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Structural basis of terephthalate recognition by
solute binding protein TphC
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Biological degradation of Polyethylene terephthalate (PET) plastic and assimilation of the
corresponding monomers ethylene glycol and terephthalate (TPA) into central metabolism
offers an attractive route for bio-based molecular recycling and bioremediation applications.
A key step is the cellular uptake of the non-permeable TPA into bacterial cells which has been
shown to be dependent upon the presence of the key tphC gene. However, little is known
from a biochemical and structural perspective about the encoded solute binding protein,
TphC. Here, we report the biochemical and structural characterisation of TphC in both open
and TPA-bound closed conformations. This analysis demonstrates the narrow ligand speci-
ficity of TphC towards aromatic para-substituted dicarboxylates, such as TPA and closely
related analogues. Further phylogenetic and genomic context analysis of the tph genes
reveals homologous operons as a genetic resource for future biotechnological and metabolic
engineering efforts towards circular plastic bio-economy solutions.
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ARTICLE

he global appetite for plastic products has transitioned our

planet into an era of the “Plastic Age”!. Polyethylene ter-

ephthalate (PET) plastic is the most commonly used plastic
in the packaging of beverages, food and pharmaceuticals. Since its
first synthesis back in 1941, PET has gradually emerged as the
world’s favorite food-safe plastic due to its robustness, chemical
inertness and durability. Although regarded as non-toxic and
100% recyclable, single-use convenience-sized PET bottles have
made PET plastic the third most collected debris in beach clean-
ups in more than 100 countries? and is overwhelmingly omni-
present in the terrestrial ecosystem®* The post-consumer
recyclability of plastics is still questionable owing to a number
of factors>® that have turned PET from a miraculous material
into the scourge of the land and sea. For instance, the PET-
recycling rate was estimated to be only ~30% in 2015 in the US,
and in Europe 25% of post-consumer plastic waste still went into
landfill in 2018 (ref. 7). This evidently ubiquitous plastic footprint,
however, has not impacted upon the demand and production
given the essentiality of plastics in our daily lives. The global PET
market in 2017 was valued at ~USD 24 billion and is expected to
hit USD 39 billion by 2027 (ref. 8). In 2016, around 485 billion
PET bottles were manufactured, and around 583.3 billion are
forecast to be produced in 2021 (ref. ?). The global demand for
PET in 2030 is forecast to amount to 42 metric tons'0.

Both mechanical and chemical PET-recycling methods are
available; however, widespread use is limited!!. Indeed, some
concerns remain over the product quality and environment
impact of the mechanical and chemical PET recycling,
respectively®. Microbial and enzyme-based plastic waste biode-
gradation and recycling offer promising alternative strategies due
to the use of benign conditions and potential as a cost-effective
environment-friendly approach!?-16. Therefore, there is great
interest in finding better strategies for PET bioconversion and
recycling through engineering robust enzymes and microbial
strains for its degradation, uptake and assimilation. Terephthalic
acid (TPA) and ethylene glycol (EG), which together form a
polymer chain, are the basic building blocks of PET and can be
released by enzymatic hydrolysis via the action of different types
of bacterial and fungal origin hydrolases, such as esterases, lipa-
ses, cutinases and carboxylesterases!’-24. A bacterial strain Ideo-
nella sakaiensis was discovered that secreted two enzymes PETase
and MHETase which enable the microbe to grow on low crys-
talline PET film as its major carbon source under optimised non-
native lab conditions?®. PET is initially hydrolysed to mono-
hydroxyethyl terephthalate (MHET) by PETase which is subse-
quently hydrolysed into TPA and EG by MHETase. Following
their discovery, these two enzymes have been extensively studied
biochemically and structurally, and further subjected to directed
evolution to enhance their catalytic activities and substrate
specificities?0-32, The constituent monomers, EG and TPA, can
then be taken up and degraded by microorganisms competent to
utilise these compounds for their metabolism. For instance,
Pseudomonas putida is capable of directly funnelling EG to the
Krebs cycle via isocitrate?3. Similarly, TPA can be converted to
protocatechuic acid (PCA) via an initial dioxygenolytic step in
which the aromatic ring is cleaved before entering the central
metabolism343>. TPA is converted to PCA via a pathway encoded
by the tph operon (Fig. 1A), these genes have been characterised
in the P-proteobacteria Comamonas testosteroni YZW-D3O,
Comamonas sp. strain E6 (refs. 37-38) and in the actinomycete
Rhodococcus sp. strain DK17 (refs. 3).

To date, unlike the enzymes involved in the degradation of
PET and assimilation of the breakdown products, the cellular
uptake of these monomers, EG and TPA, has received limited
attention. Adaptive laboratory evolution was used to engineer
Pseudomonas putida KT2440 to enhance EG cellular uptake and

metabolism*%4!, and heterologous expression of the tph pathway
has been reported in a number of different hosts!337:42-44, Cel-
lular uptake of TPA into Comamonas sp. strain E6 has been
shown to be dependent upon the presence of the tphC gene and
its product TphC374%, which is predicted to be a solute-binding
protein (SBP) belonging to the tripartite tricarboxylate trans-
porters (TTT) class of transporters*®. The initial ligand recogni-
tion in a TTT system is performed by the periplasmic SBP
(Fig. 1B). TTT-SBPs have also been identified in uptake
mechanisms for other biotechnologically important ligands, such
as Cg dicarboxylic acids?’, C, dicarboxylic acids*$, sulfolactate*®
and the synthetic precursors for polythioesters®®. Apart from
Bug27 (ref. °1), the Bordetella pertussis SBP for nicotinic acid and
related compounds, TTT-SBPs have been shown to bind exclu-
sively to dicarboxylic acids. This prokaryotic secondary solute
transporter family is scarcely characterised, the ligand specificity
of only a few TTT-SBP systems is known and consequently the
SBP-ligand interactions are poorly understood. So far, the
structure of only six TTT-SBPs have been determined, two from
Rhodopseudomonas  palustris?’#8,  three from Bordetella
pertussis’=>3 and one from Polaromonas sp. These protein
structures show a common “Venus flytrap” fold comprising of
two globular domains separated by a cleft that folds around the
ligand. Despite cellular uptake of TPA being a key step, the
confirmation of tphC-dependent uptake of TPA at the genetic-
level®>, and the potential for TphC to be used in engineered
strains for the cellular uptake of TPA and bioconversion of plastic
waste!4, there have been no reports to date on the biochemical
or structural characterisation of TphC. Due to the relatively
recent xenobiotic introduction of PET and TPA into the envir-
onment, we were inspired to explore whether TPA is indeed the
cognate ligand for TphC, or whether other closely related che-
micals naturally found in the environment are also recognised
by TphC.

Here, we employed differential scanning fluorescence (DSF)
assay, mutational analysis, isothermal titration calorimetry (ITC)
and X-ray crystallography to biochemically and structurally
characterise TphC from Comamonas sp. strain E6. Further phy-
logenetic and taxonomic analysis was used to reveal homologous
operons to explore the diversity and origin of these xenobiotic
catabolism genes and to provide a genetic resource for future
biotechnological and metabolic engineering efforts towards cir-
cular plastic bio-economy solutions.

Results

Production and purification of TphC. The pre-protein form of
TphC from Comamonas sp. strain E6 contains a predicted signal
peptide sequence and the mature form is composed of 294 amino
acids (N29-L322) (Supplementary Fig. 1). In order to characterise
TphC, the recombinant gene, encoding the mature form, was
cloned and then overexpressed in Escherichia coli BL21(DE3),
and the protein was purified in two consecutive chromatographic
steps of metal-affinity chromatography and gel-filtration chro-
matography. Sodium dodecyl sulfate polyacrylamide gel electro-
phoresis (SDS-PAGE) analysis of the eluates shows the presence
of an expected ~34 kDa protein band equivalent to an N-terminal
6xHis-tag fusion of TphC (Supplementary Fig. 1).

Ligand specificity screening with differential scanning fluori-
metry. In order to determine the ligand recognition profile of
TphC, we procured and/or synthesised TPA analogues and their
salts (Supplementary Table 1). TphC was probed for ligand
binding against the set of 61 compounds by DSF assay (Supple-
mentary Table 2). DSF can be used to rapidly screen compounds
that bind to a macromolecular protein through an apparent
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Fig. 1 Terephthalate cellular uptake and assimilation operons. A Schematic representation of tph and tpi operons in the chromosome of Comamonas sp.
strain E6. The catabolic genes of the tph operon, encoding a three-component TPA 1,2-dioxygenase (TPADO), are represented in gold (tphA2), orange
(tphA3) and pink (tphA1). The tph operon regulator (tphR), a gene encoding a diol dehydrogenase (tphB) and a gene encoding a periplasmic solute-binding
protein (tphC), are represented in green, teal and mauve, respectively. The transport genes (tpiBA) in tpi operon, encoding a set of transmembrane
transport proteins, are shown in peach and light blue, respectively. B Schematic of TPA transport and catabolism. The tphR encoded activator (TphR)
responds to the presence of inducer TPA and leads to the expression of a set of capture, transport and catabolic proteins to metabolise TPA in a successive
binding, transport and catabolic steps: TphC in the periplasm first binds to TPA and relays it to a pair of transmembrane proteins, TpiB and TpiA, which in
turn transport it to the cytoplasm, where it is converted by a three-component TPADO to 1,6-dihydroxycyclohexa-2,4-diene-dicarboxylate (DCD). The
DCD is acted upon by TphB (1,2-dihydroxy-3,5-cyclohexadiene-1,4-dicarboxylate dehydrogenase) and converted to protocatechuate (PCA), which is then

funnelled into the central metabolic pathways.

stabilisation against thermal denaturation, observed as a shift in
the midpoint of the melting curve (Fig. 2 and Supplementary
Fig. 2). TphC showed the most stabilised binding interaction with
terephthalate (1) with an apparent ATy, of 8.3 £ 1.1 °C compared
to TphC alone (56.1+0.5°C). Significant TphC-stabilising
interactions were also observed with 2-hydroxyterephthalate (4),
2-aminoterephthalate (7), 2,5-dihydroxyterephthalate (10), and
bipheny-4,4'-dicarboxylate (21) with AT,s of 5.9+0.7°C,
22+0.6°C,2.8+0.4°C and 4 + 0.8 °C, respectively. The presence
of 2,5-pyridinedicarboxylate (2) and 2,6-naphthalenedicarbox-
ylate (22) have less pronounced, but still significant, stabilising
interactions with TphC, displaying AT,,s of 1.4+1.1°C and
1.4+ 0.7 °C, respectively. The other para-substituted dicarbox-
ylate analogues (3, 5-6, 8-11) regioisomers (12-13), hetero-
aromatics (14-19), bicyclic aromatics (20, 23), the mono-
carboxylate and carboxylate isosteres (24-44), unsaturated phe-
nylpropanoates (45-50), phenols (51-52), aromatic esters
(53-56) and aliphatic dicarboxylates (57-61) had either negli-
gible effect on AT,,s or their interactions with TphC were found
to be slightly destabilising under the assay conditions. This
indicates that for optimal interaction a six-membered para-sub-
stituted aromatic dicarboxylate is required, plus limited addi-
tional substitution by hydroxyl groups around the ring and minor
heteroaromatic modifications are tolerated, and also extended
aromatic systems are partially tolerated.

Ligand binding assessment with ITC. The initial DSF assay
screening with a variety of aromatic and aliphatic ligands by
thermal-shift analysis revealed the ligand-preference of TphC,

with the TPA (1) and its close structural analogues showing the
highest thermal-shift among the ligands tested. To further obtain
the thermodynamic parameters for the binding affinity of the
ligand hits, ITC experiments were performed (Fig. 3 and Sup-
plementary Fig. 3). The determined Kp values for the ligands
reveal receptor affinities in the M range and a ligand preference
similar to the one observed in the initial DSF screen, with ter-
ephthalate (1) and its derivatives: 2-hydroxyterephthalate (4) and
2,5-dihidroxyterephthalate (10) showing the highest affinities
with Kp ranging from 0.36 to 1.9 uM (Table 1). Over two to three
orders of magnitude weaker affinities were observed for
2-aminoterephthalate (7) and 2,5-pyridinedicarboxylate (2) than
for terephthalate (1), and a considerably lower affinity for 2,6-
naphthalenedicarboxylate (22). The TphC-ligand interactions for
these six ligands were enthalpically favoured and most ligands
(Table 1), with the exception of 22, reported a small entropic
penalty (—TAS) upon interaction, indicative of conformational
change or solvation effect>®>, The reduced affinity observed for
2,7 and 22 emphasises the structural constraint for a six-member
aromatic ring with a pair of para-oriented carboxylate groups for
optimal coordination in the binding site (Supplementary Fig. 4).
This is further evidenced with the attempts to titrate TphC with a
bulkier biphenyl-4,4’-dicarboxylate (21), not displaying any heat
of binding, suggesting that 21 has a much lower affinity for ITC
assessment or displays an entropically driven interaction. To rule
out nonspecific interactions, the specific binding of 21 to TphC
was indirectly ascertained through a competitive titration of 1
with TphC saturated with a 10-fold excess concentration of 21
(Supplementary Fig. 5), where the presence of 21 completely
abolishes TphC-terephthalate interaction.
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Fig. 2 TphC unfolding profile and melting temperature determination. A The presence of different ligand induced shifts of the TphC melting curve (light
blue) to the right (mauve to dark blue melting curves) resulting in a maximum stabilisation of ~8 °C. The first derivative of melting curves enables the
determination of melting temperature T, (inflection point in the raw fluorescence traces, see Supplementary Fig. 2. Fl fluorescence intensity). B Chemical
structures of the ligands producing a thermal shift terephthalate (1), 2,5-pyridinedicarboxylate (2), 2-hydroxyterephthalate (4), 2-aminoterephthalate (7),
2,5-dihydroxyterephthalate (10), bipheny-4,4’-dicarboxylate (21) and 2,6-naphthalenedicarboxylate (22). € The degree of protein stabilisation in the
presence of various ligands was calculated as AT,,. The data shown are the mean of independent experiments (n = 3) and the error bars show the standard
deviation (SD) of the mean. The statistical difference between ligand groups and the ligand-free TphC control was assessed using one-way ANOVA using
Dunnetts multiple comparisons tests (p value < 0.05), where asterisks denote statistically significant difference (* p<0.02; **** p<0.0001) compared to
the control. Noted p values 1<0.0001, 2 0.0184, 4 <0.0001, 7 <0.0001, 10 <0.0001, 21 <0.0001, 22 0.0115. Each well of a 96-well plate contained 50 pl of
total reaction buffer (25 mM Tris-HCI (pH 7.5)/200 mM NaCl), 60 uM of TphC, 1200 uM of ligand and 1x SYPRO orange dye, and fluorescence was

monitored at each 1°C rise in temperature from 20 to 95 °C.

Structure of open apo-TphC structure. In order to understand
the open structure of TphC, we sought to crystalise TphC alone.
Purified TphC was readily crystallised, apo-TphC crystals diffracted
to a resolution of 1.97 A and structure determination via molecular
replacement was performed in Phaser using a model derived from
TctC from Polaromonas sp (PDB 4X9T). The overall structure of
TphC maintains the general architecture of two o/ globular
domains linked by a pair of p-strands as previously reported in
TTT-SBPs TctC (4X9T) and Bug27 (2QPQ) (Fig. 4A and Sup-
plementary Fig. 6). Data collection and refinement statistics for the
apo-TphC structure are summarised (Supplementary Table 3).
Residues (P28-D37, PESAGGTAD) map to the motif [Px-F-X-A-
G#-G*-X-X-D#] which is highly conserved in TTT-SBPs (con-
served residues underlined)*. In the open apo conformation TphC
has a solvent accessible surface area of ~13048 A2 with a large
solvent accessible cavity at the predicted ligand binding site>!.

Structure of closed-TPA-bound TphC. In order to better
understand recognition of the TPA ligand and any conforma-
tional change associated with ligand binding, we sought to crys-
talise TphC in complex with TPA. Purified TphC was readily co-
crystallised in the presence of 2mM TPA and crystals diffracted
to 2.4 A resolution. The structure was solved using molecular
replacement with a search model derived from AdpC from
Rhodopseudomonas palustris (PDB 50EI). The overall structure
of the TphC in complex with TPA is shown in Fig. 4B. Supple-
mentary Table 4 summarises the data collection and refinement
statistics for the closed TphC-TPA complex. The general archi-
tecture of the previously reported TTT-SBPs is maintained in the
TphC-TPA structure. Sequence alignment, secondary structure
features and conserved motifs for TphC, AdpC and the other
TTT-dependent SBPs in the closed conformation are shown
(Supplementary Fig. 7 and Supplementary Table 5).
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Fig. 3 Isothermal titration calorimetry of ligand-hits with TphC. To ascertain the binding interaction of ligand hits and to determine the corresponding
thermodynamic parameters for the interactions between the ligands and TphC, isothermal titration calorimetry was employed. A Terephthalate 1 against
100 pM TphC. B 2-Hydroxyterephthalate 4 against 100 pM TphC. € 2,5-Dihydroxyterephthalate 10 against 500 uM TphC. Experiments were performed at
22 °C at a fixed protein to ligand ratio of 1:1:10 in Tris-HCI buffer (25 mM Tris-HCI, pH 7.5/200 mM NaCl), with 2.5 pL ligand injections with 300 s interval
between each injection. Corrected heat rates are shown in the top panel and normalised fit to the data in the bottom panel.

Table 1 Thermodynamic parameters for binding interactions of ligand-hits with TphC.

Ligand N sites? Kp (uM)b AG (cal/mol) AH (cal/mol) TAS (cal/mol)
Terephthalate (1) 1.04 0.364 —8672.28 —9602 +38.92 —885.45
2-Hydroxyterephthalate (4) 113 1.246 —7976.70 —9054 £ 31.21 —1077.30
2,5-Dihydroxyterephthalate (10) 1.08 1.931 —7715.59 —9699 + 27.09 —1983.41
2-Aminoterephthalate (7) 114 119.9 —5294.95 —5493 £43.00 —198.05
2,5-Pyridinedicarboxylate (2) 1.01 90.9 —5458.29 —5963+40.74 —504.71
2,6-Naphthalenedicarboxylate (22) 114 869.6 —4133.46 —3614£134.3 519.46

aN represents the stoichiometric ratio of protein:ligand interaction.

bA higher affinity for terephthalate disodium and its 2-hydroxy- and 2,5-dihydroxy derivatives was observed.

Superposition of the open and closed TphC structures highlights
an ~36° closure between the two domains upon TPA binding.
DynDom analysis>® identifies residues 115-117 and 241-242 as the
hinge region. Upon closure the solvent accessible surface area of
TphC decreases from 13,048 to 12,495 A2 encapsulating a closed
cavity of 280 A3 in which the TPA is bound. Hydrogen bonds
between both the proximal and distal carboxylate groups of the
TPA stabilise the closed conformation of the protein along with a
network of direct and water-mediated hydrogen bonds highlighted
in Fig. 5. The bound TPA is recognised through a number of direct
and water-mediated hydrogen bond interactions. The TPA
carboxylate group buried deepest within the pocket is recognised
and stabilised through direct (T155, T242) and water-mediated
hydrogen bonds (T155, Q150, N197). The second carboxyl group of
the TPA hydrogen bonds to the backbone amino groups of A36
and with additional water-mediated interactions with the backbones
of G34, S31 and T179. The interactions at this second carboxylate
group span between the two TphC domains stabilising the closed
conformation (Fig. 5). The binding pocket is bordered on one side
by a conserved aromatic residue (F30); the positioning of this

sidechain is facilitated by the proximity of a conserved glycine
(G178). Unlike other TTT-SBPs characterised to date, the ligand
site. of TphC contains bulky amino acids P86 and Q150, the
sidechains of which create a very narrow pocket 6.4 A across, which
would appear to confer the observed selectivity toward planar
aromatic ligands. In addition, the Q150 sidechain is closely
bounded by S154 (in addition to S156 and F194 not shown), all
of which together would prevent alternative rotamers being
sampled to increase the diversity of ligands accommodated.
Overlaying the open and closed TphC structures indicates the
movement of the upper domain (a4-a6) (Fig. 6A). Upon closure a
pincer is formed between loops on the lower (f1-al) and upper
domains (B6-a5) forming additional H-bonds directly between S31
and K177, T35 and N197, and water-mediated contacts and
between T35 and T179 (Fig. 6B).

Docking and TPA depletion. In order to visualise their
potential binding site interaction, the seven ligands were docked
into the binding site of the closed TphC, terephthalate 1,
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Fig. 4 Open and closed structure of the tripartite tricarboxylate transporter—solute binding protein TphC. A Crystal structure of TphC is shown in
ribbon representation (a-helices red, p-strands green), the structure is comprised of two domains with a large solvent accessible cleft located at the
domain interface. A surface representation of the protein has been cut away to highlight the substrate-binding pocket. B Upon TPA binding (CPK sphere
representation, all atom colours) the two domains reorientate to enclose the bound TPA. The cut away surface representation highlights the occluded

pocket in which the TPA is bound.

Fig. 5 TphC in complex with terephthalate. TphC crystal structure shown in ribbon representation and coloured by domain (domain 1 blue, domain 2 red).
A close up of the bound TPA is shown in ball and stick representation (all atom colours) along with its associated 2.4 A Fo—Fc omit electron density
contoured at 2. The binding pocket interactions are highlighted with residues arising from domain 1 shown in all atom colours (yellow carbon atoms) and

domain 2 (grey carbon atoms).

2,5-pyridinedicarboxylate 2,  2-hydroxyterephthalate 4,
2-aminoyterephthalate 7, 2,5-dihydroxyterephthalate 10, biphe-
nyl-4,4’-dicarboxylate 21 and 2,6-naphthalenedicarboxylicacid
22 (Supplementary Fig. 8 and Supplementary Table 6). To
investigate the transport of the selected analogues in vivo, we
performed substrate depletion assays with resting cells of P.
putida KT2440 ApcaGH harbouring the plasmid pJCBAtG*>. As
previously shown?, resting cells were able to transport and thus
deplete TPA by ~20% after 60 min (Supplementary Fig. 9).
However, due to the lack of their enzymatic conversion, neither
depletion nor transport of the selected analogues (2, 4, 7, 10, 21
and 22) could be determined. Further experimentation would
help investigate the transport of these ligands by TphC in vivo.

Mutational analysis of amino acids involved in ligand binding.
In order to confirm the involvement of the amino acids in TPA

and analogue recognition, and ligand-induced conformation
change a series of mutant proteins were created and screened with
DSF. This included mutation of amino acids involved in recog-
nition of TPA via direct H-bond interactions (Fig. 5), T155A,
T242A, T155A/T242A, those involved in creating a narrow
binding pocket Q150S, P86T/Q150S, along with an amino acid
within the hinge region V116P. Mutation of the amino acids
involved in direct ligand recognition had little or no impact
(<3 °C) on the intrinsic stability of the TphC as measured by Ty,;
however, the P86T/Q150S and Q150S displayed a higher T,
(>3 °C) indicating higher intrinsic thermal stability (Supplemen-
tary Fig. 10A). In addition, the hinge mutant V116P displayed a
significantly lower T,,, (<10 °C) indicating lower intrinsic thermal
stability. The seven most active ligands (1, 2, 4, 7, 10, 21 and 22)
were then screened against the protein mutants (Supplementary
Fig. 10B). The loss of H-bonding potential for T155A is clearly
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Fig. 6 Structure of TphC showing ligand-induced changes. A TphC crystal structure in both an apo (open—orange) and TPA-bound (closed—blue)
conformation have been superimposed (SSM superposition of domain 1) in ICM-Pro. The protein surfaces for each of the two states are shown as meshes
and coloured according to their respective structure (open—orange, closed—blue, the surface representations correspond to thin slices through the surface
centred on the TPA-binding site). Helical elements within the structure have been highlighted as large cylinders to clearly show the reorientation between
domains T and 2 which occur upon TPA binding. TPA is shown in both ball and stick and semitransparent CPK spheres (all atom colours). B A ball and stick
representation of the TPA-binding site along with highlighted hydrogen bonds that form both between the protein and the TPA and also between the
protein domains upon TPA binding. Residues arising from domain 1 are shown with yellow carbon atoms while those from domain 2 are shown with grey

carbon atoms.

observed for all substrates where no significant ligand-induced
stabilisation was observed. Unexpectedly the T242A mutant still
bound to TPA and ligand 4 indicating the less stringent
requirement of T242 in substrate recognition. The double-mutant
T155A/T242A also displayed no ligand-induced stabilisation in
the presence of TPA or the analogues consistent with the single
mutant T155A. A small, but still significant shift was observed in
the presence of TPA towards Q150S, although the other binding
pocket mutant, P86T/Q150S, was no longer able to bind TPA.
Finally, the hinge mutant V116P displayed ligand-induced sta-
bilisation in the presence of TPA and five of the analogues (4, 7,
10, 21 and 22); for TPA this stabilisation (AT},) was greater than
that observed with the wild-type TphC. This greater shift can be
explained by the lower intrinsic thermal instability of the V116P
(Supplementary Fig. 10A).

Phylogenetic analysis of TphC homologues and genomic con-
text analysis. The gene encoding TphC is located in the tph
operon in Comamonas sp. strain E6, which is composed of the
transcriptional regulator (tphR), solute-binding protein (tphC),
TPA dioxygenase subunit A2 (tphA,), TPA dioxygenase subunit
A3 (tphA;), TPA dioxygenase subunit B (tphB), TPA dioxygenase
subunit A1 (tphA;) (Fig. 1A). Phylogenetic analysis of TphC from
Comamonas sp. strain E6 identified SBP homologues (n = 100),
with sequence identity ranging from 39 to 98% relative to the
query (Fig. 7). Taxonomic analysis reveals that the entries origi-
nate from 80 different species, 46 genera, 12 families, and
majority of the entries (81) originate from species belonging to
the Burkholderiales order (B-proteobacteria), 13 to the Rhizo-
biales order (a-proteobacteria), and 6 to the Rhodospirillales
order (a-proteobacteria) (Supplementary Data 1). Due to the
environmental and biotechnological importance of TphC and the
associated genes in the uptake and catabolism of TPA, we ana-
lysed the gene content, operon architecture and encoded protein
homology of the operons flanking the tphC homologues (Fig. 7
and Supplementary Fig. 11). The tph operon content was con-
served in a subset of these selected entries (22/100), including

from Ideonella sakaiensis, representing species from five different
families within the a- and p-proteobacteria classes (Supplemen-
tary Data 1). TphC homologues encoded by the tph-like operons
contained highly conserved amino acids at the positions where
the sidechains make direct contact with TPA (T155, T242) or
create the planar binding pocked (P86, Q150) (Fig. 7). A small
subset of operons encoding TphC-like proteins contain A242
rather than T242, consistent with the observed non-essential
nature of T242 in TPA recognition (Supplementary Fig. 10).
Interestingly the same conserved binding site amino acids are also
present in TphC homologues not associated with tph-like operons
(Fig. 7A), indicating alternative genomic loci as sources of
potential novel TPA catabolic genes.

Homology alignment of the TphC sequences associated with
the tph-like operons indicated the highly conserved amino acids
within the ligand binding site (Supplementary Fig. 12). Sequence
identity, represented by calculating the percentage identity for
each protein type across the tph-like operons, was generally
modest across all proteins (62%), with TphR the least conserved
(55%) and TphA2 the most conserved (77%) (Supplementary
Fig. 13). Within these operons the predominate operon
architecture was the same as that found in Comamonas sp.
strain E6. Here tphC is located at the 5’ end of the operon and
tphR divergently located (head-to-head), with respect to the
corresponding promoter (5'H). This 5'H operon structure is
observed in both a- and B-proteobacteria classes (e.g. Comamo-
nas thiooxidans and Roseomonas deserti) (Fig. 7B and Supple-
mentary Fig. 11). Within an alternative operon structure, tphC is
located at the 3’ end of the operon, this operon architecture was
observed exclusively in a-proteobacteria (e.g. Bradyrhizobium
ivorense) (Supplementary Data 1). Within these genomic loci the
presence of transposable elements flanking the tph operon within
Comomonas thioxydans and other operons is indicative of
horizontal gene transfer of the tph operon reflecting the accessory
nature of these genomic loci (Fig. 7B) (Supplementary Fig. 11).
Additionally a number of operons contained gene insertions
within the tph operon encoding for a hydrolase (MHETase),
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Fig. 7 Anotated phylogenetic tree of TphC and configuration of putative tph-like operons. A Phylogenetic tree of TphC constructed by retrieving, aligning
and displaying sequences (using BLAST-P, Clustal Omega and iTOL respectively). Species names are coloured by taxonomic family (n =12) and taxonomic
class is shown by a coloured outer ring (a-proteobacteria (red) and p-proteobacteria (green). Genomic loci proposed to be tph-operon homologues are
anotated (tph). Additionally, the amino acids (and their homologue equivalent) directly involved in ligand binding within the TphC-TPA are labelled, where
P86, Q150, T155, and T242 (or A242) are labelled as PQTT (or PQTA). B Schematic diagram of the operon configuration for a selection of putative tph-like
operons. Taxonomic family is shown by coloured boxes to the left of the operon. The values inside the genes indicate the percentage similarity of the

encoded protein to the corresponding protein in Comamonas sp. strain E6. These operons show a range of alternative features, such as the presence of
genes encoding transposases (Comamonas thiooxidans), a hydrolase (Ideonella sakaiensis), and alternative operon architectures (Roseomonas deserti and

Bradyrhizobium ivorense).

oxidoreductase, and a transporter (e.g. Comamonas composti,
Ideonella sakaiensis, and Piscinibacter defluvii), presumably
involved in TPA recognition and catabolism.

Discussion

In this study, we characterised the TphC SBP that is a key
component in the cellular uptake of TPA, the breakdown product
of PET plastic**. TphC belongs to the TTT family in Comma-
monas sp. strain E6 and through biochemical and structural
analysis, the ligand-binding properties and 3D structure were
determined in both open and ligand-bound closed forms. TTT-
dependent SBPs, such as TphC belong to the Cluster E-II
according to the classification of Scheepers et al.>”. As with the
tripartite ATP-independent periplasmic (TRAP) class of SBP-
dependent transporters, they are symporter proteins driven by an
electrochemical ion-gradient, rather than ATP as per the SBP-
dependent class of ABC transporters?®,

Screening with DSF showed TphC binds to para-substituted
aromatic dicarboxylates. Substitution of the aromatic ring with
hydroxyl and amino groups, and the presence of hetero-atoms
within the ring, is tolerated, but with a significantly lowered
ligand-induced stabilisation. This seems to indicate that the
binding pocket of TphC is structurally quite constrained. Fur-
thermore, the efficient binding of the terephthalate 1 ligand but

not the Cq aliphatic or unsaturated aliphatic ligands, adipate 59
and trans,trans-muconate 57, revealed the need for an aromatic
structure for the binding ligand. The TTT-SBPs characterised so
far are specific for aliphatic ligands#7:4%°0 with the sole exception
of the B. pertussis Bug27 protein which is reported to bind an
aromatic mono-carboxylated nicotinate®!. Our model proposes
that TphC has a narrower more selective binding site, whereas
AdpC is more relaxed, which is consistent with biochemical data
in the literature that shows that AdpC binds to C4—Cg aliphatic
dicarboxylates plus trans, trans muconate*’. The ITC determined
TphC affinities for the ligand-hits were in pM range with ter-
ephthalate 1 and its derivatives: 2-hydroxyterephthalate 4 and
2,5-dihidroxyterephthalate 10 showing the greatest affinities
(0.36—1.9 uM). The sub-micromolar TphC affinity observed for 1
(0.36 uM) is comparable to other high-affinity SBPs reported for
Bug27-Nicotinate/Nicotinamide (0.36 uM)°!, AdpC-Adipate
(0.55 uM)*” and MatC-Malate (~0.02 puM)*8.

In comparison with other open/apo structures, even though
TphC has low similarity and identity to other apo SBP structures
TctC (26%) and Bug27 (29%), the two domains of TphC have
RMSD of 0.837 and 0.446 for the corresponding domains within
TctC (PDB 4X9T), and 0.47 and 0.891 within the Bug27 (PDB
2QPQ) domains (Supplementary Table 5). All three SBPs have
the same architecture; however, there is significant differences
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between the orientation of domains between TphC and TctC,
specifically in the upper domains around a5-6 and 5-8, and the
ligand-binding loop between 6 and a5 (Supplementary Fig. 6).
TphC shows a 36.3° closure angle, whereas previously resolved
apo- and ligand-bound structures of Bug27 reported a closure
angle of 24.7°°! and other periplasmic binding proteins show
closure angles ranging from 15° to 60°°8. Similar to MatC and
AdpC, the absence of positively charged residues (to counteract
the negative charges of the ligand carboxylate groups) in the
ligand-binding pocket of TphC is observed. The TphC-TPA
ligand-binding site appears similar to the aliphatic-SBP complex
(oxoadipate-AdpC), with comparable distances between the cor-
responding residues responsible for H-bonding with the dicar-
boxylate groups. Within SBPs that recognise the smaller aspartate
and malate ligands (BugD and MatC), the C, ligands are posi-
tioned 90° rotated along the dicarboxylate axis relative to TPA
(and the other Cg ligands), with the carboxylate H-bonding to a
neighbouring serine residue (S151). While this serine is conserved
in TphC (S156), a bulky glutamine residue in TphC (Q150)
occludes the alternative H-bonding site and thus provides the
rationale for why the smaller dicarboxylate ligands are not
recognised by TphC. The bulky residues P86 and Q150 present
within TphC create a narrow pocket, 6.4A across, which appears
to exclude aliphatic Cq ligands.

Along with the majority of TTT-SBPs reported to date*®, TphC
and its homologues identified here are not located in the same
operon as the TTT-dependent membrane transporter subunit
genes (tpiA and tpiB), but are located within the tph operon along
with the genes encoding transcriptional regulator (TphR) and the
TPA dioxygenase subunits (TphA;_ ;B) (Fig. 7). Due to the
genomic co-localisation of the tphC and the catabolic pathway for
TPA (tph), we sought to use TphC as genomic fish-bait to locate
other homlogous gene clusters of biotechnological interest. This
approach has previously been employed to identify arylmalonate
decarboxylase®.

PET was first synthesised in the 1940s from TPA and EG, and
TPA in turn is prepared by the chemical oxidation of p-xylene®.
In addition, TPA is used in the chemical synthesis of small-
molecule plasticiser additives®!, which may be more accessible
sources of TPA within the environment rather than from highly
crystalline PET®%03, As far as we know, TPA is not found
naturally in the environment, so the question exists as to from
where did the TPA recognition potential originate. At the outset
of this study we had expected to identify closely related chemical
compounds of natural origin that bound to TphC. However, all
TphC-binding ligands identified in our screen appear to be of
xenobiotic origin—why binding to non-xenobiotic compounds
was not observed is unclear. One possibility is that TphC evolved
from an ancestral or pre-industrial SBP that displayed side-
activity or promiscuity, and TphC has since lost affinity to its
original ligand, as has been proposed for the evolution of
enzymes®?. Considering the evolutionary time span of ~80 years
since the first production of TPA, and the low conservation
observed between the SBP’s associated with the putative tph
operons (Fig. 7), it would seem likely that TphC homologues
might have evolved from a pool of multiple ancestral SBPs rather
than from a common ancestor. This notion is also consistent with
the low degree of sequence conservation and global distribution
of xenobiotic degradation pathways, e.g., those involved in
plastic21:0> and organohalide®® degradation.

In this study, we provide evidence for the structural basis of
TPA recognition by TphC through DSF, ITC and X-ray crystal-
lography. Together with TPA, we report the binding potential of
TphC towards some other TPA derivatives and analogues which
have varied applications. For instance, 2,5-dihydroxyterephthalic
acid is a useful monomer for the synthesis of high strength

fibres®’, 2-aminoterephthalic acid and 2,5-pyridinedicarboxylic
acid have application in the synthesis of lanthanide coordination
polymers®8%? and 2,6 naphthalene dicarboxylic acid is used as a
monomer for the production of polyethylene naphthalate (PEN)
esters which are considered superior to PET for certain
applications’?. In summary this biochemical, structural and
phylogenetic analysis provides useful insights into the ligand-
recognition potential of TphC and opens up a new array of
opportunities to engineer heterologous hosts for the uptake and
assimilation of the breakdown products from PET and other
polymers.

Methods

Chemicals, genes and reagents. All reagents were procured at the highest purity
available from Sigma Aldrich Ltd. (Dorset, UK) unless otherwise specified. Genes
were synthesised by IDT DNA technologies, and molecular biology reagents were
purchased from NEB unless otherwise stated.

Cloning, Expression and Purification of TphC. The tphC gene from Comamonas
sp. E6 (BAE47076.1), excluding the first 26 amino acids of the TphC protein
(WP_019043844.1) comprising of the N-terminal signal sequence, was chemically
synthesised with the codons optimised for expression in E. coli. The cloning of tphC
was carried out using Gibson assembly of linearised pET44a(+) plasmid with the
synthetic truncated DNA sequence of tphC. The resultant plasmid was transformed
into E. coli DH5a and subsequently into E. coli expression host BL21(DE3) for
overexpression. The cells bearing the plasmid pET44a-his-TphC were initially
grown at 37 °C with shaking (200 r.p.m.) in terrific broth medium supplemented
with 100 ug/mL ampicillin and 0.2% (w/v) glucose. The overnight seed culture was
then equilibrated to 25 °C and then 200 mL was used to inoculate 22 L auto-
induction medium, pre-equilibrated to 25 °C, consisting of (w/v): 2% tryptone,
0.5% yeast extract and 0.5% NaCl and supplemented with 0.4% (v/v) glycerol,
0.002% (w/v) glucose and 0.01% lactose and 100 pg/mL of ampicillin. The culture
was grown at 25 °C for 48 h. The culture was centrifuged at 5000¢ at 4 °C for 1h
and the cell pellet was re-suspended (100 g wet cells/200 mL buffer) in the binding
buffer (25 mM Tris-HCI, pH 7.5/500 mM NaCl/10 mM imidazole). The cells were
lysed using a pre-chilled CF1 cell disrupter (Constant Systems Ltd, UK) in the
presence of EDTA-free protease-inhibitor cocktail (Roche) and endonuclease
(Benzonase) and the lysate was centrifuged at 125,000¢ for 1h. The resulting
supernatant was loaded onto a 5 mL Ni-NTA agarose column, pre-equilibrated
with 10-column volumes of binding buffer. The column was then washed with
5-column volumes of washing buffer (25 mM Tris-HCI, pH 7.5/500 mM NaCl/
20 mM imidazole) and the bound TphC was step-eluted with 3 x 2-column
volumes of elution buffers containing increasing concentrations of imidazole

(25 mM Tris-HCI, pH 7.5/500 mM NaCl/40-150 mM imidazole). To remove imi-
dazole and to concentrate the protein, the eluted TphC fractions were pooled and
buffer exchanged into a Tris buffer (25 mM Tris-HCI, pH 7.5/200 mM NaCl) using
PD-10 columns. The buffer-exchanged TphC protein was concentrated with a
centrifugal filter concentrator (Amicon, 10 kDa MWCO, Merk Millipore) and
subjected to gel-filtration chromatography on a high-performance gel-filtration
column (AKTA, Superdex-200 26/600 GL, GE Healthcare) previously equilibrated
with the Tris buffer. The peak fractions from gel-filtration column were collected
and assessed for purity on SDS-PAGE. The protein concentrations were deter-
mined from the calculated extinction coefficient of TphC at 280 nm. The mid-peak
fractions were pooled and concentrated, as described above, to 5-10 mg/mL and
the concentrated protein was stored in 100 uL aliquots at —80 °C until later use.

Ligand synthesis. Most of the TPA analogues are insoluble in aqueous solution,
but are soluble in DMSO which makes it difficult to assess them using ITC. As a
result, a majority of the ligands were sourced as the sodium salt or the sodium salt
was synthesised from the free acid when the salt was not commercially available.
Nineteen sodium salts were prepared as described: organic acid (3 mmol) was
dissolved in NaOH solution (3 mL, 2 M), this solution was slowly added to acetone
(40 mL), precipitating the sodium salt. The solid was isolated by filtration, washing
with acetone (3 x 5mL), and remaining solvent removed in vacuo, affording dry
solid product. Elemental Analysis was performed and the purity calculated (Sup-
plementary Table 1).

DSF assay. TphC protein-ligand interactions were investigated using a DSF
assay*’. Preliminary assays were conducted to determine a minimum TphC con-
centration required in the assay to achieve a fluorescence signal strength above the
noise in the assay. The assays were conducted at a fixed protein to ligand ratio of
1:10 between the protein concentration range of 5-1000 pM in a 96-well plate in a
total reaction volume of 50 uL buffer (25 mM Tris-HCI, pH 7.5/200 mM NaCl)
containing 1x concentration (5 uL, 10x) of SYPRO orange dye. The assays were
run on a QuantStudio 3 Real-Time PCR System (ThermoFischer Scientific, UK)
with melt curve experiments equilibrating to 20 °C before ramping to 95 °C while
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recording fluorescence at every 1 °C rise in the assay temperature. Under the assay
set-up a TphC concentration of 60 uM was determined to be the optimal con-
centration for the assay. The subsequent ligand screens were set up as follows:
ligand (5 pL, 1200 uM), protein (10 pL, 60 uM), SYPRO orange dye (5 uL, 10x) and
Tris-HCI buffer to a total volume of 50 pL. Where the ligand was dissolved in
DMSO the same concentration (v/v) of DMSO was added to the parallel controls.
Data were processed in excel and analysis in Prism 8 (GraphPad).

Isothermal titration calorimetry. All ITC measurements were carried out using a
MicroCal Auto-iTC200 (Malvern Panalytical Ltd, UK) set in a passive mode with a
reference power of 4 pcal/s. For isothermal calorimetric titration, TphC con-
centration was adjusted to either 100 or 500 uM and the ligand solution to 1 or
5mM in the same stock of Tris buffer as was used during the size exclusion
chromatographic purification. The buffer (800 uL/well), protein (400 uL/well) and
ligand (200 pL/well) solutions were dispensed into a 96-well sample tray and
allowed to temperature-equilibrate for 30 min before being auto-dispensed to the
reaction cell and the titrating syringe. The active reaction cell contained 300 pL of
100 uM protein and the syringe contained 120 puL of 1 mM ligand. The
protein-ligand titrations were carried out at 22 °C with an initial pilot injection of
reduced volume (0.5 uL, 1) followed by 15 successive injections (2.5 pL, 5)
spaced 300 s apart. Reference buffer to buffer titrations were run in series and were
subtracted from the test titrations. The resulting data were processed and an
independent binding model was fit in ITC data analysis software (OriginLab
Corporation).

Ligand depletion assays. The plasmid pJCBAtG*® developed previously was
transformed into Pseudomonas putida KT2440 ApcaGH, which is unable to
metabolise protocatechuate. The pJCBAtG plasmid carries tphC/tpiBA and the full
tphABy; catabolic operon. Resting cell conversion assays were performed as pre-
viously described®>. Briefly, P. putida ApcaGH cells harbouring pJCBAtG were
grown in terrific broth medium supplemented with 25 pg/mL tetracycline for 10 h
after induction with m-toluate, harvested by centrifugation, washed with 50 mM
Tris-HCI buffer (pH 7.5) and re-suspended to an ODgg of 40 in the same buffer.
Depletion of ligands was investigated in 1 mL assays containing 1 mM of the
corresponding substrate and cells to a final ODggg of 30 in 50 mM Tris-HCI buffer.
The assays were incubated at 30 °C for 60 min. Supernatant samples were collected
at time 0 and after 60 min, filtrated and ligand concentration analysed by high-
performance liquid chromatography (HPLC; Agilent 1100 HPLC system, Agilent
Technologies, UK). Separation was achieved using an Agilent Poroshell 120 EC-
C18 column (4 um, 100 mm, Agilent Technologies, UK) with a gradient 5-95%
acetonitrile containing 0.1% formic acid as the mobile phase. All ligands were
detected at 254 nm.

Protein crystallisation, data collection and structure determination. The
crystallisation of TphC in the absence of cognate ligand was achieved by mixing
200 nL of 10 mg/mL of the protein in sitting drop vapour diffusion experiments
with an equal volume of a range of different commercial screens (Molecular
Dimensions Ltd, Newmarket, UK) at 20 °C. The crystals grew with reservoirs of
condition B5 from the Morpheus HT96 screen (0.09 M Halogens 0.1 M Buffer
system 2 pH 7.5 30% v/v Precipitant mix 1). Prior to data collection single crystals
were flash frozen in liquid nitrogen. All data were collected at the Diamond Light
Source (Harwell, UK). Data processing was performed with Dials, the apo-TphC
structure was solved by molecular replacement in Phaser using a search structure
derived from the TctC structure (4X9T). Individual domains were isolated from
4X9T and used together in Phaser to achieve the successful molecular replacement.
Structure deposited to PDB 7NDR. The co-crystallisation of TphC with the ligand
disodium terephthalate was achieved by adding 2 mM ligand to 10 mg/mL of the
protein prior to screening as described above for the apo crystal form. The co-
crystals grew with reservoirs of condition B4 from the SG1 HT96 screen (0.2 M
ammonium sulfate 0.1 M MES 6.5 30% w/v PEG 5000 MME). Crystals were flash
frozen in liquid nitrogen in the presence of mother-liquor plus glycerol (20% v/v;
added as cryoprotectant). Data processing was performed with Dials and the
TphC-TPA structure was solved by molecular replacement using a search model
derived from the AdpC structure (5OEI). Structure deposited to PDB 7NDS. The
structure were visualised and annotated using MolSoftPro.

TphC mutagenesis. The genes encoding mutants Q150S and T242A were codon
optimised for expression in E. coli, chemically synthesised (gBlocks, IDT Integrated
DNA Technologies) and assembled using NEBuilder HiFi DNA assembly master
mix (New England Biolabs) into a pET44a(+) backbone. The additional point
mutations were created by site-directed mutagenesis (Q5, New England Biolabs)
using the corresponding plasmid template (WT, Q150S, or T242A), with the
appropriate primers (Supplementary Table 7), and the resulting products were
treated with a KLD enzyme mix (NEB) before being transformed into E. coli NEB
5-alpha competent cells. The mutations were confirmed by sequencing. The
plasmids were transformed into E. coli BL21(DE3) and proteins produced as above.

Molecular docking. Molecular docking was performed on the closed form of TphC
(PDB: 7NDS) using Autodock Vina 1.1.2 (ref. 71). For the ligands SMILES strings

were converted into the PDBQT format using Open Babel 2.4.1 (ref. 72) and for the
protein a PDBQT file was prepared using AutoDockTools 1.5.6 (ref. 72). Docking
was performed using a cubic search volume with 30 A sides centred on the geo-
metric centre of the protein with an exhaustiveness of 25. The average docking for
all ligands in the library is —6.13 kcal/mol with a standard deviation of 1.02,
compared to the scores for the ligands shown in Supplementary Table 6. To
illustrate the putative binding mode for biphenyl-4,4’-dicarboxylate 21, which was
not successfully docked in the crystal structure, the ligand was first positioned in
the active site by alignment to the docked pose of the similarly sized 2,6-naph-
thalenedicarboxylate 22, after which the system was energy minimised with

1000 steps of steepest descent followed by 10 steps of conjugate gradient in UCSF
Chimera 1.14 (ref. 73) with the Amber FF14SB force field’# for the protein the
AM1-BCC atom and bonding definitions for the ligand, and biphenyl-u4,4-
dicarboxylate was then docked into the resulting protein structure. After energy
minimisation, the main change in the protein structure was in the loop formed by
residues 30-35, with a resulting RMSD of 0.502 A relative to the crystal structure
for these residues (and 0.095 A for the whole protein).

Phylogenetic, taxonomic and genomic context analysis. Searching for TphC-
like proteins was performed by Basic Local Alignment Search Tool (BLAST) in
National Center for Biotechnology Information (NCBI) server using the BLAST-P
method. Multiple alignment was performed with Clustal omega, and visualised
using iTOL”’. Taxonomic information for these sequence files was then retrieved
using the NCBI Taxonomy page. If there were multiple entries/species associated
with a particular TphC-like protein homologue, then the first NCBI database entry
was selected. Genomic context analysis was performed by retrieving the corre-
sponding protein sequences from the genes flanking the tphC-like genes (+7000
nts) using NCBI database. The resulting sequence files were parsed using the
biopython and pandas packages’®77 in python and further processed using the
tidyverse package R7® (Supplementary Table 7).

Homologous proteins were selected on the basis on NCBI annotation, homology
analysis was subsequently performed between the putative homologues and
Comamonas strain sp. E6 using Clustal omega, and genomic loci containing four or
more tph-like genes were classified as tph-like operons. Genes within these operons
that could not be classified as tph-like had their function inferred using Blast2GO”°.
The operon configuration was annotated on basis of the location of the genes
encoding TphR and TphC relative to the corresponding intergenic/promoter region.
Predominately #phC is located at the 5’ end of the operon and tphR located head-to-
head with respect to the corresponding promoter (5’H). These data were plotted using
R and the tidyverse, gggenes®) and RColorBrewer3! packages. The graphs produced
were finalised using GNU Image Manipulation Program®2.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

The X-ray datasets generated during the current study are available in the Worldwide
Protein Data Bank (wwPDB) repository with accession codes 7NDR and 7NDS. The
Phylogenetic data generated in this study are provided in the Supplementary Data
file 1. Source data are provided with this paper.
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