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ABSTRACT: Polarization-sensitive optical coherence tomogra-
phy (PS-OCT) reveals the subsurface microstructure of biological
tissue and provides information regarding the polarization state of
light backscattered from tissue. Complementing OCT’s structural
signal with molecular imaging requires strategies to simultaneously
detect multiple exogenous contrast agents with high specificity in
tissue. Specific detection of molecular probes enables the parallel
visualization of physiological, cellular, and molecular processes.
Here we demonstrate that, by combining PS-OCT and spectral
contrast (SC)-OCT measurements, we can distinguish signatures
of different gold nanobipyramids (GNBPs) in lymphatic vessels
from the surrounding tissue and blood vessels in live mouse
models. This technique could well be extended to other anisotropic nanoparticle-based OCT contrast agents and presents significant
progress toward enabling OCT molecular imaging.
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■ INTRODUCTION

In vivo optical molecular imaging provides visualization of
different biomarkers for tracking and mapping of cellular
processes and interactions in living tissue. Fluorescent labeling
is commonly utilized for multiplexed tracking of many of these
biological interactions.1 However, the conventional detection
of widefield epifluorescence is often limited to a few hundreds
of micrometers in depth unless advanced multiphoton
excitation is used.2−4 Optical coherence tomography (OCT)
reveals the microstructure of biological tissue by measuring the
path length difference of backscattered light at a micrometer-
scale resolution and with a millimeter-scale depth of
penetration.5 Polarization-sensitive (PS)-OCT further deter-
mines the polarization state of the detected light to provide
additional information regarding tissue retardation and
depolarization.6 Optical-molecular probes are critical for
further enabling the parallel visualization of physiological,
cellular, and molecular processes. Unfortunately, most small
molecules, antibodies, and fluorescent probes lack intrinsic
OCT contrast, as they produce little detectable change in the
index of refraction in the second near-infrared window (NIR-
II). Developing imaging probes for use with OCT would
enable the visualization of biomarkers concurrently with
anatomical features at micrometer-scale resolution over wide
areas of tissue at several millimeters in depth.

A number of approaches to develop exogenous functional
OCT contrast agents have been studied, such as microspheres,
high-aspect-ratio nanostructures, magnetic nanoparticles, and
plasmonic nanoparticles.7−14 Plasmonic gold nanostructures
have shown promise due to their tunable optical properties and
biocompatibility.15 The unique spectral signatures of plas-
monic gold nanostructures have been used for multiplexed
OCT imaging in vivo.16−18 However, their detection relied on
flow-gating with OCT-angiography (OCTA) to isolate flowing
or diffusing particles.16−19 This allowed for the elimination of
artificial spectral signatures induced by speckles in the static
background signal. However, the reliance on particle motion
significantly restricts labeling strategies and precludes the
detection of static particles. In a parallel effort, we recently
reported that ensembles of randomly oriented high-aspect-ratio
gold nanorods (GNRs) act as a source of depolarization and
that this can serve as a detection mechanism of GNRs in vivo.
However, depolarization lacks a pronounced spectral depend-
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ence and does not allow for multiplexing.20 To address the
need for multiplexed and specific detection of exogenous labels
in scattering tissue, here we combine depolarization and
spectral measurements to achieve a versatile and specific image
contrast for gold nanoparticles with PS-OCT.
In this study, we first characterize the depolarization and

spectral signatures of gold nanobipyramids (GNBPs) using a
wavelength swept-source PS-OCT system in a series of in vitro
experiments. We then show that depolarization and spectral
measurements can be used to visualize subcutaneous injections
of GNBPs for multiplexed mapping of lymphatic vessels in vivo
and enable identification of static GNBPs collected in
associated draining lymph nodes.

■ RESULTS AND DISCUSSION
In Vitro Characterization of Depolarization and

Spectral Contrast Signals. Gold nanobipyramids were
prepared according to the method described in the Supporting
Information and by Si et al.18 The synthesized GNBPs were
imaged using transmission electron microscopy (Figure 1A).
Three different kinds of GNBPs were synthesized with
plasmonic resonances at 1200, 1274, and 1394 nm, allowing
portions of their spectra to overlap with the spectral band of
NIR-II wavelength swept-source PS-OCT systems (Figure
1B). GNBPs were chosen due to their narrower plasmonic
bandwidth in comparison to gold nanorods.18 Throughout this
work a wavelength swept-source PS-OCT system was used
with a source central wavelength of 1310 nm and with an
approximate axial resolution of 10 μm and a lateral resolution
of 20 μm. To demonstrate depolarization and spectral contrast

(SC) measurements of GNBPs, four capillary tubes containing
a control (intralipid 1%) and three different 500 pM GNBP
solutions were imaged. Intralipid was used as a control due to
its common use as an OCT contrast agent and its lack of
significant intrinsic spectral or polarization characteristics.21

Intensity images of the capillary tubes reveal similar scattering
signals among the samples (Figure 1C). Next, the spectral
contrast was computed using a dual-band spectral analysis
algorithm.17,18,22 In brief, the algorithm computes two OCT
interferograms utilizing the halves of the source spectral
bandwidth. Computational corrections for dispersion, rolloff,
and source power imbalance were applied to both bands.
Afterward, the intensity tomogram originating from the shorter
wavelength half was subtracted from the longer wavelength
tomogram to reveal spectral differences in the scattering signal.
Enhanced scattering at longer wavelengths of the PS-OCT
spectrum results in positive (red) spectral contrast, while
enhanced scattering in the shorter half results in negative
(blue) spectral contrast. GNBP1200 and GNBP1394 exhibit
negative and positive contrast, respectively (Figure 1D).
Alternatively, intralipid and GNBP1274 exhibit neutral spectral
contrast, as scattering is approximately equal across the halves
of the source spectrum (Figure 1D). Both GNBP1200 and
GNBP1394 exhibit an apparent neutralizing spectral contrast
signal with depth as a result of particle absorption, previously
referred to as spectral shadowing.18 Prior to this study, to the
best of our knowledge, only high-aspect-ratio GNRs had been
demonstrated to exhibit depolarization that could be used as a
contrast mechanism for PS-OCT.20 A numerical analysis
revealed similar polarization-dependent scattering cross

Figure 1. (A) TEM images of GNBPs. (B) Spectra of GNBPs and the PS-OCT system source spectrum. (C) Intensity images GNBP1394,
GNBP1274, GNBP1200, and intralipid (left to right). (D) Spectral contrast (SC) and (E) degree of polarization (DOP). (F) Poincare sphere showing
raw Stokes vectors of nondepolarizing intralipid vs depolarizing GNBPs. Scale bars: 250 μm. SC color scale: −1 to 1. DOP: 0.4 to 1. The intensity
is on the dB scale.
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sections of GNBPs and GNRs near the longitudinal resonance
wavelength (Figure S1). To confirm this experimentally, we
quantified depolarization or polarization state scrambling using

degree of polarization (DOP) measurements with PS-
OCT.20,23 DOP quantifies the uniformity of polarization states
expressed as Stokes vectors in a small spatial neighborhood of a

Figure 2. (A) Intensity, (B) spectral contrast, and (C) DOP of a dilution series of GNBP1200 (1 nM, 500 pM, 100 pM, 50 pM, 10 pM, and 1 pM)
and 1% intralipid control. (D) Quantification of spectral contrast and DOP exhibited by the control and GNBP1200 within the red and white ROIs,
respectively. (E−G) Intensity, spectral contrast, and DOP of GNBP1394 and 1% intralipid. (H) Quantification of spectral contrast and DOP from
GNBP1394 within the red and white ROIs, respectively. Scale bars: 250 μm. The intensity is on the dB scale. SC color scale: −1 to 1. DOP: 0.4 to 1.

Figure 3. (A) Schematic and photograph of imaging area on the hind limb after skin removal. (B, C) Intensity and DOP cross-section of the hind
leg prior to GNBP1394 injection. (D, E) Intensity and DOP cross-section of the hind leg after to GNBP1394 injection. Lymphatic vessels (yellow) can
be seen in (E). Longitudinal views of (F) intensity, (G) DOP, and (H) spectral contrast of the left lymphatic vessel. Note the negatively contrasting
spectral shadow below most of the length of the positively contrasting lymphatic vessel. (I) Spectral contrast (SC) masked using DOP and overlaid
onto the intensity image. (J) Enface intensity masked by angiography and (K) enface view of the tissue surface with masked spectral contrast. The
green arrow identifies the saphenous vein. White arrows show low DOP the signal with the corresponding angiography signal, identifying lymphatic
vessels. Unless otherwise noted, the horizontal scale bar is 1 mm and the vertical bar is 500 μm. The intensity is given on the dB scale. SC color
scale: −1 to 1. DOP: 0.4 to 1.
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PS-OCT tomogram. DOP is in the range of 1 (completely
polarized) to 0 (completely depolarized), where the polar-
ization states have a high degree of randomness. The
experimental results revealed that each GNBP exhibited a
strong depolarization signature visualized by a loss of DOP
(Figure 1E,F). Additionally, DOP measurements enable
differentiation of the neutrally contrasting intralipid control
from neutrally contrasting GNBP1274.
We then imaged a dilution series of GNBP1200 and

GNBP1394 suspended in water along with an intralipid control
(Figure 2). The full spectrum intensity visibly increases as the
concentration increases from 1 pM to 1 nM for both GNBP1200
and GNBP1394 (Figure 2A,E). GNBP1200 shows a negative
spectral contrast due to enhanced scattering in the shorter
wavelength band, while GNBP1394 exhibits positive spectral
contrast due to enhanced scattering in the longer wavelength
band (Figure 2B,F). Converse to scattering, GNBP absorption
is also enhanced in their respective wavelength bands.
Absorption-driven spectral contrast can result in an oppositely
contrasting signal in comparison to scattering-driven contrast.
The transition between scattering- and absorption-driven
spectral contrast can most prominently be observed in Figure
2F at the 1 nM concentration. Here a strong scattering-based
positive spectral contrast signal from GNBP1394 can be
observed at the surface. However, this positive contrast signal
becomes neutralized and eventually strongly negative at greater
depths due to enhanced abortion (decreased signal) in the
longer-wavelength band. For quantitative analysis, regions of
interest (ROIs) were defined at the top of the tubes to avoid
absorption-driven contrast effects. Additionally, both GNBP
particles exhibited strong depolarization for all concentrations,
while the intralipid control exhibited little loss (blue) of DOP
(Figure 2D,H). In these GNBP suspensions, meaningful NIR-
II scattering was only from depolarizing GNBPs; thus, all
detected light should be depolarized and have a lowered DOP.
Conversely, when GNBPs were mixed with nondepolarizing
scatterers, such as whole blood, DOP does have a
concentration dependence (Figure S2).
In Vivo Detection of Depolarization and Spectral

Signatures. For in vivo experiments, GNBPs were PEGylated

(PEG, MW ≈ 5 kDa) for stability and biocompatibility
purposes. To first validate particle isolation using depolariza-
tion and identification using spectral contrast, we imaged
passive accumulation of GNBP1394 in mouse hindlimb
lymphatic vessels in vivo after subcutaneous injection into
the foot (Figure 3A). GNBP particles used in this study were
larger than 100 nm and should predominantly enter the
lymphatics, as they are too large for reabsorption into blood
capillaries.24 However, unlike blood, lymph minimally scatters
NIR light and assessment without exogenous contrast is
challenging using PS-OCT. To demonstrate, we imaged along
the saphenous vein of a mouse leg before the injection of
GNBP1394 (Figure 3B,C and and Figure S3). Cross-sectional
intensity and DOP images of the hind leg prior to injection of
6 nM GNBP1394 (Figure S4) show no apparent lymphatic
vessels or loss of DOP on either side of the saphenous vein
indicated by the green arrow (Figure 3A−C). After injection of
1 uL of 6 nM GNBP1394 subcutaneously into the foot, a clear
loss of DOP (in yellow) becomes visible in two vessels (Figure
3D,E). Longitudinal segmentation tracking the left lymph
vessel reveals a clear intensity signal and loss of DOP along its
length (Figure 3F,G). The spectral contrast shows a strong
positive contrast along the length of the lymphatic vessel
together with spectral noise and a strong negatively contrasting
spectral shadow below the vessel (Figure 3H). The recorded
volume was then segmented by masking pixels with high DOP
(DOP > 0.7) and low signal levels (SNR < 20 dB). After
masking, the spectral contrast was overlaid onto the
longitudinal intensity, revealing a clear positive contrast signal
along the length of the lymphatic vessel, consistent with the
injection of GNBP1394 (Figure 3I). Additionally, an enface
image using OCTA visualized the signal from blood flow and
the two lymph vessels containing GNBP1394 indicated by white
arrows (Figure 3J). Using DOP segmentation, an enface SC ×
DOP image is displayed where both lymph vessels show
positive contrast (Figure 3K). To further confirm GNBP1394
uptake into the lymphatic vessels in the mouse leg, the
popliteal lymph node was resected (n = 3) and imaged ex vivo
(Figure 4). Without GNBP injection, popliteal lymph nodes
show little depolarization or significant spectral contrast

Figure 4. Resected popliteal lymph nodes. (A−D) Popliteal lymph node from a control mouse without any injection of GNBPs. Cross-section
images of (A) intensity, (B) DOP, (C) spectral contrast, and (D) spectral contrast gated using DOP. (E−H) Popliteal lymph node from a mouse
after GNBP1394 injection. Cross-section images of (E) intensity, (F) DOP, (G) spectral contrast, and (H) spectral contrast gated using DOP. DOP
gating ignored pixels with DOP > 0.7 and SNR< 15 dB. Inset images are enface projection images. The dotted lines indicate the position of the
cross-section plane. Scale bars: 0.5 mm. The intensity is given on the dB scale. SC color scale: −1 to 1.
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(Figure 4A−D). After GNBP1394 injection, significant loss of
DOP is observed throughout the popliteal lymph node along
with a strong positive contrast consistent with the signal
observed in the leg (Figure 4D−G).
In Vivo Multiplexing. To image two contrasting GNBPs

simultaneously in vivo, we subcutaneously injected 1.0 μL of 6
nM PEGylated GNBP1200 and GNBP1394 at two separate
locations sequentially into the ear of a mouse. Due to the
GNBP size, particles will be preferentially taken up by
lymphatic vessels. PS-OCT volumetric scans of the ear were
taken prior to injection of both particles (Figure 5A−C).
Enface projections of angiography prior to injection of particles
are shown (Figure 5A). Spectrally neutral blood vessels can be
observed (Figure 5B), and no vessels exhibit significant DOP
loss (Figure 5C). Upon injection of GNBP1200, we observed an
enhanced angiography signal at the GNBP1200 injection site
and a new signal from presumably lymphatic vessels
predominantly in the lower right quadrant (Figure 5D).
Angiography was then used to segment the spectral contrast
but without prior knowledge does not differentiate between
blood flow and lymph flow (Figure 5E). Although negative
contrast is visible from the GNBP1200 injection, some areas of
the lymphatic vessel still appear neutral due to variations in
concentrations of GNBP in the vessels. After DOP
segmentation, lymphatic vessels containing GNBPs can be
clearly differentiated from blood vessels, which only showed an

angiographic signal (Figure 5F). After GNBP1394 injection in a
different location, additional lymphatic vessels draining that
area of skin become visible in angiography (Figure 5G). The
angiography signal and positive spectral contrast signal were
then observed at the left injection site (Figure 5H). DOP
differentiates GNBPs in lymphatic vessels from confounding
blood flow (Figure 5I). Here we were able to show clear
differentiation between blood flow and GNBP particle uptake
in lymphatic vessels by using depolarization and spectral
signatures.

■ CONCLUSIONS
We have shown that the combination of depolarization and
spectral measurements enables a contrast enhancement of
multiplexed, exogenous labels with PS-OCT. Utilizing
depolarization, we demonstrated that GNBP locations can be
differentiated from the surrounding highly scattering tissue.
Spectral measurements of isolated GNBPs can be used to
identify GNBPs with differing plasmonic resonances. In
combination, this detection scheme offers a platform for direct
detection and differentiation of nanoparticles within highly
scattering tissue. Furthermore, depolarization and spectral-
based detection uniquely enables differentiation of neutrally
contrasting particles, such as GNBP1274, from other spectrally
neutral nondiattenuating sources. Scattering from GNBPs in
lymphatic vessels can also be differentiated from moving

Figure 5. Sequential GNBP injection into mouse ear. (A) Angiography image of a mouse ear prior to GNBP injection. (B) Spectral contrast
masked using angiography. (C) Spectral contrast masked using DOP masking overlaid onto the dimmed angiography image for reference. No
significant DOP loss wasobserved prior to injection. (D) Angiography after GNBP1200 injection showing the first injection site in the upper right.
(E) Spectral contrast masked using angiography and (F) spectral contrast masked using DOP overlaid onto the dimmed angiography image. (G)
Angiography after GNBP1394 injection on the left side of the ear. (H) Spectral contrast masked using angiography and (I) spectral contrast masked
using DOP overlaid onto the dimmed angiography image. Scale bars: 1 mm. The intensity is given on the dB scale. SC color scale: −1 to 1.
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scatterers in blood vessels to better separate lymphatic and
blood vessel scattering without the need for manual
segmentation.18,25

One area of possible interreference of GNBP detection using
depolarization is endogenous depolarizing structures such as
the retinal pigment epithelium (RPE), optic nerve head, and
arterial plaques. Additional image segmentation would be
required in the presence of such depolarizing structures or
others.26,27 However, unlike other molecular imaging techni-
ques, this scattering-based method has the advantage of not
being hindered by photobleaching, quenching, or autofluor-
escence. In comparison with previously reported OCT spectral
contrast techniques,18 this polarization-dependent spectral
contrast method enables the specific detection of multiple
nanoparticles simultaneously both inside and outside the
vascular system, providing prospects for a wide range of
biological applications.
The novel detection and multiplexing technique we report

here provides a platform for in vivo imaging studies using PS-
OCT. This technique opens up many opportunities for in vivo
optical molecular imaging and can provide visualization of
multiple contrast agents simultaneously at micrometer-scale
resolution and millimeter scales of depth. For lymphatic
research, our technique could be used to map lymphangio-
genesis in tumors, an important factor in cancer progression
and immunotherapy. Lymph node metastasis has profound
clinical significance, and this technique could be employed for
sentinel lymph nodes or lymphangiogenesis biomarkers.28 This
technique could also enable further study of the role of the
lymphatic system in the brain and its relation to neuro-
degenerative disease.

■ MATERIALS AND METHODS
Complete details of methods for nanoparticle synthesis,
instrumentation, image processing, and in vitro and in vivo
experiments are provided in the Supporting Information.
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