear how to quantify these impacts and provide counterfactual reasoning to 

support future policy decisions. One model that attempts to address this gap is using 

reduced-form econometric methods to model anti-contagion policies [23] but does not 

consider stratifying the population into risk groups based on potential exposure. Cartocci’s 

work [24] proposes a prediction model compartalized by sex and age groups using a time­

varying susceptible-infected-recovered-deceased (SIRD) model, but does not account for 

social reflections towards pandemic evolution and spread. Another study by Rubin et al. [25] 

developed a model using replication factors for infection and social distancing, humidity 

levels and population density in counties across the United States. However, it does not 

model disease dynamics, focusing instead on building a hierarchical linear mixed-effects 

model with random intercepts for each county to demonstrate that distancing has the most 

significant association with a reduction in SARS-CoV-2 transmission. The article written by 

Nikolopoulos et al. [26] reports on the county-level performance of 52 methods involving 

time series, machine learning, deep learning, non-parametric (e.g., nearest neighbors), one 

epidemiological model – SIR model. It does consider lockdowns but only from the point 

of view of projecting various things like groceries, and none of these 52 approaches model 

the spread of COVID-19 disease because of lockdown policies. Some prior works utilize 

deep learning approaches to forecast the trend. Aljaaf [27] introduced a feed forward 

neural network to forecast COVID-19 confirmed cases in Iraq, but the model optimization 

process does not involve lockdown policy interventions and stratified population to adjust 

parameters.

Our SSIR-HCD is a unique effort to close the modeling gap by using appropriate data to 

enrich the established compartment models. It stratifies the population into high-contact 

and low-contact groups reflecting the causal relationship between social distancing and 

disease transmission. Our approach is different from another SEIR-based model, YYG, that 

works with a discretized version of the standard continuous ODE SEIR model and focus on 

predicting deaths with a simple data-driven mechanism to account for reproduction number 
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R0 that reflect reopening policies [28]. Unlike our model, they do not stratify population 

groups in the SEIR model to account for differences in exposure risk.

3. Method

3.1. Data and materials

We collected experimental datasets of the daily reported hospitalization and cumulative 

morality of COVID-19 that occurred in Harris, Texas, from May 1, 2020 (the start date of 

Phase 1 reopening in Houston, TX) until October 4, 2020. Population data was retrieved 

from by USA FACTS [29], industry employment data was gathered from the U.S. Bureau 

of Labor Statistics BUREAU OF LABOR STATISTICS [30], and the hospitalization data 

sources originate from Southeast Texas Regional Advisory Council (SETRAC) COVID-19 

report [31]. We retrieved used the length of hospitalization and critical cases from the TMC 

daily news [32] (length of hospitalization and critical cases) to set the initial length of 

hospitalization for our model and. We also downloaded used mortality data from the Center 

for Systems Science and Engineering (CSSE) at Johns Hopkins University county-level 

report [33]). Note that New York Times data combine confirmed and suspected cases in their 

reporting of mortality. To be consistent, we used SETRAC hospitalization reporting that 

contains both confirmed and suspected cases. In this study, we focused on Harris County 

data, one of the nine counties in Houston, TX, with the largest population.

3.2. SIR-HCD overview

We propose a forecast model based on SIR-HCD with a novel variant on compartments 

to address differences in local policy. In SIR-HCD, the entire population is divided into 

six sub-groups: susceptible population S, exposed population E, infectious population 

I, recovered population R, hospitalized population H, critical population C, and dead 

population D. The transitions between sub-groups are governed by nonlinear ordinary 

differential equations. Please refer to Table 2 for our nomenclature. We use the SIR-HCD to 

model the state transitions. The model is a simplification of SEIR-HCD.

We decided to drop exposed state (E), which cannot be reliably modeled in COVID-19 

because the CDC guideline for exposure, determined as staying within less than six feet 

for more than fifteen minutes from a person with known or suspected COVID-19 [13], is 

too short a time period to be modeled adequately. Thus, a simpler SIR-HCD model, which 

assumes the possibility of direct transitions between the susceptible state and the infectious 

state, is more suitable for COVID-19.

In the SIR-HCD model, some susceptible people may enter the infectious state after the 

incubation period. Infectious people may either get hospitalized or recover after a certain 

period of time. A proportion of the hospitalized people might be admitted to the Intensive 

Care Unit (ICU), while the rest of them will recover in the hospital. Similarly, among the 

critical cases (i.e., ICU patients), some people might die, and others will recover. Thus, the 

SIR-HCD model follows a series of nonlinear ODEs to model the state transitions:
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dS(t)
dt = − R0

T inc
I(t)S(t) (1)

dI(t)
dt = R0

T inc
I(t)S(t) − I(t)

T inc
(2)

dH(t)
dt = 1 − ra I(t)

T inc
+ 1 − rf C(t)

Tcrit
− H(t)

Tℎosp
(3)

dC(t)
dt = rcH(t)

Tℎosp
− C(t)

Tcrit
(4)

dR(t)
dt = raI(t)

T inc
+ 1 − rc H(t)

Tℎosp
, and (5)

dD(t)
dt = rfC(t)

Tcrit
(6)

Note that R0(t), which is shorted as R0 and used interchangeably in our paper, denotes 

a dynamically changing reproduction number (the changes are due to dynamic quarantine 

policies in Houston). The symbol Tinc denotes the average incubation period of COVID-19. 

In the equations that model H, C, R, D, the term Thosp, represents the average time that a 

patient is in a hospital before either recovering or becoming critical, and Tcrit denotes the 

average time that a patient is in a critical state before either recovering or dying. In addition, 

ra refers to the asymptomatic rate in infected populations I, rc refers to the critical rate in 

hospitalized population H, and rf refers to the deceased rate in critical population C. This 

model is more robust than SIR, as the introduction of more reliable observations of H, C, 

D provides extra stabilization to the dynamic system. Fig. 2 illustrates the SIR-HCD model 

with its primary states and transitions implied by the ODE function.

With reopening policies in place, there are more interactions between people and so the 

likelihood of spread increases. Our expectation is either that R0 remains constant (because 

people maintain safe distances and follow CDC protocols), or (more likely) that it increases/

decreases periodically with spotty compliance with pandemic protocols. To make the 

computation tractable, we used a step function to fix R0 at different time stages following 

the policy status. As expected, the value of R0(t) varied over time following changes in 

the strictness of the quarantine protocols in Texas, which may impacted social distancing 

behaviors. Specifically, R0(t) initially reached a higher value following the start date of 

Reopening Phase II (May 18, 2020) when the Texas government eased the quarantine level 

to restore the economy, and then dropped to a lower point when a face-covering order was 

issued on July 2, 2020 [34]. Based on the observation in early August that the prevalence 

curve went through a plateau and then climbed again, which slightly slowed down the 
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hospitalization downward curve, here we set August 1, 2020, as the turning point of the 

prevalence increases.

We set the starting point t = 0 as the reopening date, May 1, 2020. The initial states H(t 
= 0) and D(t = 0) are the numbers of reported hospitalized cases and cumulative mortality 

in Harris County on that date. We decided not to rely on confirmed cases, assuming that 

the actual number for the infected population is larger than the reported number (such an 

effect has been reported in California [35] and New York [36]). Since a fraction of the actual 

infected patients were hospitalized on the first day, the initial infectious population I(t = 

0) is therefore estimated to be m times the initially hospitalized number H(t = 0), where 

m is a positive constant coefficient. Some studies suggested that true positive infectious 

cases should be 50–90 times more than the reported positives [37,38]. In the Harris County 

projection, we set m to be 60, assuming that H(t = 0) is approximately equal to “known 

positives” on the first day. To estimate the recovery rate, we divided the case mortality 

rate in Harris County (the number of confirmed deaths on the current day) by the number 

of confirmed cases 14 days before that, as reported by Johns Hopkins University. The 

average mortality rate during the first month of training data was 2%. Therefore, we have an 

estimated recovery rate of 98%. In this case, the initially recovered individuals R(t = 0) = 

0.98·H(t = −14) = 0.98m∙H(t = −14), where t = −14 refers to 14 days earlier than the starting 

date (i.e., April 17, 2020). The number of critical individuals C(t = 0) is set to be 50% of 

hospitalized individuals H(t = 0) based on the average proportion of ICU usages among 

COVID-19 hospitalization in Texas [13,31]. The initial number of the susceptible population 

S(t = 0) is

S(t = 0) = N − I(t = 0) − R(t = 0) − H(t = 0) − C(t = 0) − D(t = 0) (7)

where N is the total population in the county.

Following a previous SIR-HCD optimization method [39], we used the limited memory 

Broyden–Fletcher–Goldfarb–Shanno algorithm (L-BFGS-B) [40] to optimize the ODE 

system. According to previous COVID-19 studies [41], the constant parameter Tinc is set 

to 11.5 days. The optimal values of parameters Thosp, Tcrit, ra, rc, and rf in the model 

were obtained by minimizing the weighted average mean squared log error (MSLE) loss 

function L(MSLE). To make the prediction more focused on the recent trajectory, we used 

the squared log error at each time point with a weight parameter satisfying the condition Wt 

> Wt−1. Finally, we used a time inverse function Wt = 1/(tmax − t + 1) in our model, where 

tmax is the maximum time.

L(MSLE) = 1
T ∑

t = 0

T
W t (logH(t) + 1) − logH’(t) + 1 2

+ 1
T ∑

t = 0

T
W t (logD(t) + 1) − logD’(t) + 1 2

(8)
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3.3. SSIR-HCD model to explicitly account for local policy’s impact

In this section, we introduce the unique aspect of our model that differentiates it 

from existing ones. Our intuition here is that people get infected either through family 

transmission or through social (including job) activities. In the transition from a strict 

stay-at-home to reopening, the population is subject to changes in their social activities, 

which impact their probability of infection as well as their risk of transmission to their 

family members. Therefore, we can divide the total population in Harris County into two 

groups; a low-contact group, which includes people in industries that were still closed (e.g., 

working from home subpopulation and their families, including those who are unemployed 

but not homeless), and a high-contact group includes people in industries that were reopened 

due to economic restart (e.g., working on-site subpopulation and their families). Intuitively, 

the subpopulation of people who work from home is those who continue to stay at home and 

have limited chances of contacting the working subpopulation.

The two groups share the same fitted parameters Thosp, Tcrit, rm, rc, rf, as well as the same 

constant incubation period Tinc, but they are associated with different R0. To differentiate 

two subpopulations, we set parameter bounds so that R0(t) for the low-contact group is 

proportionally lower than that of the high-contact group over time. The unique coupling 

strategy makes it possible to directly reflect the impact of policy on SSIR-HCD.

According to reopening announcements released on the Texas government website [42] and 

the Houston employment rates by industry (reported by the Greater Houston Partnership 

Research [43]), necessary industries such as transportation, utilities, government, and a 

subset of the health services kept running before and during the reopening of the economy, 

accounting for 32.3% of the population in Houston. After releasing Reopening Phase I 

policies (May 1, 2020), 100% of the essential industries reopened, in addition to 15% 

health services, 25% professional and business service, and 25% leisure and hospitality, 

constituting a working on-site (high-contact) subpopulation proportion of 39.62% after 

subtracting the unemployment rate of 0.4% [44]. The proportion of the high-contact 

population after Reopening Phase II (May 18, 2020) was a combination of 100% of 

the essential industries, 100% health services, 50% of professional and business service, 

and 50% of leisure and hospitality industries. Hence, the high-contact proportion among 

Reopening Phase II was 58.3% after subtracting the unemployment rate. Our model 

accounts for the change of low-contact and high-contact subpopulations between Reopening 

Phase I and Reopening Phase II, therefore directly modeling the policy’s impact on 

epidemiological data over time.

3.4. Experimental setting

Our training process uses MSLE to minimize the errors in curve-fitting. Additionally, we 

evaluated the performance using mean absolute error (MAE), which was not used for the 

curve-fitting process.

Fig. 3 shows the reported hospitalization and cumulative mortality from March 19, 2020, 

to October 4, 2020. The Texas government started phased-in reopening of the state on 

May 1, 2020 (the stay-at-home order was issued on March 31, 2020), then continued to 
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expand reopening industries on May 18, 2020. The reopening strategies continued in steps 

until, faced with a serious COVID-19 transmissibility rebound, the government issued the 

face-covering order on July 2, 2020, to urge all residents to protect themselves from possible 

infections. Following these reopening phases in Texas, the daily hospitalization curve in 

Harris County was divided into three phases, where Reopening Phase II involved two 

subphases:

1. Before Reopening Phase: March 19 - May 1, 2020

2. Reopening Phase I: May 1 - May 17, 2020

3. Reopening Phase II: May 18 - October 4, 2020

a. Reopening Phase II(a): May 18 - July 1, 2020

b. Reopening Phase II(b): July 2 - October 4, 2020

The hospitalization curve represents a delayed epidemic effect since the publication of the 

strict stay-at-home order on March 30, 2020. After reopening policies were issued in Texas 

(May 1, 2020), it influenced the disease dynamics during Reopening Phase I and Reopening 

Phase II.

Our local hospitalization and mortality modeling aim to fit the most recent phases (i.e., 

Reopening Phase I and Reopening Phase II) starting from May 1, 2020, to October 4, 2020. 

We validated the 7-day accuracy with data between September 13 and September 19, 14-day 

accuracy with data between September 13 and September 26, and 21-day accuracy between 

September 13 and October 4. For comparison, our baselines were time-series regression 

models (exponential smoothing, autoregression, and ARIMA), Double Exponential Model, 

YYG model [28], and vanilla SIR-HCD. Note that the baseline comparison models predict 

hospitalization and mortality time series separately, while ours make joint predictions. We 

also included our own Neural Network SIR-HCD model, which is equally flexible as 

SSIR-HCD. Interested readers can find the details in the Appendix.

Our experiments were conducted using Python 3.8, with parallel GPUs running on CUDA 

version 11.0. The associated Jupyter notebook code is available on Github (see the link in 

Abstract).

4. Results

Trained with Harris County cumulative hospitalization and mortality data in Reopening 

Phase I and Reopening Phase II, our SSIR-HCD model fits the trends in the training data 

well: Reopening Phase I (MAE = 98.40 for hospitalization, MAE = 13.10 for mortality), 

Reopening Phase II(a) (MAE = 72.24 for hospitalization, MAE = 12.70 for mortality), and 

Reopening Phase II(b) (MAE = 55.43 for hospitalization, MAE = 69.47 for mortality). As 

Fig. 4 shows, the local hospitalization and mortality training curves are very close to the 

reported data, and the test curves also follow the data trends closely, which indicates our 

model is not overfitting to the training period.

Table 3(a), (b), (c) summarizes the prediction accuracies of the baseline models and 

the risk-stratified SIR-HCD model (SSIR-HCD) in three different timeframes. Since the 
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Double Exponential Model and YYG model do not make hospitalization projections, their 

comparison results are only based on mortality. As expected, 7-day evaluations performed 

better than 21-day evaluations in most cases. While the performance of the baseline 

models decreases for longer evaluation periods, the performance of our proposed model 

still obtained high accuracy. For the hospitalization prediction in all evaluation timeframes, 

the proposed SSIR-HCD model with R0(t) step function had significantly higher accuracies 

(7-day MAE = 22.89, 14-day MAE = 36.35, 21-day MAE = 54.14) compared to the baseline 

time-series regressions involving Simple Exponential Smoothing (7-day MAE = 33.57, 

14-day MAE = 44.99, 21-day MAE = 79.30), Autoregression (7-day MAE = 32.31, 14-day 

MAE = 55.74, 21-day MAE = 86.53), and ARIMA (7-day MAE = 48.94, 14-day MAE 

= 89.50, 21-day MAE = 124.15). For mortality prediction, we found that the time-series 

regression models generally predict well, and our proposed model had comparable accuracy. 

This high accuracy in mortality prediction of the general time-series regression models is 

mainly because the mortality rates were more stable than the hospitalization curve over 

time. For SIR-HCD model family comparison, the hospitalization and mortality prediction 

in our proposed SSIR-HCD model with R0(t) step function performs slightly better than 

the vanilla SIR-HCD model, and SSIR-HCD model with R0(t) exponential function using 

hill decay operation to smooth between different R0(t) values. Another advantage of the 

SSIR-HCD model with R0(t) step function over the vanilla SIR-HCD model and SSIR-HCD 

model with R0(t) exponential function resides in the ability to conduct counterfactual 

analysis and parameter simplicity, respectively. The YYG model had the lowest error in 

mortality prediction out of the SEIR models family as it utilized daily mortality data as the 

training set, which may lead to a good prediction when daily data do not vary substantially. 

Moreover, the performances with the auto-regressive model and the SSIR-HCD model with 

exponential function are very close to our proposed model. The family auto-regressive 

model has the capability to achieve good fitting results accounting for historical patterns of 

the curve, and our prediction period has a relatively stable trending, which is discernible for 

auto-regressive modeling. The only difference with the SSIR-HCD model with exponential 

function is the way to control transmission rates. The hill-decay exponential function may 

have more significant performance with pandemic curves in state or country level supported 

by the more smoothing trend.

Table 4 displays the fitted values of five training parameters in SSIR-HCD equations 

for the low-contact group and the high-contact group. These fitted parameter values 

correspond well to the values obtained in previous studies of COVID-19 [45,46,13]. The 

ratio of hospitalizations turning into critical is close to the average ICU proportion among 

hospitalizations in Harris County, which was 30% in our initial state settings [31,13]. The 

constant parameter Tinc is set at 11.5 in both groups based on the values suggested by 

the World Health Organization (WHO) [47] and the CDC [13]. As a sanity check, the 

R0 values in the low-contact group are indeed lower than those values in the high-contact 

group, indicating a lower expected number of cases directly infected by individuals in the 

low-contact group.

Fig. 5 displays the SSIR-HCD model’s counterfactual analysis results (of our model) on 

what would have happened in the absence of reopening policies after 236 days on May 

1, 2020. In the x-axis, day 0 refers to May 1, 2020, day 17 refers to May 18, 2020, and 
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day 135 refers to September 13, 2020. We restored the proportion of low-contact people 

and high-contact people to the no-reopening status (corresponding to 31.90% high-contact 

proportion of the population) while keeping all the trained parameters the same. Upon 

excluding all changes resulting from the reopening policies, it is noted that both modeled 

hospitalization and mortality curves become dramatically flat. The hospitalization curve 

with intervention reaches its peak on day 70, reducing nearly 800 existing cases. This 

demonstrates that quarantine policies are effective in controlling the spread of coronavirus 

as well as reducing the number of hospitalizations and mortality rates. Similarly, Fig. 

6 displays the counterfactual estimations on what would have happened if the Texas 

government did not continue to reduce limitations in Reopening Phase II. In Fig. 6, 

the presumed reopening policies in Reopening Phase I represent moderate control to the 

hospitalization and mortality curves, reducing nearly 500 existing cases. Since a long stay­

at-home order is not economically practical, our counterfactual analysis demonstrates that 

moderate reopening policies, keeping essential quarantine measures (such as mask order 

adoption), and opening several industries to lower capacity, may offer a reasonable middle 

ground between the strict quarantine and fully open economy. The chart of dynamic R0 

values show how dynamic R0 differentiates the low-contact group and high-contact group 

such that modeled hospitalization and mortality curves would be flattened by increasing the 

proportion of the low-contact population. The model does not use one single reproduction 

number value to measure the integral transmission rate as the two subgroups have different 

levels of risks for getting infected.

5. Discussion

Our SSIR-HCD model forecasts fine-grained COVID-19 hospitalization and mortality by 

accounting for the impact of local policies. One challenge is that the SSIR-HCD model 

is very sensitive to the initial values of S, I, R, H, C and D as the number of infectious 

agents is non-zero at the initial time point. We have managed to avoid overfitting the local 

time-series curve by deploying values based on the accumulated knowledge of these initial 

variables. After variable adjustment, the predictive results obtained a low error rate, while 

also obtaining parameters that are close to real-world values, such as the hospitalization 

period Thosp and critical period Tcrit that are close to the suggested value in the COVID-19 

Scenarios outcome summary [45].

In publicly reported data, the cumulative mortality data in Reopening Phase II does 

not perfectly follow the hospitalization trends. Our expectation was that it would lag 

hospitalization cases by approximately 14 days. The actual mortality rate fluctuated in 

the middle of Reopening Phase II when the number of hospitalization cases started to 

increase rapidly. Nonetheless, our SSIR-HCD model still approximates the hospitalization 

and mortality trends better than competing models. Thus, our model is advantageous over 

baseline regressions. It can fit epidemiological data with complicated shapes, such as Harris 

hospitalization data, based on the proportion of low-contact and high-contact groups and can 

consider several epidemiological states together into one model that can make predictions 

for one or more sub-populations simultaneously. In addition to forecasting, our model offers 

another unique functionality to support counterfactual analysis, which can be useful in 

supporting critical decision-making.
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The SSIR-HCD model suffers from three major limitations. In particular, our SSIR-HCD 

model inherits the limitation of the base SIR-HCD model in assuming idealized R0 time­

variable function that follows the strength of issued quarantine protocols. This assumption 

does not hold in future scenarios when economic reopening might change the scope. One 

possible strategy is to introduce an adjustable R0 control to the model, such as our extended 

model called Neural Network SIR-HCD (See Appendix), which learns the quarantine 

strength over time to determine non-monotonic changes in R0. Additionally, our model 

interprets the recovered population as those who can no longer infect other individuals so 

that the number of susceptible individuals keeps decreasing over time. We did not consider 

the possibility that some COVID-19 survivors may be reinfected after they have recovered, 

which could influence the modeling of the coronavirus transmission rate. Several of these 

aspects involve controversial discussions in the scientific community, but a powerful model 

should be able to accommodate different assumptions.

A second limitation is that our model is not taking into consideration certain constraints that 

are governed from limited resources. For example, the number of daily hospitalizations and 

critical patients cannot increase without limit due to total bed capacity in hospitals. In fact, 

Texas Medical Center reported they reached 100% of ICU basis capacity on June 25, 2020 

[48]. Our model did not consider hospitalization and ICU delays when some hospitals are 

fully loaded, which needs more model parameters.

Finally, another limitation of our model is the lack of full consideration for population 

density, demographics composition, daily in-bound/out-bound traffic flows, and medical 

resource disparities. For example, many patients in Harris County might come from other 

counties, but they are treated in the Texas Medical Center (in Harris County), so the total 

hospitalization and mortality might not completely match the local infection rates. Joint 

consideration of multiple counties and decomposition of hospitalized patients in terms of 

their residency would produce more accurate predictions. Moreover, our future improvement 

may also account for incorporating demographics compositions into the epidemiological 

ODE sytem in terms of patient sex and age, with stratified parameters indicating different 

transition rates between clinical states.

6. Conclusion

We have presented a proof-of-concept of a policy-aware compartmental dynamical 

epidemiological model by stratifying populations into low-contact and high-contact groups 

based on people’s affiliated industries during the reopening phases at a county level using 

limited data. We believe it is an important effort to better understand the dynamic feedback 

of this stratification through an ODE control system. We listed some limitations and future 

directions to address some of them. We will further explore these challenges with more data 

and better assumptions to improve existing models.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
A high-level illustration of our new model SSIR-HCD to accommodate the subpopulation 

changes during the implementation of the phased reopening policy.
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Fig. 2. 
SIR-HCD model at a high level with different compartments and transitions.
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Fig. 3. 
Daily hospitalization (left) and cumulative mortality (right) during the time period from 

March 19, 2020, to October 4, 2020.
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Fig. 4. 
Fitted daily hospitalization cases and cumulative mortality (training: blue + test: red) using 

SSIR-HCD with step function. For hospitalization training, reopening phase I, II(a), and 

II(b) had MAE = 98.40, MAE = 72.24, and MAE = 55.43, respectively. For mortality 

training, reopening phase I, II(a), and II(b) had training MAE = 13.10, MAE = 12.70, and 

MAE = 69.47, respectively. (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.)
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Fig. 5. 
Counterfactual analysis plots assuming Reopening Phase I was not implemented (i.e., no 

reopening policies were issued).
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Fig. 6. 
Counterfactual analysis plots assuming Reopening Phase II was not implemented (i.e., only 

Reopening Phase I policies were issued, but not include Reopening Phase II policies).
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Table 4

Fitted values of parameters learned from the training data in SSIR-HCD model.

Low-contact group High-contact group

Proportion of population in Reopening Phase I 60.38% 39.62%

Proportion of population in Reopening Phase II 41.70% 58.30%

Hospitalization period Thosp 10.00 days

Critical period Tcrit 14.00 days

Asymptomatic rate among infectious people ra 0.996

Ratio of hospitalizations turning into critical rc 0.45

Ratio of critical patients turning into death rf 0.44

*
Different parameter bounds are set in the two groups so that R0 in the low-contact group is slightly lower than the high-contact group. We follow 

the research results of a previous paper to set parameters [33,39,13].
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