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Abstract The controllability of our social environment has a profound impact on our behavior 
and mental health. Nevertheless, neurocomputational mechanisms underlying social controlla-
bility remain elusive. Here, 48 participants performed a task where their current choices either did 
(Controllable), or did not (Uncontrollable), influence partners’ future proposals. Computational 
modeling revealed that people engaged a mental model of forward thinking (FT; i.e., calculating 
the downstream effects of current actions) to estimate social controllability in both Controllable and 
Uncontrollable conditions. A large-scale online replication study (n=1342) supported this finding. 
Using functional magnetic resonance imaging (n=48), we further demonstrated that the ventro-
medial prefrontal cortex (vmPFC) computed the projected total values of current actions during 
forward planning, supporting the neural realization of the forward-thinking model. These findings 
demonstrate that humans use vmPFC-dependent FT to estimate and exploit social controllability, 
expanding the role of this neurocomputational mechanism beyond spatial and cognitive contexts.

Introduction
Humans do not always have influence over the environments which they occupy. A lack of control-
lability has a profound impact on mental health, as has been demonstrated by decades of research 
on uncontrollable stress, pain, and learned helplessness (Maier and Seligman, 1976; Maier and 
Watkins, 2005; Overmier, 1968; Weiss, 1968). Conversely, high levels of controllability have been 
associated with better mental health outcomes such as higher subjective well-being (Lachman and 
Weaver, 1998) and less negative affect (Maier and Seligman, 2016; Southwick and Southwick, 
2018). For humans, one of the most important types of controllability we need to track concerns our 
social environment. Doing this could be one of the roles of the various neural systems whose involve-
ment in social cognition is supported by mounting evidence (Atzil et al., 2018; Dunbar and Shultz, 
2007). Nevertheless, despite the importance, the neurocomputational mechanisms underlying social 
controllability have not been systematically investigated.

Based on previous work demonstrating the computational mechanisms of controllability in non-social 
environments, here we hypothesize that people use mental models to exploit social controllability, 
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for instance via forward simulation. In non-social contexts, it has been proposed that controllability 
quantifies the extent to which the acquisition of outcomes, and particularly desired outcomes, can 
be influenced by the choice of actions (Huys and Dayan, 2009; Dorfman and Gershman, 2019; 
Ligneul, 2021). In these non-social settings, agents need to learn the association between actions 
and state (event) transitions and potential outcomes in order to simulate future possibilities (Pezzulo 
et al., 2013; Szpunar et al., 2014) and make decisions (Daw et al., 2011; Dolan and Dayan, 2013; 
Doll et al., 2015; Gläscher et al., 2010). It has also been hypothesized that both under- and over-
estimation of controllability could be detrimental to behavior (Huys and Dayan, 2009) depending on 
the complexity of the environment. Yet, it remains unknown whether this is true for social controllability.

Studies on strategic decision-making (Camerer, 2011) have provided initial insight into the possible 
mechanisms underlying social controllability and influence. For example, Hampton et  al., 2008 
showed that people can learn the influence of their own actions on others during an iterative inspec-
tion game; and that the medial prefrontal cortex (mPFC) tracked expected reward given the degree 
of expected influence (Hampton et al., 2008). In other types of strategic games such as bargaining, it 
has been suggested that individuals differ drastically in their ability to manage their social images and 
exert influence on others, a behavioral phenomenon subserved by underlying neural differences in 
prefrontal regions (Bhatt et al., 2010). Furthermore, through the application of an interactive partially 
observable Markov decision process model, Hula et al., 2015 found that humans are able to use 
forward planning and mentally simulate future interactions in an iterative trust game (Hula et  al., 
2015). All of these studies suggest that learning the structure of the social environment is crucial for 
exerting influence, yet none have systematically examined the computational underpinnings of social 
controllability in a group setting where an agent plays with multiple other players that constitute a 
more social-like environment.

Neurally, along with recent findings about its role in providing a representational substrate for 
cognitive tasks (Behrens et al., 2018; Niv, 2019; Schuck et al., 2016), the ventromedial prefrontal 
cortex (vmPFC) has been shown to signal expected values across a wide range of settings (Boorman 
et al., 2009; Kable and Glimcher, 2007; FitzGerald et al., 2009; Behrens et al., 2008; Bartra et al., 
2013; Venkatraman et al., 2009). The majority of studies have focused on the role of the vmPFC in 
encoding the subjective values of non-social choices (Boorman et al., 2009; FitzGerald et al., 2009; 
Kable and Glimcher, 2007; Venkatraman et al., 2009). Nevertheless, accumulating evidence also 
pinpoints to a central role of the vmPFC in computing the value of social choices (Behrens et al., 
2008; Hampton et al., 2008; Hiser and Koenigs, 2018), such as expected values computed based 
on learned influence (Hampton et al., 2008). A recent meta-analysis suggests that both social and 
non-social subjective values reliably activate the vmPFC (Bartra et al., 2013). Thus, we expect that the 
vmPFC will also play an important role in social controllability where the value of future events should 
be simulated and computed.

In the current study, we hypothesize that humans exploit social controllability by implementing 
forward thinking (FT) and mentally simulating future interactions. In particular, we consider the long-
lasting effect that one’s current interaction with one other person can have on future interactions 
with many others who constitute the social environment, for instance by developing a reputation. We 
predict that social agents will use forward planning to take into account not only decision variables 
related to the present interaction with a current partner, but also those related to future interactions 
with other partners from the same milieu. Finally, we hypothesize that the choice values integrating 
the planned paths would be signaled in the vmPFC.

We used computational modeling and functional magnetic resonance imaging (fMRI; n=48), in 
the context of a social exchange paradigm (see Figure 1 and Materials and methods), to test the 
hypothesis that FT serves as a mechanism for social controllability. Furthermore, we replicated our 
computational findings in a large-scale online study involving more geographically diverse partici-
pants (n=1342). Both in-person and online participants completed an economic exchange task where 
they did (Controllable) or did not (Uncontrollable) influence their partners’ proposals of monetary 
offers in the future (see Figure 1a and b, and Materials and methods for details). Participants were 
told that they were playing members coming from two different teams, one each for the two control-
lability conditions (in a counterbalanced order across subjects); in fact, they played with a computer 
algorithm in both cases. Supplementary file 2 provides the task instruction provided to participants. 
To directly compare the impact of social versus non-social contexts on individuals’ decision strategies, 
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we further administered a matched controllability experiment where participants were explicitly told 
that they were playing against a computer algorithm (Figure 2—figure supplement 1 and Supple-
mentary file 1a).

Participants played against each team as the responder in a social exchange game adapted from 
the ultimatum game (Camerer, 2011) (single-shot games with 40 different partners (rounds) per team 
for the fMRI sample, and 30 rounds for the online sample). In the Uncontrollable condition, on each 
round, participants were offered a split of $20 from their partners and asked to decide whether to 
accept or reject the offer. Unbeknownst to participants, the actual offer was randomly drawn from a 
normal distribution (rounded and restricted to be between $2 and $8 (inclusive) for the fMRI sample 
and between $1 and $9 (inclusive) for the online sample; the first offer was always $5). Here, partici-
pants’ current choices had no influence on the next offers from their partners. The Controllable condi-
tion was the same except that participants could exert control over their partners using their own 
actions. Specifically, participants’ current decisions (i.e., to accept or reject the offer) influenced the 
next offers from their partners in a systematic manner. Subject only to being between $1 and $9 (inclu-
sive), partners increased the next offer by $0, $1, or $2 (probability of ⅓ each, subject to the constraints) 
if the participant rejected the present offer, and decreased the next offers by $0, $1, or $2 (probability 
of ⅓ each, again subject to the constraints) if the participant accepted the current offer (Figure 1b and 
Materials and methods). Again, the starting offer was $5. At the end of the task, after all the trials were 
completed, we asked participants to rate how much control they believed they had over their part-
ners’ offers in each condition using a 0–100 scale to measure their perceived action-offer contingency 

Figure 1. Experimental paradigm. (a) Participants played a social exchange task based on the ultimatum game. 
There were two blocks: one ‘Controllable’ condition and one ‘Uncontrollable’ condition. Order of the conditions 
was counterbalanced across participants. Each block had 40 (fMRI sample) or 30 (online sample) trials. In each trial, 
participants needed to decide whether to accept or reject the split of $20 proposed by virtual members of a team. 
In the fMRI study, participants rated their emotions after their choice in  60% of the trials. Upon the completion 
of the game, participants rated their subjective beliefs about controllability for each block. (b) The schematic of 
the offers (the proposed participants’ portion of the split) generation under the Controllable condition. Under the 
Controllable condition, if participants accepted the offer at trial t, the next offer at trial t+1 decreased by d={0, 
1, or 2} (1/3 chance each). If they rejected the offer, the next offer increased by d={0, 1, or 2} (1/3 chance for each 
option). Such contingency did not exist in the Uncontrollable condition where the offers were randomly drawn from 
a Gaussian distribution (μ=5, σ=1.2, rounded to the nearest integer, max=8, min=2) and participants’ behaviors 
had no influence on the future offers.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Emotion ratings.

https://doi.org/10.7554/eLife.64983
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(‘self-reported/perceived controllability’ hereafter). In the fMRI study, on  60% of the trials, partici-
pants were also asked about their emotional state (How do you feel?) on a scale of 0 (unhappy) to 100 
(happy) after they made a choice (i.e., 24 ratings per condition; see Figure 1—figure supplement 1).

Note that participants were not instructed about the statistics of the task environment nor the 
nature of the condition they were playing, although the instruction about the existence of two sepa-
rate teams was provided to encourage participants to learn contingent rules and norms within each 
condition (Supplementary file 2). If participants were able to detect social controllability correctly 

Figure 2. Model-agnostic behavioral results. (a1) Participants raised the offers along the trials when they had 
control (Controllable), compared to when they had no control (Uncontrollable). (a2) The mean offer size was higher 
for the Controllable (C) than Uncontrollable (U) condition (meanC=5.9, meanU=4.8, t(47.45)=4.33, p<0.001). (b1) 
Overall rejection rates were not different between the two conditions (meanC=50.8%, meanU=49.1%, t(67.87)=0.43, 
p=0.67). (b2) However, participants were more likely to reject middle and high offers when they had control 
(low ($1–3): meanC=77%, meanU=87%, t(22)=–1.35, p=0.19; middle ($4–6): meanC=66%, meanU=45%, t(47)=5.41, 
p<0.001; high ($7–9): meanC=28%, meanU=8%, t(72.50)=4.00, p<0.001). Each offer bin for the Controllable in (b2) 
represents 23, 48, and 41 participants who were proposed the corresponding offers at least once, whereas each 
bin for the Uncontrollable represents all 48 participants. The t-test for each bin was conducted for those who 
had the corresponding offers for both conditions. (c) The self-reported controllability ratings were higher for the 
Controllable than Uncontrollable condition (meanC=65.9, meanU=43.7, t(74.55)=4.10, p<0.001; eight participants 
were excluded due to missing data). (d) Response times were longer for the Controllable than the Uncontrollable 
condition (meanC=1.75±0.38, meanU=1.53±0.38; paired t-test t(47)=4.34, p<0.001), suggesting that participants 
were likely to engage more deliberation during decision-making in the Controllable condition. A paired t-test was 
used for the rejection rates for low and middle offers and the self-reported controllability ratings. The t-statistics 
for the mean offer size, overall rejection rate, rejection rate for high offers, and self-reported controllability are from 
two-sample t-tests assuming unequal variance using Satterthwaite’s approximation according to the results of the 
F-tests for equal variance. Error bars and shades represent SEM; ***p<0.001; n.s. indicates not significant. For (a2, 
b1, c, d), each line represents a participant and each bold line represents the mean.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Behavioral results of a non-social controllability task.

Figure supplement 2. Rejection rates as a function of offer size.

Figure supplement 3. Response time.

Figure supplement 4. Shift ratio.

https://doi.org/10.7554/eLife.64983
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within each condition, they would show strategic decisions that exert appropriate levels of control 
over others’ subsequent choices.

Results
Participants distinguished between controllable and uncontrollable 
environments
We first examined whether participants’ choices were sensitive to the difference in controllability 
between the two social environments, noting that there was no explicit instruction about this differ-
ence. Our primary measures here were the offer sizes participants received in each condition, their 
rejection behavior, and their self-reported controllability. If individuals learned the action-offer contin-
gency of the controllable environment, we should observe that (1) offers received under the Control-
lable condition would be pushed up to a higher level than those under the Uncontrollable condition; 
(2) people would need to reject more offers to obtain larger future offers under the Controllable than 
the Uncontrollable condition; and (3) people would report higher self-reported controllability for the 
Controllable than for the Uncontrollable condition.

First, we found that despite the same starting offer of $5, participants indeed received higher offers 
over time under the Controllable compared to the Uncontrollable condition (meanC=5.9, meanU=4.8, 
t(47.45)=4.33, p<0.001; Figure 2a1, a2), indicating that individuals in general successfully exerted 
influence over the offers made by partners when they were given control.

Next, we examined the rejection patterns from the two conditions. On average, rejection rates 
in the two conditions were comparable (meanC=50.8%, meanU=49.1%, t(67.87)=0.43, p=0.67; 
Figure 2b1). By separating the trials each individual experienced into three levels of offer sizes (low: 
$1–3, medium: $4–6, and high: $7–9) and then aggregating across all individuals, we further exam-
ined whether rejection rates varied as a function of offer size. We found that participants were more 
likely to reject medium to high ($4–9) offers in the Controllable condition, while they showed compa-
rable rejection rates for the low offers ($1–3) between the two conditions (low ($1–3): meanC=77%, 
meanU=87%, t(22)=–1.35, p=0.19; middle ($4–6): meanC=66%, meanU=45%, t(47)=5.41, p<0.001; 
high ($7–9): meanC=28%, meanU=8%, t(72.50)=4.00, p<0.001; Figure  2b2; see Figure  2—figure 
supplement 2 for rejection rates by each offer size). These results suggest that participants behaved 
in a strategic way to utilize their influence over the partners. One possible confound is that individ-
uals may have experienced different affective states in the two conditions and changed their choice 
behaviors. However, this seemed unlikely because there was no significant difference in emotional 
rating between the Controllable and the Uncontrollable conditions (Figure 1—figure supplement 1).

As additional evidence that participants distinguished the controllability between conditions, we 
compared self-reported beliefs about controllability between the two conditions. Indeed, participants 
reported higher self-reported controllability for the Controllable than the Uncontrollable condition 
(meanC=65.9, meanU=43.7, t(74.55)=4.10, p<0.001; Figure 2c). Besides the clear indication of indi-
viduals’ recognition of the difference in controllability between conditions, the mean level of self-
reported controllability for the Uncontrollable condition was 43.7%, which was still substantially higher 
than their actual level of controllability on future offers made by the partners (0%). This result might 
suggest that participants could develop an illusory sense of control when they had no actual influence 
over their partners’ offers.

In addition, we examined response times as an exploratory analysis and found that participants 
took longer time to make their decisions in the Controllable condition than the Uncontrollable condi-
tion. These results again suggest that participants differentiated the controllability between conditions 
(meanC=1.75±0.38, meanU=1.53±0.38; paired t-test t(47)=4.34, p<0.001; Figure 2d). Taken together, 
these findings demonstrate that participants were able to exploit and perceive their influence in a 
social environment when they had influence, although they have developed an illusion of control, at 
least to some degree, even when controllability did not exist. We delineate the computational mech-
anisms underlying these behaviors in the next sections.

Participants used forward thinking to exploit social controllability
We constructed computational models of participants’ choices and sought to investigate what cogni-
tive processes might underlie people’s ability to exploit social controllability. Previous studies on 

https://doi.org/10.7554/eLife.64983
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Figure 3. Computational modeling of social controllability. (a) The figure depicts how individuals’ simulated 
value of the offers evolves contingent upon the choices along the future steps under the Controllable condition. 
Future simulation was assumed to be deterministic (only one path is simulated instead of all paths being visited 
in a probabilistic manner). The solid and thicker arrows represent an example of a simulated path. To examine 
how many steps along the temporal horizon participants might simulate to exert control, we tested the candidate 
models considering from zero to four steps of the future horizon. (b) For both the Controllable and Uncontrollable 
conditions, the forward thinking (FT) models better explained participants’ behavior than the 0-step model. The 2-
step FT model was selected for further analyses, because the improvement in the DIC score (Draper’s Information 
Criteria; Draper, 1995) was marginal for the models including further simulations (paired t-test comparing 2-step 
FT model with (i) 0-step Controllable: t(47)=–4.45, p<0.0001, Uncontrollable: t(47)=–4.21, p<0.001; (ii) 1-step 
Controllable: t(47)=–4.41, p<0.0001, Uncontrollable: t(47)=–3.01, p<0.001; (iii) 3-step Controllable: t(47)=0.39, 
p=0.70, Uncontrollable: t(47)=–0.04, p=0.97; (iv) 4-step Controllable: t(47)=0.06, p=0.95, Uncontrollable: t(47)=–
0.12, p=0.91). (c) The choices predicted by the 2-step FT model were matched with individuals’ actual choices with 
an average accuracy rate of  83.7% for the Controllable and  90.1% for the Uncontrollable. Each bold black line 
represents mean accuracy rate. (d) The levels of expected influence drawn from the 2-step FT model were higher 
for the Controllable than the Uncontrollable (meanC=1.33, meanU=0.98, t(47)=2.90, p<0.01). Each line represents a 
participant and each bold line represents the mean. (e) The expected influence was positively correlated between 
the Controllable and the Uncontrollable conditions (R=0.30, p<0.05). (f) The self-reported controllability was not 
significantly correlated between the conditions (R=–0.18, p=0.26). (g) Under the Controllable condition, expected 
influence correlated with mean offers (R=0.78, p<<0.0001). Each dot represents a participant. Error bars and 
shades represent SEM; ****p<0.0001; ***p<0.001; **p<0.01; *p<0.05. C, controllable; U, Uncontrollable.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure 3 continued on next page

https://doi.org/10.7554/eLife.64983
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value-based decision-making have shown that people can use future-oriented thinking and mentally 
simulate future scenarios when their current actions have an impact on the future (Daw et al., 2011; 
Gläscher et al., 2010; Lee et al., 2014; Moran et al., 2019). Relying on this framework, we hypoth-
esized that individuals use FT to estimate the impact of their behavior on future social interactions.

To test this hypothesis, we constructed a set of FT models which assume that an agent computes 
the values of action (here, accepting or rejecting) by summing up the current value (CV) and the 
future value (FV) based on her estimation of the amount of controllability she has over the social 
interactions. These models also incorporate social norm adaptation (Gu et al., 2015) to characterize 
how individuals’ aversion thresholds to unfairness is adjusted by observing the counterpart teams’ 
proposals (Fehr and Schmidt, 1999) (see Materials and methods for details). The key individual-level 
parameter-of-interest in this model is the ‘expected influence,’ δ, representing the amount of the offer 
changes that participants thought they would induce by rejecting the current offer (see Materials and 
methods). We constrained the range of δ using a sigmoid function to −$2 to $2, in order to match with 
the range participants observed in the Controllable condition ($0–2) and to encompass what could 
happen in the Uncontrollable condition (−$2 to $0). Moreover, we considered the number of steps 
one calculates into the future (i.e., planning horizon; Figure 3a). We compared models that consid-
ered from one to four steps further in the future in addition to standalone social learning (‘0-step;’ 
also see Figure 3—figure supplement 5 for comparison with a model-free [MF] learning). The 0-step 
model only considers the utility at the current state. All other components including the utility function 
of the immediate rewards, and the variable initial norm and norm learning incorporated in the utility 
function are shared across all the candidate models. In model fitting, we excluded the first 5 out of 40 
trials for the fMRI sample (30 trials for the online sample) to exclude initial exploratory behaviors and 
to focus on stable estimation of controllability. We also excluded the last five trials because subjects 
might adopt a different strategy toward the end of the interaction (e.g., ‘cashing out’ instead of trying 
to raise the offers higher).

The results showed that for both conditions (Controllable, Uncontrollable), all FT models signifi-
cantly better explained participants’ choices than the standalone norm learning model without FT 
(0-step model) (Gu et al., 2015), as indexed by Draper’s Information Criteria (DIC) (Draper, 1995) 
scores averaged across individuals (paired t-test comparing 2-step FT model with 0-step model 
Controllable: t(47)=–4.45, p<0.0001; Uncontrollable: t(47)=–4.21, p<0.001; Figure 3b). In addition, 
not all parameters were recoverable in parameter recovery analysis using the 0-step model (e.g., 
sensitivity to norm violation; Controllable: r=–0.03, p=0.82; Uncontrollable: r=0.20, p=0.15) whereas 
all the parameters from the FT models were identifiable (see Figure 3—figure supplement 3a-j for 

Figure supplement 1. Model recovery analyses.

Figure supplement 2. Adaptive norm learning versus static norm models.

Figure supplement 3. Parameter recovery.

Figure supplement 4. fMRI sample: results without those who had negative deltas.

Figure supplement 5. Comparison with model-free (MF) learning.

Figure 3 continued

Table 1. Parameter estimates from the 2-step forward thinking (FT) model.

Inverse 
temperature

Sensitivity to norm 
violation Initial norm

Adaptation 
rate

Expected 
influence

Mean (SD) β α f0 ε δ

Controllable

fMRI sample 8.33 (8.55) 0.76 (0.29) 8.21 (7.14) 0.24 (0.24) 1.33 (0.79)

Online sample 9.77 (8.54) 0.74 (0.29) 9.01 (7.26) 0.32 (0.31) 1.34 (0.84)

Uncontrollable

fMRI sample 10.38 (8.84) 0.79 (0.31) 8.84 (6.96) 0.29 (0.24) 0.98 (0.62)

Online sample 12.94 (7.66) 0.78 (0.23) 9.07 (6.31) 0.24 (0.24) 0.90 (1.06)

https://doi.org/10.7554/eLife.64983
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parameter recovery of the 2-step model). These results suggest that participants engaged in future-
oriented thinking and specifically, calculated how their current choice might affect subsequent social 
interactions, regardless of the actual level of controllability of the environment.

The FT models with longer planning horizon tend to show smaller DIC scores (i.e., better model 
fit), but the fit improvement became marginal after two steps (paired t-test comparing 2-step FT 
model with (i) 1-step Controllable: t(47)=–4.41, p<0.0001, Uncontrollable: t(47)=–3.01, p<0.001; (ii) 
3-step Controllable: t(47)=0.39, p=0.70, Uncontrollable: t(47)=–0.04, p=0.97; (iii) 4-step Controllable: 
t(47)=0.06, p=0.95, Uncontrollable: t(47)=–0.12, p=0.91; Figure 3b). The 2-step FT model predicted 
participants’ choices with an average accuracy rate of  83.7% for the Controllable and  90.1% for the 
Uncontrollable condition (Figure 3c), which was higher than the 1-step model for the Controllable 
condition (Controllable  78.4% (t(47)=–3.63, p<0.001), Uncontrollable  88.7% (t(47)=–1.45, p=0.15)) 
and comparable with the models with longer planning horizon (3-step model: Controllable  84.0% 
(t(47)=0.20, p=0.84), Uncontrollable  90.7% (t(47)=0.62, p=0.53); 4-step model: Controllable  84.0% 
(t(47)=0.21, p=0.84), Uncontrollable  90.2% (t(47)=0.09, p=0.93)). Particularly, the parameter of our 
interest, expected influence δ, was better identified and recovered in general for the 2-step model 
(Controllable r=0.87, Uncontrollable r=0.79) compared to the other models (1-step model: Control-
lable r=0.80, Uncontrollable r=0.68; 3-step model: Controllable r=0.81, Uncontrollable r=0.68; 4-step 
model: Controllable r=0.89, Uncontrollable r=0.68). We thus used parameters from the 2-step FT 
model for subsequent analyses (see Table 1 for a full list of parameters from this model).

It might seem counterintuitive that participants engaged a 2-step FT model to estimate the future 
impact of their current choices under the Uncontrollable condition. However, as in most real-life situ-
ations where the controllability of our social interactions is unknown or uncertain, participants were 
not explicitly told about the uncontrollability of the environment. Indeed, they incorrectly estimated 
that they could exert at least some control (Figure 2c). Thus, we infer that individuals attempted to 
make strategic decisions with belief that they have some controllability over the social environment 
independent of the actual controllability.

Given that participants were successful in raising offers in the Controllable condition (Figure 2a), 
we predicted that the expected influence parameter ‍δ‍ would differ between the two conditions. 
Indeed, we found that the expected influence parameter estimates drawn from the 2-step FT model 
were higher for the Controllable than for the Uncontrollable condition (meanC=1.33, meanU=0.98, 
t(47)=2.90, p<0.01; Figure  3d), indicating that participants simulated greater levels of controlla-
bility when environments were in fact controllable than when they were uncontrollable. Interestingly, 
despite the systematic difference between the two conditions, the expected influence was still posi-
tively correlated between the conditions (r=0.30, p<0.05; Figure 3e), suggesting a trait-like character-
istic of the parameter. This is in contrast with the self-reported belief about controllability, which was 
not correlated between the conditions (r=–0.18, p=0.26; Figure 3f; correlation between expected 
influence and self-reported controllability is listed in Figure 4—figure supplement 4a-d). Further-
more, we observed a positive association between expected influence and task performance during 
the Controllable condition (r=0.78, p<<0.0001; Figure 3g). This result suggests that those who simu-
lated a greater level of controllability were able to raise the offers higher, indicating the beneficial 
effect of doing so.

Comparison with a non-social controllability task
To investigate whether our results are specific to the social domain, we ran a non-social version of the 
task in which participants (n=27) played the same game with the instruction of ‘playing with computer’ 
instead of ‘playing with virtual human partners.’ Using the same computational models, we found that 
not only participants exhibited similar choice patterns (Figure 2—figure supplement 1a-c), but also 
the 2-step FT model was still favored in the non-social task (Figure 2—figure supplement 1d,e) and 
that delta was still higher for the Controllable than the Uncontrollable condition (Figure 2—figure 
supplement 1f, meanC=1.31, meanU=0.75, t(26)=2.54, p<0.05).

Interestingly, a closer examination of subjective data revealed two interesting differences in the 
non-social task compared to the social task. First, participants’ subjective report of controllability 
did not differentiate between conditions in the non-social task (Figure 2—figure supplement 1g; 
meanC=62.7, meanU=56.9, t(25)=0.78, p=0.44), which suggests that the social aspect of an envi-
ronment might have a unique effect on subjective beliefs about controllability. Second, inspired by 
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previous work demonstrating the impact of reward prediction errors (RPEs) on emotional feelings 
(Rutledge et al., 2014), we examined the impact of norm PE (nPE) on emotion ratings for the non-
social and social contexts using a mixed effect regression model (Supplementary file 1a). We found 
a significant interaction between social context and nPE (‍β‍=0.52, p<0.05), suggesting that the non-
social context reduced the impact of nPE on emotional feelings. Taken together, these new results 
suggest that despite of a similar involvement of FT in exploiting controllability, the social context had 
a considerable impact on subjective experience during the task.

Replication of behavioral and computational findings in a large-scale 
online study
To test replicability and generalizability of our findings, we recruited 1342 participants from Prolific 
(http://​prolific.​co), an online survey platform, and had them play the game online (see Materials and 
methods for details). Notably, this online sample was more demographically diverse than the fMRI 
‘healthy’ control, because we recruited them without any pre-screening or geographical constraints 
within the United States. Despite the greater level of diversity, the three model-agnostic findings 
remained robust. First, we found that the offer size increased throughout the trials under the Control-
lable condition, replicating the results from the fMRI sample (meanC=6.0, meanU 5.0, t(1,341)=20.29, 
p<<0.0001; Figure 4a). Second, the rejection pattern was different between the two conditions, with 
a more flattened rejection curve for the Controllable than for the Uncontrollable condition (low ($1–3): 
meanC=66%, meanU=86%, t(741.54)=–12.28, p<<0.0001; middle ($4–6): meanC=67%, meanU=59%, 
t(2,606)=5.96, p<<0.0001; high ($7–9): meanC=47%, meanU=15%, t(1,925)=31.67, p<<0.0001; 
Figure  4b). Specifically, the online participants rejected more medium and high offers under the 
Controllable than the Uncontrollable, similar to the fMRI participants. Furthermore, for low offers, 
online participants showed significantly lower rejection rates under the Controllable than the Uncon-
trollable condition, which trend was not statistically significant for the fMRI sample. Third, online 
participants reported higher perceived control for the Controllable than the Uncontrollable as fMRI 
participants did (meanC=58.3, meanU=25.6, t(2,579)=27.93, p<<0.0001; Figure 4c).

Next, we tested whether the 2-step FT model performs as well for the large online sample as 
for the fMRI sample. First, we assessed the accuracy rate of the 2-step FT model’s choice predic-
tion; the mean of which was  80.2% for the Controllable and  93.9% for the Uncontrollable condition 
(Figure 4—figure supplement 1a). The parameters of the 2-step FT model were identifiable for the 
online sample as well (Figure 4—figure supplement 1b-k). Not only the model performance, but 
also the individual estimation results revealed consistency between the two heterogeneous samples. 
The parameter estimates for the online sample were comparable with the fMRI sample as shown in 
Table 1. The expected influence drawn from the 2-step FT model was higher for the Controllable than 
the Uncontrollable (meanC=1.34, meanU=0.90, t(1,341)=12.97, p<<0.0001; Figure 4d). Yet, consistent 
with the fMRI sample, the parameters for the two conditions were correlated (r=0.18, p<<0.0001; 
Figure 4e). The self-reported controllability showed a negative correlation between the conditions 
(r=–0.10, p<0.001; Figure 4f). In addition, the expected influence was positively correlated with the 
mean offer size (r=0.50, p<<0.0001; Figure 4g). Taken together, our independent large-scale repli-
cation results show that our suggested future thinking model explains decision processes involved in 
social controllability of a general population.

The vmPFC computed summed choice values from the 2-step FT model
A computational model that could explain cognitive processes should not only fit choice behavior 
well, but also be represented by neurobiological substrates in the brain (i.e., biological plausibility) 
(Cohen et al., 2017; O’Doherty et al., 2007; Wilson and Collins, 2019). Accordingly, we expected 
that the total (both current and future) choice values estimated by the 2-step FT model, but not 
those from the 0-step model (only CVs), would be signaled in the vmPFC, a brain region that is 
known to process subjective values (Bartra et  al., 2013; Hiser and Koenigs, 2018) during both 
social and non-social decision-making. To test this hypothesis, we regressed at the individual level 
trial-by-trial simulated normalized total values (TVs) of the chosen option drawn from the 2-step FT 
model (or the 0-step model in a separate GLM) as parametric modulators against event-related blood-
oxygen-level-dependent (BOLD) responses recorded during fMRI (see Materials and methods). These 
analyses showed that the BOLD signals in the vmPFC tracked the value estimates drawn from the 
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Figure 4. Replication of the behavioral and computational results in an independent large online sample (n=1342). (a) Online participants successfully 
increased the offer under the Controllable condition as fMRI participants did (meanC=6.0, meanU=5.0, t(1,341)=20.29, p<<0.0001). (b) Rejection rates 
binned by offer sizes differed between the two conditions in the online sample (low ($1–3): meanC=66%, meanU=86%, t(741.54)=–12.28, p<<0.0001; 
middle ($4–6): meanC=67%, meanU=59%, t(2,606)=5.96, p<<0.0001; high ($7–9): meanC=47%, meanU=15%, t(1,925)=31.67, p<<0.0001). (c) Online 
participants reported higher self-reported controllability for the Controllable than Uncontrollable (meanC=58.3, meanU=25.6, t(2,579)=27.93, p<<0.0001). 
(d) Consistent with the fMRI sample, expected influence was higher for the Controllable than the Uncontrollable for the online sample (meanC=1.34, 
meanU=0.90, t(1,341)=12.97, p<<0.0001). (e) The expected influence was correlated between the two conditions (r=0.18, p<<0.0001). (f) The self-
reported controllability showed negative correlation between the two conditions for the online sample (r=–0.10, p<0.001). (g) The significant correlation 
between expected influence and mean offers under the Controllable was replicated in the online sample (r=0.50, p<<0.0001). Each dot represents a 
participant. The t-statistics for the mean offer size, binned rejection rate, and self-reported controllability are from two-sample t-tests assuming unequal 
variance using Satterthwaite’s approximation according to the results of F-tests for equal variance. Error bars and shades represent SEM. For (c, d), each 
line represents a participant and each bold line represents the mean. C, controllable; U, Uncontrollable.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Model accuracy and parameter recovery for the online sample.

Figure supplement 2. Cross-parameter correlations.

Figure supplement 3. Online sample: results without those who had negative deltas.

Figure supplement 4. Correlations between expected influence and self-reported controllability for each condition and each sample.

https://doi.org/10.7554/eLife.64983
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2-step planning model across both conditions (PFDR <0.05, k>50; Figure 5a, Supplementary file 1e), 
and there was no significant difference between the two conditions (PFDR <0.05). In contrast, BOLD 
responses in the vmPFC did not track the trial-by-trial value estimates from the 0-step model, even 
at a more liberal threshold (p<0.005 uncorrected, k>50; Figure 5b, Supplementary file 1f). We also 
conducted model comparison at the neural level using the MACS toolbox (see Figure  5—figure 
supplement 3 for details) and found that the vmPFC encoded TVs rather than only CV or FV.

These whole-brain analyses results were further corroborated by a set of independent region-of-
interest (ROI) analyses. Specifically, we created a vmPFC ROI based on the peak coordinate from an 
independent meta-analysis on social decision making (an 8-mm-radius sphere centered at [6, 52, −16]) 
(Feng et al., 2015) and extracted parameter estimates from the mask. This analysis showed that the 
vmPFC ROI coefficients for the choice values were significantly greater for the 2-step model than for 
the 0-step model regardless of the condition (Controllable: t(46)=1.81, p<0.05 (one-tailed); Uncon-
trollable: t(46)=2.04, p<0.05 (one-tailed); Figure 5c). Indeed, the ROI coefficients based on the 2-step 
model were significantly larger than zero for each condition (Controllable: meanC=0.29, t(47)=1.96, 
p<0.05 (one-tailed); Uncontrollable: meanU=0.24, t(47)=2.14, p<0.05 (one-tailed); Figure 5c) whereas 
these coefficients for the choice values (CV only) based on the 0-step model were not significant 
for either condition (Controllable: meanC=0.09, t(46)=0.69, p=0.25 (one-tailed); Uncontrollable: 
meanU=0.12, t(46)=1.17, p=0.12 (one-tailed); Figure  5c). These findings suggest that individuals 
engaged the vmPFC to compute the projected total (current and future) values of their choices during 
FT. Furthermore, vmPFC signals were comparable between the two conditions both in the whole-
brain analysis and the ROI analyses. Consistent with our behavioral modeling results, these neural 
results further support the notion that humans computed summed choice values regardless of the 
actual controllability of the social environment.

Figure 5. The ventromedial prefrontal cortex (vmPFC) computes projected summed choice values in exerting social controllability. (a) The vmPFC 
parametrically tracked mentally simulated values of the chosen actions drawn from the 2-step forward thinking (FT) model in both conditions (PFDR <0.05, 
k>50). (b) No activation was found in the brain including the vmPFC in relation with the value signals estimated from the 0-step model at a more liberal 
threshold (p<0.005, uncorrected, k>50). (c) The vmPFC ROI coefficients for the 2-step FT’s value estimates were significantly greater than 0 for both 
the Controllable and Uncontrollable conditions (Controllable: meanC=0.29, t(47)=1.96, p<0.05 (one-tailed); Uncontrollable: meanU=0.24, t(47)=2.14, 
p<0.05 (one-tailed)) whereas the coefficients from the same ROI for 0-step’s value estimates were not significant for either condition (Controllable: 
meanC=0.09, t(46)=0.69, p=0.25 (one-tailed); Uncontrollable: meanU=0.12, t(46)=1.17, p=0.12 (one-tailed)). The vmPFC coefficients were significantly 
higher under the 2-step model than the 0-step model for both the Controllable and Uncontrollable conditions (Controllable: t(46)=1.81, p<0.05 (one-
tailed); Uncontrollable: t(46)=2.04, p<0.05 (one-tailed)). The coefficients were extracted from an 8-mm-radius sphere centered at [6, 52, −16] based on 
a meta-analysis study that assessed neural signatures in the ultimatum game (Feng et al., 2015). Error bars represent SEM; *p<0.05; n.s. indicates not 
significant. C, Controllable; ROI, region-of-interest; U, Uncontrollable.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Neural encoding of value in the vmPFC is associated with behavior-belief disconnect under the Uncontrollable condition.

Figure supplement 2. Current and future value signals.

Figure supplement 3. GLM comparison at the neural level.

Figure supplement 4. Norm prediction error signals.

Figure supplement 5. Norm signals.
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In addition, we examined whether norm prediction errors (nPEs) and norm estimates themselves 
from the 2-step FT model were tracked in the brain. We found that nPEs were encoded in the ventral 
striatum (VS; [4, 14, −14]) and the right anterior insula (rAI; [32, 16, −14]) for the Controllable condition 
(Figure 5—figure supplement 4a), while these signals were found in the anterior cingulate cortex 
(ACC; [2, 46, 16]) for the Uncontrollable condition (Figure 5—figure supplement 4b) at PFWE <0.05, 
small volume corrected. All three regions have been suggested to encode prediction errors in other 
norm learning tasks (Xiang et  al., 2013). We further contrasted the whole-brain map of the two 
conditions and found that the VS ([4, 14, −14]) and the rAI ([32, 16, −14]) had significantly greater 
BOLD responses for the Controllable than the Uncontrollable condition (PFWE <0.05, small volume 
corrected; Figure 5—figure supplement 4c) whereas the ACC ([2, 46, 16]) response under the Uncon-
trollable condition was not significantly greater than the Controllable condition at the same threshold 
(Figure  5—figure supplement 4d). We also found that internal norm-related BOLD signals were 
tracked in the VS ([10, 16, −2]) for the Controllable condition (Figure 5—figure supplement 4a), and 
in the rAI ([28, 16, −6]) and the amygdala ([18, −6, −8]) for the Uncontrollable condition (Figure 5—
figure supplement 5b) at PFWE <0.05, small volume corrected. However, the difference between the 
conditions was not statistically significant in the whole-brain contrast (Figure 5—figure supplement 
5c-d). Taken together, these results suggest that the controllability level of the social interaction modu-
lates neural encoding of internal norm representation and adaptation, expanding our previous knowl-
edge about the computational mechanisms of norm learning (Gu et al., 2015; Xiang et al., 2013).

Finally, in an exploratory analysis, we examined the behavioral relevance of these neural signals in 
the vmPFC beyond the tracking of trial-by-trial values. Recall that despite the significant activations 
of the vmPFC in both conditions, individuals still exhibited different levels of self-reported controlla-
bility and the expected influence. Furthermore, there was condition-dependent discrepancy between 
the self-reported controllability and the expected influence (Figure  4—figure supplement 4a-d). 
Thus, we examined whether neural encoding of value in the vmPFC might relate to this discrep-
ancy depending on the controllability of the environment. To do this, we assessed the correlation 
between extracted parameter estimates from the vmPFC and the disconnection between the belief 
and the expected influence (i.e., the ‘biased belief’ computed by subtracting the normalized expected 
influence from the normalized self-reported controllability). We found that the correlation between 
vmPFC-encoded value signals and the belief-behavior disconnection was indeed dependent on the 
condition (difference in slope: Z=2.40, p<0.05). Specifically, vmPFC signals were positively correlated 
with the disconnection between self-reported controllability and expected influence in the uncon-
trollable environment (r=0.35, p<0.05; Figure 5—figure supplement 1a), but not in the controllable 
environment (r=–0.14, p=0.38; Figure  5—figure supplement 1b). These results suggest that the 
meaning of vmPFC encoding of value signals could be context-dependent—and that heightened 
vmPFC signaling in uncontrollable situations is related to overly optimistic beliefs about controllability.

Discussion
For social animals like humans, it is crucial to be able to exploit the controllability of our social interac-
tions and to consider the long-term social effects of our current choices. This study provides a mech-
anistic account for how humans identify and use social controllability. In two independent samples 
of human participants, we demonstrate that (1) humans are capable of exploiting the controllability 
of their social interactions and exert influence on social others when given the opportunity, and that 
(2) they do so by engaging a mental model of FT and calculating the downstream effects of their 
current social choices. By using model-based fMRI analytic approach, we demonstrate that the vmPFC 
represents combined signals of CV and FV during forward social planning; and that this neural value 
representation was positively associated with belief-behavior disconnect in the Uncontrollable condi-
tion. These findings demonstrate that people use vmPFC-dependent FT to guide social choices, 
expanding the role of this neurocomputational mechanism beyond subjective valuation.

FT is an important high-level cognitive process that is frequently associated with abstract reasoning 
(Hegarty, 2004), planning (Szpunar et al., 2014), and model-based control (Constantinescu et al., 
2016; Daw et al., 2011; Gläscher et al., 2010; Schuck et al., 2016; Wang et al., 2018). Also known 
as prospection, FT has been suggested to involve four intertwined modes: mental simulation, predic-
tion, intention, and planning (Szpunar et al., 2014). All four modes are likely to have taken place 
in our study, as our FT model implies that a social decision-maker mentally simulates social value 
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functions into the future, predicts how her action would affect the following offers from partners, sets 
a goal of increasing future offers, and plans steps ahead to achieve the goal. Future studies will be 
needed to disentangle the neurocomputational mechanisms underlying each of these modes.

Critically relevant to the current study, previous research suggests that humans can learn and stra-
tegically exploit controllability during various forms of exchanges with others (Bhatt et  al., 2010; 
Camerer, 2011; Hampton et al., 2008; Hula et al., 2015). The current study is in line with this litera-
ture and expands beyond existing findings. Here, we show that humans can also exploit controllability 
and exert their influence even when interacting with a series of other players (as opposed to a single 
other player as tested in previous studies). Furthermore, our 2-step FT model captures the explicit 
magnitude of controllability in individuals’ mental models of an environment, which can be intuitively 
compared to subjective, psychological controllability. Finally, our 2-step FT model simultaneously 
incorporates aversion to norm violation and norm adaptation, two important parameters guiding 
social adaptation (Fehr, 2004; Gu et al., 2015; Spitzer et al., 2007; Zhang and Gläscher, 2020). 
These individual- and social-specific parameters will be crucial for examining social deficits in various 
clinical populations in future studies.

Our key parameter from the FT model is δ, the expected influence that individuals would be 
mentally simulating during decision processes. We found that individuals who showed higher δ 
performed better in terms of achieving higher offers from their partners under the Controllable condi-
tion, suggesting a direct association between FT and performance in strategic social interaction. 
Although δ was higher in the Controllable than the Uncontrollable condition, one surprising finding 
is that people’s behavior was better explained by the 2-step FT model than the 0-step no planning 
model even for the Uncontrollable condition. In addition, we did not find any significant differences 
in vmPFC encoding of controllability between the conditions. These results suggest that participants 
still expected some level of influence (controllability) over their partners’ offers even when environ-
ment was in fact uncontrollable. Furthermore, δ was positively correlated between the conditions, 
indicating the stability of the mentally simulated controllability across situations within an individual. 
We speculate that people still attempted to simulate future interactions in uncontrollable situations 
due to their preference and tendency to control (Leotti and Delgado, 2014; Shenhav et al., 2016).

Our modeling result was corroborated by neural findings of simulated total choice value encoding 
in the vmPFC regardless of the actual social controllability of conditions. There are currently at least 
two distinct views about the role of the vmPFC. The first view considers the vmPFC to encode a 
generic value signal (e.g., the common currency; Levy and Glimcher, 2012), including the value of 
social information (Behrens et al., 2008; Chung et al., 2015) and anticipatory utility (Iigaya et al., 
2020). An alternative theory suggests that the vmPFC represents mental maps of state space (Schuck 
et  al., 2016) and of conceptual knowledge (Constantinescu et  al., 2016), in addition to other 
‘map’-encoding brain structures such as the hippocampus (O’keefe and Nadel, 1978; Tavares et al., 
2015) and entorhinal cortex (Stensola et  al., 2012). Of course, these views of the vmPFC might 
not necessarily be in contradiction. Instead, the exact function of the vmPFC could depend on the 
specific setup of the task environment. In the particular case of our task, as explicit values are inher-
ently embedded in each state (i.e., each interaction), the vmPFC computed a summed value of not 
only the current state, but also future states. That is, both types of computations could be required 
to calculate the total downstream values of current social choices in our experimental setup. We 
also found that vmPFC signal was amplified by illusory beliefs only when the social environment was 
uncontrollable (but not when environment was controllable), suggesting that the behavioral relevance 
of value-encoding in the vmPFC is context-dependent. Taken together, our neural results illustrate a 
role of the vmPFC in constructing the TVs (both CV and FV) of current actions as humans engaged 
in forward planning during social exchange; and that these vmPFC-encoded values signals can be 
counterproductive and relate to exaggerated illusory beliefs about controllability when environment 
does not allow control.

Given our results, it is compelling to design tasks that focus on the way that subjects learn the 
model of an environment (in our terms, acquiring a value for the parameter ‍δ‍) in early trials or build 
complex models of their partners’ minds (as in a cognitive hierarchy; Camerer et al., 2004). Indeed, 
even though, in our task, the straightforward model based on norm-adjustment characterized partici-
pants’ behavior well, there are more sophisticated alternatives that are used to characterize interper-
sonal interactions, such as the framework of interactive partially-observable Markov decision processes 
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(Gmytrasiewicz and Doshi, 2005; Gu et al., 2015; Xiang et al., 2012). These might provide addi-
tional insights into the sorts of probing that our subjects presumably attempted in early trials to gauge 
controllability (and the ways this differs in both the Controllable and the Uncontrollable conditions 
between subjects who do and do not suffer from substantial illusions of control). The framework would 
also allow us to examine whether our subjects thought that their partners built a model of them them-
selves (as in theory-of-mind or a cognitive hierarchy; Camerer et al., 2004), which would add extra 
richness to the interaction, and allow us to capture individual trajectories regarding social interactions 
in a finer detail—if, for instance, our subjects might have become irritated (Hula et al., 2015) at their 
partners’ unwillingness to respond to their social signaling under the Uncontrollable condition.

The current study has the following limitations. First, due to the nature of the study design (i.e., 
reduction in uncertainty within the sequence of offers might be an inherent feature to controllability), 
the distributions of overall offers were not completely matched between conditions and may affect 
individuals’ belief about their controllability. We did not find evidence that uncertainty or autocorrela-
tion affected the expected influence or self-reported controllability and that reduction in uncertainty 
might be an inherent feature to controllability (Supplementary file 1g). Still, future experimental 
designs which dissociate change in uncertainty from change in controllability may better address 
potentially different effects of controllability and uncertainty on choice behavior and neural responses. 
Second, the lack of clear instruction in different controllability conditions in our study may have 
affected the extent to which individuals exploit controllability and develop illusion of control. Future 
studies implementing explicit instructions might be better suited to examine controllability-specific 
behaviors and neural substrates.

In summary, the current study provides a mechanistic account for how people exploit the controlla-
bility of their social environment. Our finding expands the roles of the vmPFC and model-based plan-
ning beyond spatial and cognitive processes. The implications of these findings could be far-reaching 
and multifaceted, as the proposed model not only showcases how FT can help optimize normative 
social behavior, as often required during strategic social interaction (e.g., negotiation, reputation 
building, and social networking), but may also help us understand how aberrant computation of social 
controllability may contribute to mental health symptoms and deterioration of group cooperation and 
trust in future studies.

Materials and methods
MRI participants
The study was approved by the Institutional Review Board of the University of Texas at Dallas and the 
University of the Texas Southwestern Medical Center (S.N., V.G.F, and X.G.’s previous institute where 
data were collected). The sample size was computed by G*Power 3.1.9.4. assuming a paired two-
tailed t-test with the effect size of 0.5, alpha of 0.05, and the power of 0.95 was 54. 56 healthy adults 
(38 female, age=27.3±9.2 years, 3 left-handed) were recruited in the Dallas-Fort Worth metropolitan 
area. Participants provided written informed consent and completed this study. Five participants were 
excluded due to behavior data loss caused by computer collapse, one participant was excluded due 
to fMRI data loss, one participant was excluded due to excessive in-scanner head motion, and one 
participant was excluded due to poor quality of parameter recovery. The final sample had 48 healthy 
adults (33 female, age=27.6 ±9.1 years, 3 left-handed). Participants were paid a reward randomly 
drawn from the outcomes of this task, in addition to their baseline compensation calculated by time 
and travel distance.

Online participants
The study was approved by the Institutional Review Board at the Icahn School of Medicine at Mount 
Sinai. Participants were recruited from Prolific (http://​prolific.​co), an online survey platform. A total of 
1499 adults (734 female, age=35.1±13.1 years) provided online consent and completed this study. 
The online participant data were part of a larger study examining social cognition. We excluded 14 
participants because of duplication of their data files and 143 additional participants because they had 
flat responses (accepted all or rejected all offers) for all the rounds within at least one condition. The 
final sample had 1342 adults (649 female, age=34.5 ± 12.8 years; report of demographics excluded 
another 21 participants who typed in an incorrect ID for the demographics survey and whose task 
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data were intact but could not be linked to demographic data). Participants were paid  10% of the 
reward drawn from a random trial of this task, in addition to $7.25 of the baseline compensation and 
the bonuses from the tasks other than the current social exchange game, which were not part of this 
study.

Experimental paradigm: laboratory version
We designed an economic exchange task to probe social controllability based on an ultimatum game. 
This task consisted of two blocks, each representing an experimental condition (‘Controllable’ vs. 
‘Uncontrollable’). In both conditions, participants were offered a split of $20 by a partner and decided 
whether to accept or reject the proposed offer from the partner. If a participant accepted the proposal, 
the participant and the partner split the money as proposed. If a participant rejected the proposal, 
both the participant and the partner received nothing. At the beginning of each block, participants 
were instructed that they would play the games with members of Team A or Team B. This instruction 
allows participants to perceive players in each block as a group with a coherent norm, rather than 
random individuals. However, participants were not told how the players in each team would behave 
so that participants would need to learn the action-offer contingency. There were 40 trials in each 
block (for fMRI participants). In  60% of the trials, participants were also asked to rate their feelings 
after they made a choice.

In the Uncontrollable condition, participants played a typical ultimatum game: the offers were 
randomly drawn from a truncated Gaussian distribution (μ=$5, σ=$1.2, rounded to the nearest integer, 
max=$8, min=$2) on the fly using the MATLAB function ‘normrnd’ and ‘round.’ Thus, participants’ 
behaviors had no influence on the future offers. Importantly, in the Controllable condition, participants 
could increase the next offer from their partner by rejecting the current offer, or decrease the next 
offer by accepting the present offer in a probabilistic fashion (⅓ chance of ±$2, ⅓ chance of ±$1, ⅓ 
chance of no change; the range of the offers for Controllable was between $1 and $9 [inclusive]—the 
range was not matched for the two conditions by mistake) (Figure 1b). We designed this manipulation 
based on the finding that reputation plays a crucial role in social exchanges (Fehr, 2004; King-Casas 
et al., 2005; Knoch et al., 2009); thus, in a typical ultimatum game, accepting any offers (although 
considered perfectly rational by classic economic theories; Becker, 2013) will develop a reputation of 
being ‘cheap’ and eventually lead to reduced offers, while the rejection response can serve as nego-
tiation power and will force the partner to increase offers. At the end of each condition, participants 
also rated how much control they perceived using a sliding bar (from 0% to 100%).

Experimental paradigm: online version
For the online study, we revised certain perceptual features of the task in order to better maintain 
participants’ attention and ensure data quality, while maintaining the main structure of the task 
(Appendix 1). First, we reduced the number of trials to 30 from 40, considering both the minimal need 
for modeling purpose as well as the initial finding that behaviors typically stabilize after only 5 trials 
or so. We also introduced avatars in addition to partners’ names to make the online interactions more 
engaging, and made minor revisions to the instructions to further emphasize that participants might 
or might not influence their partners’ offers (but still without telling them how they might influence the 
offers or which team might be influenced). Finally, to remove unintended inter-individuals variability 
in offers for the Uncontrollable condition, we pre-determined the offer amounts under Uncontrollable 
(offers=[$1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 8, 8, 8, 9, 9], mean=$5.0, 
std=$2.3, min=$1, and max=$9) and randomized the order of them.

Computational modeling
We hypothesized that people would estimate their social controllability by using the consequential 
future outcomes to compute action values. To test this hypothesis, we constructed a FT value function 
with different horizons: zero to four steps of forward planning whereby zero-step represents the no 
FT model.

First, we assumed that participants correctly understood the immediate rules of the task as follows:

	﻿‍ ai ∈ {0, 1}‍� (1)
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	﻿‍

ri =




0 if ai = 0

si if ai = 1




‍�
(2)

‍ai‍represents the action that a participant takes at the ‍‍ th trial where 0 representing rejection and 
one representing acceptance. ‍ri‍ is the reward a participant receives at the ‍‍ th trial depending on ‍ai‍ . 
Participants receive nothing if they reject whereas they receive the offered amount, ‍si‍ , if they accept.

Similar to our previous work on norm adaptation (Gu et al., 2015), we assumed that people are 
averse to norm violations, defined as the difference between the actual offer received and one’s 
internal norm/expectation of the offers. Thus, the subjective utility of the expected immediate reward 
was constructed as follows.

Here, ‍U ‍, the utility, is a function of the reward and ‍f ‍ (internal norm) at the ‍i th‍ trial. The internal 
norm, which will be discussed in detail in the next paragraph, is an evolving reference value that deter-
mines the magnitude of subjective inequality. ‍α‍ (‘sensitivity to norm violation,’ ‍0 ≤ α ≤ 1‍) represents 
the degree to which an individual is averse to norm violation. We assumed that if one rejected the 
offer and received nothing, aversion would not be involved as the individual already understood the 
task rule that rejection would lead to a zero outcome. Given that, if there is only one isolated trial, 
participants will choose to accept or reject by comparing ‍U

(
si, fi

)
‍ (because ‍ri = si‍ if one accepts an 

offer) and ‍U
(
0, fi

)
= 0‍ (because ‍ri = 0‍ if one rejects).

For the internal norm updating, as our previous study (Gu et al., 2015) showed that Rescorla-
Wagner (RW) (Sutton and Barto, 2018) models fit better than Bayesian update models, we used RW 
norm updates to capture how people learn the group norm throughout the trials as follows.

	﻿‍ fi = fi−1 + ε
(
si − fi−1

)
‍� (3)

Here, ‍ε‍ is the norm adaptation rate (‍0 ≤ ε ≤ 1‍), the individual learning parameter that determines 
the extent to which the norm prediction error (‍si − fi−1‍) is reflected to the posterior norm. The initial 
norm was set as a free parameter (‍$0 ≤ f0 ≤ $20‍).

Next, we formulated internal valuation as follows.

	﻿‍ ∆Qi = v|ai=1 − v|ai=0‍� (4)

‍∆Q‍, the difference between the value of accepting ‍∆Q‍ and the value of rejecting ‍∆Q‍, determines 
the probability of taking either action at the th trial. Importantly, we incorporated forward thinking 
procedure in calculation of. For an n-step forward thinking model, was calculated as follows.

	﻿‍ v|ai = U
(
ri, fi

)
+
∑n

j=1 γ
j × U(Ê(ri+j|ai, ai+1, ...ai+j), fi)‍� (5)

 

	﻿‍

Ê(sk+1) =




sk + δ if ak or ak = 0

max(sk − δ, 1) if ak or ak = 1




‍�
(6)

	﻿‍

ak =




1 if U(Ê(sk), fk) > 0)

0 otherwise




‍�
(7)

Given a hypothetical action ‍ai‍ in the current (‍ith‍) trial, ‍v‍ is the sum of the expected future reward 
utility assuming simulated future actions, ‍a‍ . We used the term ‍E‍ to represent an expected value in 
individuals’ perception and estimation. We assumed that in individual’s FT, her hypothetical action at 
the future trial ( ‍ak‍ ) increases or decreases the hypothetical next offer ( ‍Ê

(
sk+1

)
‍ ) by ‍δ‍ (‘expected influ-

ence,’ ‍−$2 ≤ δ ≤ $2‍). Here, we assumed symmetric change (‍δ‍) for either action so the change applies 
to both rejection and acceptance with the same magnitude but in the opposite direction. Given the 
structure of the task, we restricted ‍

∣∣δ∣∣ ≤ $2‍ in inference. Note that the main behavioral results (statis-
tical testing results in Figures 2–4) remain true even if we excluded the subjects who showed negative 
deltas (Figure 3—figure supplement 4, Figure 4—figure supplement 3). We assumed that individ-
uals knew that offers would not go below $1 because an offer of $0 would make their choice (accept 
or reject) undifferentiable. Although actual offers had an upper limit ($9), we did not set any upper 
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limit for individuals’ hypothetical offers because there is no evidence for individuals to reason so espe-
cially until they repeatedly encounter offers of $9, even in which case individuals might or might not 
rule out the possibility of getting offered above $9. We assumed that simulated future actions ( ‍ak‍ ) are 

deterministic, contingent on the subjective utility of the immediately following rewards (
‍
U
(

Ê
(
rk
)

, fk
)
‍
 

); this is a form of 1-level reasoning in a cognitive hierarchy (Camerer et al., 2004). The FVs computed 
through expected influence were discounted by ‍γ‍, the temporal discounting factor. We fixed ‍γ‍ at 
0.8, the empirical mean across the participants from one initial round of estimation, in order to avoid 
collinearity with the parameter of our interest, ‍δ‍.

We modeled the probability of accepting the offer using the softmax function as follows:
 

	﻿‍ Pi(ai = 1) = 1
1+e−βQi ‍� (8)

Here, ‍β‍ (‘inverse temperature,’ ‍0 ≤ β ≤ 20‍) indicates how strictly people base their choices on the 
estimated value difference between accepting and rejecting. The lower the inverse temperature is, 
the more exploratory the choices are.

We fit the model to individual choice data for the middle trials (30 trials for the fMRI sample and 20 
trials for the online sample), excluding the first and the last five trials. The first five trials were excluded 
because one might be still learning the contingency between their action and the outcomes. The last 
five trials were also excluded because during those trials, the room to increase the offers becomes 
smaller and thus, participants had less incentive to reject offers as the interactions were close to the 
end (Gneezy et al., 2003).

fMRI data acquisition and pre-processing
Anatomical and functional images were collected on a Philips 3T MRI scanner. High-resolution struc-
tural images were acquired using the MP-RAGE sequence (voxel size=1 mm×1 mm×1 mm). Functional 
scans were acquired during the participants completed the task in the scanner. The detailed settings 
were as follows: repetition time (TR)=2000 ms; echo time (TE)=25 ms; flip angle=90°; 38 slices; voxel 
size: 3.4 mm×3.4  mm×4.0  mm. The functional scans were preprocessed using standard statistical 
parametric mapping (SPM12, Wellcome Department of Imaging Neuroscience; https://www.​fil.​ion.​
ucl.​ac.​uk/​spm/) algorithms, including slice timing correction, co-registration, normalization with resa-
mpled voxel size of 2 mm×2 mm×2 mm, and smoothing with an 8 mm Gaussian kernel. A temporal 
high-pass filter of 128 Hz was applied to the fMRI data and temporal autocorrelation was modeled 
using a first-order autoregressive function.

fMRI general linear modeling
To find the BOLD responses that are correlated with the value estimates from the 2-step FT model 
and the 0-step model, we conducted two separate GLMs for each model. We specified each GLM 
with a parametric modulator of the chosen actions’ values estimated from the corresponding model, 
normalized within a subject, at the individual level using SPM12. The event regressors were (1) offer 
onset, (2) choice submission, (3) outcome onset, and (4) emotion rating submission of the Controllable 
and Uncontrollable conditions. The parametric modulator was entered at the event of choice submis-
sion. In addition, six motion parameters of each condition were included as covariates. After individual 
model estimation, we generated the contrast images of whole-brain coefficient estimates with the 
contrast weight of 1 to value estimates of both the Controllable and Uncontrollable conditions. At the 
group-level, we conducted a one-sample t-test of the aforementioned individual whole-brain contrast 
images at PFDR <0.05 and k>50. We also conducted cross-validate Bayesian model selection (cvBMS) 
at the neural level using the MACS toolbox in SPM (Soch and Allefeld, 2018) in order to confirm that 
the vmPFC encoded TVs rather than only CVs or FVs. We considered four different GLMs: (i) the GLM 
with TV (our original GLM), (ii) the GLM with both CV and FV without orthogonalization (CV & FV), 
(iii) the GLM with only CV, and (iv) the GLM with only FV. All value estimates were extracted from the 
2-step FT model. We computed the cross-validated log model evidence (cvLME) for each model at 
the individual level and computed exceedance probability (EP) of each model at the group level. For 
the ROI analysis, the vmPFC ROI (a 8-mm-radius sphere centered at [6, 52, −16]) was chosen from 
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an independent meta-analysis study (Feng et al., 2015) in which the coordinate was presented as 
showing greater activation for fair offers than unfair offers in the ultimatum game context. ROIs were 
extracted using the MarsBaR toolbox (Brett et al., 2002).
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Appendix 1
Task design for online study
The task was proceeded as shown in Appendix 1—figure 1.

Appendix 1—figure 1. Task design for online study’ and caption: Screen #6–11: Practice rounds. 
Screen #14–15: Team assignment. Displayed at the beginning of each condition. Screen #16–20: One 
round of the actual task; repeated 30 times for each team (condition). The order of partners (avatars 
and names) were randomized. Duration: Screen #16 (avatar): 1.5–2.5 s; jittered, screen #17 (choice): 
self-paced, screen #18 (post-choice), #19 (outcome), #20 (fixation): 1 s.

•	 Screen #6–11: Practice rounds.
•	 Screen #14–15: Team assignment. Displayed at the beginning of each condition.
•	 Screen #16–20: One round of the actual task; repeated 30 times for each team (condition).

○○ The order of partners (avatars and names) were randomized.
○○ Duration:

•	 Screen #16 (avatar): 1.5–2.5 s; jittered
•	 Screen #17 (choice): self-paced
•	 Screen #18 (post-choice), #19 (outcome), #20 (fixation): 1 s

https://doi.org/10.7554/eLife.64983
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