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Abstract

Background: Corin is a protease expressed in cardiomyocytes that plays a key role in salt 

handling and intravascular volume homeostasis via activation of natriuretic peptides. It is unknown 

if Corin loss-of-function is causally associated with risk of coronary artery disease (CAD).
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Methods: We analyzed all coding CORIN variants in an Italian case-control study of CAD. We 

functionally tested all 64 rare missense mutations in Western Blot and Mass Spectroscopy assays 

for pro-atrial natriuretic peptide cleavage. An expanded rare variant association analysis for Corin 

loss-of-function mutations was conducted in whole exome sequencing data from 37,799 CAD 

cases and 212,184 controls.

Results: We observed loss-of-function variants in CORIN in 8 of 1,803 (0.4%) CAD cases 

versus 0 of 1,725 controls (p-value 0.007). Of 64 rare missense variants profiled, 21 (33%) 

demonstrated <30% of wild-type activity and were deemed damaging in the two functional 

assays for Corin activity. In a rare variant association study that aggregated rare loss-of-function 

and functionally validated damaging missense variants from the Italian study, we observed no 

association with CAD – 21 of 1,803 CAD cases versus 12 of 1,725 controls with adjusted odds 

ratio of 1.61 (95%CI 0.79 to 3.29; p = 0.17). In the expanded sequencing dataset, there was 

no relationship between rare loss-of-function variants with CAD was also observed (OR:1.15; 

95%CI 0.89 to 1.49; p = 0.30). Consistent with the genetic analysis, we observed no relationship 

between circulating Corin concentrations with incident CAD events among 4,744 participants of 

a prospective cohort study – sex-stratified hazard ratio per standard deviation increment of 0.96 

(95%CI 0.87–1.07, p = 0.48).

Conclusions: Functional testing of missense mutations improved the accuracy of rare 

variant association analysis. Despite compelling pathophysiology and a preliminary observation 

suggesting association, we observe no relationship between rare damaging variants in CORIN or 

circulating Corin concentrations with risk of CAD.
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Introduction:

Genetic association studies have identified multiple genetic variants associated with the risk 

of coronary artery disease. The majority of these associations are for common variants, 

but rare variant association studies (RVAS) are increasing with the reduced cost of exome 

sequencing. Rare variants identified in sequencing studies are defined as single nucleotide 

variants (SNVs) or short insertion/deletions (indels) with a minor allele frequency (MAF) 

of less than 5%. Many recent exome sequencing studies have sought to link genes with 

a burden of rare mutations to risk of coronary artery disease, congenital heart disease, 

dyslipidemia, and hypertension.1–5 As the sample size of RVASs increase, there are more 

genes with multiple damaging rare variants to interpret for an association with common 

cardiovascular diseases.

One major challenge that limits the power of RVAS is knowing which rare variants can 

be aggregated in the association analysis. Ideally, only loss of function alleles that disrupt 
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gene function or gain of function alleles that confers new or enhanced activity would be 

considered in a testing group, and benign alleles would be ignored. For example, to enrich 

harmful alleles, many groups only consider null mutations (nonsense, indel frameshift, or 

splice-site mutations), computationally predicted deleterious missense mutations or even 

all non-synonymous mutations.1 Considering only null mutations limits the power to 

associate genes with disease; however, the more permissive inclusion of all non-synonymous 

mutations is equally inaccurate since the vast majority are benign. For this reason, in silico 
algorithms exist to predict which amino acid substitutions result in disease using criteria 

such as evolutionary conservation, protein structure, and sequence homology.6–9 Studies that 

compare the accuracy of these many predictors against a gold-standard dataset of known 

pathogenic variants have found weak concordance and a high rate of false positivity.10,11 

This has implications for RVAS findings, where functional missense mutations are collected 

using concordant scores among multiple in silico predictors to increase the confidence of 

identifying true loss of function missense mutations in a gene and then test the association 

of them with the risk of disease. Despite the known limitations of these computational 

predictions, it is not current practice to validate all predicted pathogenic variants with a 

biological assay.

Here we present an RVAS analysis of 1,803 cases and 1,725 controls from an early­

onset coronary artery disease (CAD) cohort. Preliminary analysis identified an association 

between loss of function mutations in the CORIN gene and risk of CAD, and we set out 

to confirm this finding with functional analysis of all the missense mutations identified 

from exome sequencing. Corin is a type II transmembrane serine protease expressed in 

cardiomyocytes which converts pro-atrial natriuretic peptide (proANP) to biologically active 

ANP.12,13 Biochemical studies have established the role of missense mutations in several 

CORIN domain structures as essential for its proteolytic function.14,15 Mice lacking corin 

display salt-sensitive hypertension and cardiac hypertrophy.16 Individual Corin variants have 

been linked to risk of hypertension, pre-eclampsia, and heart failure.17,18 In larger RVAS 

for hypertension, however, there has been no association between Corin variants and risk 

of hypertension.4 This suggests that loss-of-function (LOF) Corin variants may not be 

sufficient to cause cardiovascular disease. More studies that combine rare variant association 

analysis with functional validation are necessary to determine if Corin loss of function has a 

causal effect on cardiovascular disease.

To determine the accuracy of the initial association between LOF Corin variants and 

CAD, we identified functionally disruptive missense mutations using five computational 

prediction algorithms and two biochemical assays for Corin proteolytic activity. We tested 

the activity of wild-type Corin and 64 missense mutations in the enzyme on proANP 

cleavage. Our results show a high false-positive rate for in silico prediction algorithms 

compared with the functional assay. After analysis of all functional missense mutations in 

our study, and expanded analysis of larger rare variant sequencing studies, we do not find an 

association between Corin loss of function and risk of CAD/MI. Our findings demonstrate 

the importance of functional validation of rare variant association results and highlight the 

challenges of identifying the set of functionally relevant mutations within a gene using 

computational methods alone.
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Methods:

This research was approved by the Mass General Brigham institutional review board 

(protocol 2013P001840). Full description of methods is provided in Supplemental Material. 

In order to minimize the possibility of unintentionally sharing information that can be used 

to re-identify private information, the human genetic data used in this study are available 

at the database of Genotypes and Phenotypes (dbGaP) and can be accessed through the 

accession number listed for each study in the Supplemental Materials.

Results

Exome sequencing of an early MI cohort identifies loss of function mutations associated 
with disease.

To discover new genes associated with the risk of CAD, we studied 1,803 patients who 

presented with first myocardial infarction(MI) at age <45 years and 1,725 controls derived 

from the previously described Atherosclerosis, Thrombosis, and Vascular Biology (ATVB) 

Italian Study Group.19,20 The baseline characteristics of the cohort show that age and sex 

are matched between the cases and controls, and as expected, the prevalence of diabetes, 

smoking, and dyslipidemia are higher in the cases (Table 1).

Exome sequencing and burden testing identified a statistically significant association 

between early-onset MI and rare LDLR loss of function mutations (p=2.31 × 10−7, Table 2). 

Loss of function mutations for this analysis included nonsense, frameshift, and splice-site 

mutations with allele frequency less than 0.001. Below the threshold of significance were 

several genes that have not been previously associated with CAD or MI. The CORIN gene 

had 8 loss of function mutations in cases and 0 in controls (p=0.0065). The majority of 

the genes with sub-significant associations either had no known cellular function or their 

function could not be tested with in vitro methods. We prioritized the Corin association for 

functional testing given its possible association with CAD/MI by burden testing and known 

role in regulating blood pressure through cleavage of pro-atrial natriuretic peptide (proANP).

In silico identification of loss-of-function missense mutations does not demonstrate a 
significant association between CORIN and CAD.

We analyzed multiple sets of missense mutations to improve the genetic association between 

Corin loss-of-function and CAD. There is no significant association between the full list 

of rare missense mutations in the ATVB cohort and CAD (p=0.70, Table 3). However, it 

is unknown which of these non-synonymous mutations are benign, and therefore it reduces 

the power of this analysis to include the full set of missense mutations. To identify the 

pathogenic missense mutations that have a true effect on the enzymatic function of Corin, 

we used five in silico prediction algorithms (see Methods section) that prior studies have 

used in RVAS analysis.1 These prediction tools (LRT, MutationTaster, Polyphen2-HDIV, 

Polyphen2-HDAR, SIFT) leverage conservation between protein families and between 

sequence homologies, protein structures, and pathogenic mutations recorded in the ClinVar 

and HGMD databases, to predict whether each amino acid substitution has the potential to 

affect protein function.21,22 We identified 21 missense variants that are predicted as protein 
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damaging variants in all 5 algorithms (Table SI). When including these 5 out of 5 predicted 

damaging mutations there is an improvement in the association with CAD (p=0.15, Table 

3) compared with using the 38 variants predicted as damaging in 4 out of 5 (p=0.61) or 3 

out of 5 algorithms (p=0.63). To improve the functional assessment of CORIN mutations we 

designed a proANP proteolytic cleavage assay.

Design of in vitro functional assays of Corin proteolytic function.

The role of Corin in the cleavage of proANP to active ANP is well established. This 

suggests a connection to CAD through the regulation of blood pressure and vascular 

function. It also provides a target substrate in which to test the in vitro proteolysis of 

the missense Corin mutations we identified in the ATVB cohort (Table SI). We designed 

two complementary assays to quantify the cleavage of the 17kDa proANP protein to the 

biologically active ANP peptide (Figure 1). For both assays, 293T cells were transfected 

with either wild-type or mutant Corin. Purified proANP substrate was added to the media, 

and the specific activity of Corin was quantified by measuring proANP and ANP peptides 

by liquid chromatography mass spectroscopy (LCMS, Figure 1B). These results were 

confirmed with a second functional assay which also quantified Corin activity in 293T 

cells co-transfected with Corin and proANP. The ratio of proANP and ANP bands on a 

Western blot correlated with Corin proteolytic activity (Figure 1C and SI). There was a high 

correlation between the two functional assays (r2=0.89, Figure 2B).

Functional testing of specific activity of Corin missense mutations

The specific activity of 64 corin missense mutations identified in the ATVB discovery cohort 

(Table SI) was quantified in triplicate by LCMS. Two missense mutations, S985A (in the 

protease domain) and D336Y (in an LDLR domain necessary for substrate identification) 

were included as positive controls for the assay based on published reports that they affect 

the enzymatic function of Corin.15 We defined loss-of-function as specific activity of <30% 

normalized to wild-type Corin function.

The LCMS assay for Corin proteolytic activity identified 21 loss-of-function missense 

mutations (Figure 3A) with <30% normalized Corin function. As predicted, the positive 

control missense mutations S985A and D336Y had complete loss of Corin specific activity 

(Figure 3B). Other mutations with <5% specific activity were D373N, E374K, C599Y, 

C599R, E649K, C790Y, R801A, R809C, C970R, and G986S. These mutations are in 

multiple functional domains in the Corin protein, including the C-terminus active protease 

domain (Figure 4).

Correlation between computational predictions and functional testing of Corin

We directly compared the validity of the results from in silico predictions with our 

functional assay data. The algorithms each independently predict between 37 and 51 

missense mutations out of the 64 functional tested missenses as damaging. However, among 

the damaging variants of each prediction tool, only 37 – 44% had less than 30% specific 

activity in the LCMS functional assay (Figure 5A). There was no significant difference in 

the accuracy of the individual computational predictors relative to the gold-standard assay 

(functional validation). The accuracy of the predictive algorithms improves when they are 
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aggregated to identify the set of missense mutations predicted as pathogenic with multiple 

computational tools (Figure 5B, 5C). The variants predicted as pathogenic in 4/5 or all 5 

algorithms account for all the variants with a specific activity of < 30% compared with 

wild-type Corin in the LCMS assay (Figure 5C). However, these 4/5 and 5/5 variants also 

include a large number of false positives that do not show evidence that they are loss of 

function in the enzymatic assay (Figure 5C).

No evidence of rare variant association for Corin when including validated loss-of-function 
missense mutations.

We further grouped the functional validated loss-of-function missense mutations (< 30% 

normalized to wild-type Corin function) into the LOFTEE predicted null variants (stop 

gained, frameshift, and splice variants). The re-analysis was conducted in the original ATVB 

cohort as well as further included samples from additional three large cohorts, which then 

in total have 37,799 CAD/MI cases and 212,184 controls (Figure 6 and Methods section 

for cohort details). In this setting, we didn’t observe significant association between the 

rare loss-of-function variants with CAD, the fixed effect meta-analysis has P value of 0.30, 

with OR 1.15 (95 CI 0.89 – 1.49), Figure 6. A sensitivity analysis using LOFTEE predicted 

null variants across all four cohorts has the same null association, meta-analysis P value 

of 0.12 with OR 1.35 (95 CI 0.92 – 1.98), Figure SII. Another sensitivity analysis using 

<5% wild-type Corin activity to select loss-of-function missense mutations together with 

LOFTEE null variants has null association also, meta-analysis P value of 0.24 with OR 1.19 

(95 CI 0.89 – 1.58), Figure SIII. Taken together, no evidence of rare loss-of-function variant 

association for Corin with CAD/MI disease risk.

No association between plasma soluble Corin and first major adverse cardiovascular 
event.

To determine whether low plasma Corin is associated with incident risk of cardiovascular 

disease, we measured Corin in samples from the Malmo Diet and Cancer (MDC) study, a 

prospective observational study of ~30,000 residents of Malmö, Sweden enrolled between 

1991 and 1996.23 This cohort includes subjects with early onset and later onset CAD. 

After quality control and excluding samples with prevalent cardiovascular disease, 4,744 

participants were used in the final analysis, see Methods section. The mean (SD) age at 

baseline was 57.4(5.9) years and 61.0% were female. The median [IQR] of Corin was 

686.7 [491.7–945.3] pg/mL. Females had approximately one standard deviation lower Corin 

concentrations compared to males (−0.94 SD, p < 0.001) and 31.3% of the variance of log 

Corin is explained by sex. Current smoking status was also strongly associated with lower 

Corin concentrations (−0.43 SD, p < 0.001).

These participants were followed for mean (SD) 18.6 (4.8) years (total 88,250 patient 

follow-up years) and 543 (11.4%) sustained the primary outcome - major adverse cardiac 

events (MACE), see Methods. After adjusting for cardiovascular risk factors, there was no 

association between Corin and MACE (HR 0.96 per Corin SD, 95% CI 0.87–1.07, p = 0.48). 

Only adjusting for sex also showed no association for Corin with MACE (HR 0.99 per Corin 

SD, 95% CI 0.90–1.09, p = 0.78). There was no difference in Corin levels between incident 

MACE cases and controls among males (p = 0.87) and females (p = 0.29) (p interaction 
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= 0.63, Figure SIV). Sensitivity analyses restricting follow-up period also demonstrated no 

association between Corin and MACE in multivariable models: 5 years (67 events, p = 0.90), 

10 years (178 events, p = 0.62), and 15 years (329 events, p = 0.54).

Analysis of secondary outcomes included congestive heart failure (CHF) and all-cause 

mortality in MACE. There were 416 (8.8%) coronary events, 209 (4.4%) CHF events, and 

1,124 (23.7%) all-cause deaths. There was no evidence of association for incident coronary 

events (HR 0.93, 95% CI 0.82–1.05, p = 0.23), incident CHF (HR 0.99, 95% CI 0.83–1.18, p 

= 0.89), or all-cause mortality (HR 0.93, 95% CI 0.87–1.00, p = 0.06).

Discussion:

Rare variant association studies present an opportunity to identify new genes and novel 

mechanisms of cardiovascular disease. Since these studies are not powered to identify 

individual pathogenic variants, current methods look for the combined effect of all loss 

of function variants within a gene. Burden testing in rare variant association studies has 

validated previously known causal genes associated with CAD/MI, aortic dissection, and 

congenital heart disease.1,2,24 To expand the power of RVAS identifying the correct loss of 

function mutations to include in the burden analysis remains a challenge. There are dozens 

of computational algorithms that seek to allow the inclusion of loss of function missense 

mutations, but their accuracy has not been systematically tested with functional assays.

Here we test all the missense mutations identified in a RVAS gene for early-onset CAD/MI. 

We initially identify null mutations in the CORIN gene, and found its association with 

early-onset MI in the ATVB cohort. Given the role of Corin in cleaving proANP to active 

ANP, this was a biologically plausible genetic association that warranted validation. When 

we expanded the analysis to include all missense mutations the association between Corin 

and CAD/MI weakened. This is expected since most missense mutations have no effect 

on Corin function. To provide a gold standard for inclusion of loss of function missense 

mutations in the genetic association analysis, we designed two functional assays for Corin 

missense mutations. The RVAS findings were then re-analyzed with quantitative knowledge 

of Corin enzymatic activity, and there was ultimately no significant association between 

Corin loss of function and CAD/MI risk. This finding was confirmed by including 246,455 

more subjects from another three big sequencing cohort for CAD/MI in the RVAS analysis. 

Each of the five computational prediction algorithms showed a high false positive rate, and 

even when limited to the subset of predicted pathogenic mutations in all five algorithms, the 

inaccuracy of these in silico methods over-estimated produced a spurious association that 

was disapproved with our in vitro functional assay.

Our exhaustive analysis of an early positive signal in a RVAS serves as a cautionary 

tale for the interpretation of these studies. The early finding of an association between 

rare, damaging mutations in Corin and CAD/MI risk was invalidated by including loss-of­

function missense variants tested in our functional proANP processing assays. The spurious 

association for Corin was also invalidated by including more sequenced subjects in the 

RVAS. Taken together, this suggests that small association studies that link individual Corin 

variants with cardiovascular disease may be specific to certain populations. For example, the 
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previously reported Corin variant associations such as the T555I/Q568P haplotype and the 

R530S missense mutation may have large effects exclusively in the African-American25 and 

Han Chinese18 populations in which they were first identified. Whether this is because of 

polygenic risk from other mutations in these populations is an open question that requires 

further study.

Functional testing of all missense mutations in a protein also provides important insight 

on the limited accuracy of the widely used computational prediction algorithms for variant 

interpretation. Each algorithm only showed less than 50% positive prediction with the gold­

standard functional assay, and though aggregating all five algorithms improved the positive 

predictive value, there were many false positives that did not affect Corin function in vitro. 

This suggests that current in silico methods to include functional missense mutations in 

RVAS need improvement and studies should separately report true null mutations (i.e. stop 

gained, frameshift, and splice variants) and missense mutations associated with disease. 

Functional assays like the ones in this paper present one avenue for improving in silico 
prediction. Our data show that certain protein domains in Corin contain the majority of 

functional missense mutations (Figure 4). Many algorithms incorporate protein structure in 

their predictions, but functional assays provide a more concrete set of data on which to train 

these algorithms.

It remains a challenge to expand these variant testing methods to all genes. In this case, 

Corin function as a proANP convertase is well characterized, and its enzymatic function 

could be easily tested in vitro. Other genes may have complex functions that require in vivo 
testing, and therefore cannot be scaled to include more than a small fraction of missense 

mutations. In fact, one limitation of our study may be that Corin has other functions or even 

other substrates that are not captured in our assay. We expect that the mutations that reduce 

Corin proteolytic cleavage of proANP would similarly affect enzymatic function of other 

substrates, but have not tested other substrates or possible non-enzymatic functions.

Functional testing in a different cell type may also identify novel Corin substrates or 

biological functions relevant to CAD risk. Single cell RNA-sequencing analysis or the 

mouse aorta and human heart show that Corin is exclusively expressed in a subtype 

of ventricular cardiomyocytes.26,27 Primary human ventricular cardiomyocytes are not 

amenable to high-throughput functional analysis given the technical limitations of culturing 

and transfecting these cells. The ideal study would test Corin function with in-situ genome 

editing of all missense mutations in ventricular cardiomyocytes, as has been done for 

BRCA1 in an immortalized cancer cell line.28 These technologies have not yet available for 

primary human cells, but when editing efficiency in non-immortalized cells improves this 

will be an exciting new tool for functional genomic analysis.

It is important to note that this study does not rule out a role for Corin in the 

pathophysiology of cardiovascular diseases. Though we find no association between genetic 

loss of function and risk of disease, there are several studies that link serum Corin levels to 

adverse outcomes. Soluble Corin levels portend poor outcomes for patients after myocardial 

infarction and with congestive heart failure.29–31 These studies do not show a relationship 

between Corin levels and incident risk of either disease, however there may be a larger effect 
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in younger cohorts. Therefore, the causal role of Corin remains unclear, while there is a 

pathophysiologic connection between Corin and poor clinical outcomes.

Though this study did not find a significant association for an initially promising RVAS 

signal in the Corin gene, the implications of this null hypothesis validation are important for 

future genetic association studies. We establish that functional testing of missense variants 

is necessary to determine pathogenicity. Aggregating predicted loss of function missense 

variants from in silico algorithms remains problematic, and will likely only improve with 

better gold-standard examples from systematic functional analysis. Genes with enzymatic 

functions, like Corin, are more easily tested with biochemical assays for the effect of a 

mutation on substrate cleavage. In this case the functional analysis identified an accurate set 

of missense mutations for association testing, and invalidated the hypothesis that Corin is 

causally linked to risk of CAD/MI. Many promising genetic associations will soon emerge 

with the expansion of RVAS to cardiovascular disease cohorts. The validation of these 

association findings will require some understanding of the biologic function of the gene, 

and variant testing in conjunction with computational analysis.
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Non-standard Abbreviations and Acronyms

ATVB Atherosclerosis, Thrombosis, and Vascular Biology

CAD coronary artery disease

CHF congestive heart failure

CI confidence interval

HR hazard ratio

LCMS liquid chromatography mass spectroscopy
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LOF loss-of-function

MACE major adverse cardiac events

MI myocardial infarction

OR odds ratio

RVAS rare variant association study

SD standard deviation

proANP pro-atrial natriuretic peptide
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Figure 1. 
Design of a functional assays to identify loss of function missense mutations in Corin. 

A) Functional assays to quantify Corin proteolysis of proANP to ANP. B) Liquid 

chromatography mass spectrometry (LCMS) assay to quantify specific activity of Corin 

cleavage. C) Western blot assay to detect proANP/ANP ratio in cell supernatant.
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Figure 2. 
A) Standardized wild-type Corin activity with liquid chromatography mass spectroscopy 

measurement of N-terminal proANP product. Wild-type Corin activity measured over 2 

hours and normalized to 15N-labeled product. Data is average of 3 technical replicates. B) 

Correlation between Western Blot and LCMS Assays for Corin specific activity. The two 

independent assays used to test all Corin missense variants for cleavage of proANP substrate 

show high correlation (r2=0.89). Data is average of 3 biologic replicates.
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Figure 3. 
A) Liquid chromatography mass spectroscopy (LCMS) specific activity for each of the 

64 Corin missense mutations identified in the ATVB Discovery Cohort‡. All variants 

under the dotted blue line have < 30% Specific Activity (the mass of proANP substrate 

cleaved per minute, normalized to wild-type Corin activity), and are considered loss-of­

function mutations. B) Known loss-of-function mutations S985A and D336Y show no Corin 

proteolytic activity on proANP substrate in the LCMS assay. All data is the average of 3 

biological replicates*.

*The error bar in the figure represents standard error.
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Figure 4. 
Diagram of loss-of-function Corin mutations, defined by <30% normalized wild-type Corin 

function in the liquid chromatography mass spectroscopy functional assay. While multiple 

domains contain damaging mutations, the majority are in the protease domain.
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Figure 5. Correlation of functional assay with computational prediction tools.
A) The proportion of variants with < 30% normalized wild-type activity out of all the 

damaging variants predicted by each tool, lower percentage value in each bar. The upper 

values in each bar represent the number of missense variants predicted as damaging by each 

in silico prediction tools out of the 64 missense variants found in the ATVB cohort. B) The 

proportion of variants with < 30% normalized wild-type activity as a function of the number 

of algorithms that predict as damaging for each missense. C) The percentage of wild-type 

activity of each missense as a function of the number of algorithms that predict as damaging.
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Figure 6. Forest plot for the association of the rare loss-of-function variants with coronary artery 
disease with functional validated data.
For each testing data set, the variant testing group includes LOFTEE predicated high 

confidence loss-of-functions plus missense variants with functionally validated < 30% 

normalized wild-type activity. The effect size odds ratio and P value was estimated from the 

firth logistic regression model. The META row is the result of the fixed effects meta-analysis 

of the four testing data sets.
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Table 1.

Baseline characteristics for the ATVB coronary artery disease case-control study

CASE CONTROL P-Value

N 1803 1725

Baseline Age, median [Q1,Q3] 41.0 [37.0,43.0] 41.0 [37.0,43.0] 0.894

Sex (Male), n (%) 1605 (89.0) 1522 (88.5) 0.657

Type 2 diabetes, n (%) 105 (6.0) 9 (0.5) <0.001

Current smoking, n (%) 778 (44.4) 514 (30.8) <0.001

Total Cholesterol*, mg/dl, median [Q1,Q3] 216.0 [185.0,250.8] 197.0 [176.0,221.0] <0.001

HDL-Cholesterol*, mg/dl, median [Q1,Q3] 40.0 [34.0,47.0] 47.0 [40.0,55.0] <0.001

LDL-Cholesterol*, mg/dl, median [Q1,Q3] 142.0 [114.0,174.0] 120.2 [101.8,146.0] <0.001

Triglycerides*, mg/dl, median [Q1,Q3] 152.0 [106.0,208.0] 105.0 [76.0,150.0] <0.001

The Q1 and Q3 are the first and third quartiles of the distribution. For continuous variables, the Kruskal-Wallis test was used to test the difference. 
For the dichotomy variable, the Chi-squared test was used to test the difference. LDL, low-density lipoprotein. HDL, High-density lipoprotein.

*
Lipid levels were measured at baseline.
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Table 2:

Top 10 Genes with loss of function mutations association with CAD/MI

Gene Chromosome N cases N controls Beta* SE (Beta) P-value
†

LDLR 19 20 0 3.77 1.47 2.31 × 10−7

PHKB 16 9 0 2.95 1.53 0.0015

PFKP 10 9 0 2.92 1.53 0.0018

ZNF510 9 0 7 −2.81 1.57 0.0023

ZNF333 19 0 6 −2.79 1.59 0.0032

SLC12A8 3 9 0 2.76 1.52 0.0040

CNGB1 16 1 9 −1.95 0.92 0.0052

LRRC36 16 0 6 −2.64 1.59 0.0057

COL18A1 21 7 0 2.75 1.57 0.0060

CORIN 4 8 0 2.70 1.55 0.0065

*
The effect size Beta was estimated from the firth logistic regression model.

†
The P value was estimated from the SPA test, no multiple test correction shown in the table.

SE: standard error.
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Table 3:

Corin rare variant association with coronary artery disease in ATVB cohort with different computational 

predictions

VARIANTS N Case Carriers N Control Carriers Odds Ratio Odds Ratio 95% CI P Value

LOF 8 0 14.84 0.71–307.88 0.0065

LOF+3OF5 35 29 1.13 0.68–1.86 0.629

LOF+4OF5 34 28 1.14 0.69–1.90 0.605

LOF+5OF5 24 13 1.61 0.81–3.18 0.155

All Missense 47 47 0.92 0.61–1.39 0.698

LOF: LOFTEE algorithm predicted high confidence loss-of-function variants (stop gained, frameshift, and splice variants). For the missense 
variants, nOF5 represents n algorithms out of 5 algorithms predicated as damaging. The 5 algorithms are SIFT, PolyPhen2-HDIV, PolyPhen2­
HVAR, LRT, and MutationTaster. “All Missense” represents all the missense variants of the CORIN gene. The effect size odds ratio was estimated 
from the firth logistic regression model. The P value was estimated from the SPA test, no multiple test correction shown in the table.

CI: confidence interval.
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