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Abstract

Background: The relationship between HIV infection, the functional organization of the brain, 

cognitive impairment, and aging remains poorly understood. Understanding disease progression 

over the lifespan is vital for the care of people living with HIV (PLWH).

Setting: Virologically suppressed PLWH (n=297) on combination antiretroviral therapy and 1509 

HIV uninfected healthy controls were evaluated. PLWH were further classified as cognitively 

normal (CN) or impaired (CI) based on neuropsychological testing.

Methods: Feature selection identified resting state networks (RSNs) that predicted HIV and 

cognitive status within specific age bins (< 35, 35–55, >55). Deep learning models generated 

voxelwise maps of RSNs to identify regional differences.

Results: Salience (SAL) and parietal memory networks (PMN) differentiated individuals by HIV 

status. When comparing controls to PLWH CN the PMN and SAL had the strongest predictive 

strength across all ages. When comparing controls to PLWH CI SAL, PMN, and frontal parietal 

(FPN) were the best predictors. When comparing PLWH CN to PLWH CI SAL, FPN, basal 

ganglia, and ventral attention were the strongest predictors. Only minor variability in predictive 

strength was observed with aging. Anatomically, differences in RSN topology occurred primarily 

in the dorsal and rostral lateral prefrontal cortex, cingulate, and caudate.

Conclusion: Machine learning identified RSNs that classified individuals by HIV and cognitive 

status. PMN and SAL were sensitive for discriminating HIV status, with involvement of FPN 

occurring with cognitive impairment. Minor differences in RSN predictive strength were observed 

by age. These results suggest specific RSNs are affected by HIV, aging, and HIV associated 

cognitive impairment.
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Introduction

More than 37 million people worldwide have HIV1. HIV affects the brain soon after 

seroconversion and leads to chronic neuro-inflammation2. Treatment with combination 

antiretroviral therapy (cART) can slow the progression of the disease and reduces the risk 

of transmission. Due to effective treatment with cART, the average life expectancy of people 

living with HIV (PLWH) is now similar to HIV uninfected (HIV-) individuals. This has 

turned HIV from a fatal disease for most individuals into a more chronic condition3.

Despite the success of cART, milder forms of cognitive impairment persist that involve 

multiple domains4. The presence of cognitive impairment may result from multiple 

mechanisms including psychosocial factors, mechanisms that predated HIV and/or cART 

(legacy effects), continued low level inflammation despite cART, and/or the presence of 

viral reservoirs4. Consequently, identifying changes in brain structure and function across 

the lifespan of PLWH remains important.

Studies have shown that spontaneous correlated patterns of neural oscillations are a 

consistent feature of brain networks associated with numerous brain functions. These 

include information transfer, mechanisms of plasticity, and support of cognitive functions5. 

Resting-state functional connectivity (RS-FC), which measures the temporal relationship of 

blood oxygen level dependent (BOLD) fluctuations, is reflective of the neural organization 

of the brain and can be parcellated into resting state networks (RSNs)6. RS-FC allows for the 

evaluation of a hierarchy of topological boundaries that define the functional organization of 

the brain.

Alterations in the temporal and spatial patterns of RS-FC vary across the lifespan and 

by medical condition7. In HIV, abnormal RS-FC has been observed within cortical and 

subcortical brain regions that comprise multiple RSNs, including the default mode, sensory, 

motor, and attention networks. Alterations in RSNs associate with cognitive impairment 

due to HIV, possibly reflecting loss of some connections and compensatory recruitment of 

networks to support cognitive function6,8.

The use of data driven machine learning (ML) models has become common in the 

medical field. These methods avoid heuristics, are noise tolerant, and are robust to 

feature interactions9. While most statistical analyses have primarily focused on group-level 

differences, ML algorithms can be tailored to identify contrasts at the individual level which 

has potential to support personalized clinical care10. To design such personalized treatments, 

we need to first understand the critical determinants. Feature selection is designed to identify 

and characterize relationships that are most relevant to a particular outcome. Multiple studies 

have used ML to reveal novel mechanisms and associations relevant to HIV11,12.

This study utilizes ML based feature selection within a large cohort of PLWH on cART 

who were virologically controlled (<200 copies/mL) (n=297) and 1509 controls to identify 

RSNs that distinguish between HIV serostatus (controls compared to cognitively normal 

PLWH (PLWH CN), and controls compared to cognitively impaired PLWH (PLWH CI) with 

respect to different age bins (< 35 years old, 35–55 years old, and >55 year old). Further, we 

identified the RSNs that are the strongest predictors of cognitive status between PLWH CN 
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and PLWH CI across different ages. Lastly, a deep learning model generated voxelwise maps 

of RSNs that identified salient changes in RSN topology amongst the three groups. This 

data-driven approach presents an opportunity to uncover novel disease trajectories relevant 

to HIV infection.

Methods

Participants

PLWH were selected from ongoing studies conducted by the Infectious Disease Clinic at 

Washington University in Saint Louis (WUSTL). A participant was excluded if (s)he were 

younger than 18 years old, had a history of confounding neurological disorders, had current 

or past opportunistic central nervous system (CNS) infections, had traumatic brain injury 

with loss of consciousness >30 minutes, had major psychiatric disorders, or met criteria for 

current substance use disorder according to the Diagnostic and Statistics Manual of Mental 

Disorders 5th edition. All PLWH were on stable cART for at least 6 months and had a 

recent viral load <200 copies/mL. Studies involving PLWH collected neuroimaging data at 

the same institution on the same type of scanner with the same scanning protocols. All of 

these studies followed similar neuropsychological and blood/CSF lab protocols. RS-FC was 

acquired from control participants (N=1806) through ongoing research studies conducted at 

WUSTL, as well as the Brain Genomics Superstruct Project13. The appropriate Institutional 

Review Boards approved all studies, and all participants provided written informed consent.

Neuropsychological assessment

For all PLWH, neuropsychological testing targeted five neurocognitive domains previously 

described11. A total of 15 tests were administered, including: 1) learning: total recall 

across the learning trials on the Hopkins Verbal Learning Test-Revised (HVLT-R) and Brief 

Visuospatial Memory Test-Revised (BVMT-R); 2) memory: delayed recall on the HVLT-R 

and BVMT-R; 3) executive: Trail Making Test B, Letter-Number Sequencing, Verb Fluency, 

and Color Word Interference Test Trial 3; 4) motor/psychomotor speed: Trail Making Test 

A, Digit Symbol, grooved pegboard dominant and non-dominant hands, and Symbol Search; 

5) language: letter fluency (FAS) and category fluency (animals). Time to completion or 

total correct served as the dependent measures in accord with standard methods. Raw test 

scores were transformed into Z-scores using published norms corrected for age, education, 

sex, and race. PLWH who had at least one domain Z-score < −2 or two domain Z-scores < 

−1 were designated as cognitively impaired.

Normative cognitive status for the control participants was confirmed by a structured clinical 

rating scale (i.e., the Clinical Dementia Rating Scale (CDR® 14) or online cognitive test 

protocol13. These tests results were only used to confirm normal cognition for the control 

participants.

Magnetic resonance imaging (MRI) acquisition

All neuroimaging was performed on a 3T Siemens MR Scanner (Siemens AG, Erlangen, 

Germany) equipped with a standard 12-channel head coil. A high-resolution, three­

dimensional, sagittal, T1-weighted, magnetization-prepared rapid gradient echo (MPRAGE) 
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scan was acquired (echo time [TE] = 16 ms, repetition time [TR] = 2,400 ms, inversion time 

= 1,000 ms, flip angle = 8°, 256 × 256 acquisition matrix, 1 mm3 voxels). RS-FC scans were 

collected using an echo planar sequence (voxel size = 3–4 mm3, TR = 2200–3000 ms, FA = 

80°−90°) that is sensitive to BOLD contrast. Each participant had approximately 14 min of 

RS-FC data.

MRI processing

Structural data preprocessing was completed using FreeSurfer version 5.3 (http://

surfer.nmr.mgh.harvard.edu) as previously described11. Visual inspection of automated 

segmentation results was performed for quality assurance and corrections were made when 

necessary. RS-FC preprocessing methods were performed as previously described15,16. Head 

motion was corrected utilizing affine transformations, and additional in-house methods 

were used to exclude participants with excessive head movement. Data also underwent 

nuisance regressors using whole brain signal, ventricular (CSF) and white matter signal, 

movement time-series, and low-pass temporal filtering to remove frequencies above 0.08 Hz. 

The structural MPRAGE and preprocessed RS-FC scans were cross-aligned using boundary­

based registration. A 4-mm full-width half-maximum smoothing kernel was used in the 

surface space.

Predefined regions of interest (ROIs)17 were used to assess RS-FC in cortical and 

subcortical regions. A total of 300 ROIs encompassing 15 RSNs (dorsal somatomotor 

(SMD), ventral somatomotor (SMV), cinguloopercular (CON), auditory (AUD), default 

mode (DMN), parietal memory (PMN), visual (VIS), frontoparietal (FPN), salience (SAL), 

ventral attention (VAN), dorsal attention (DAN), medial temporal (MET), reward (REW), 

basal ganglia (BGN), and thalamus (THA)) were included. A similarity map was obtained 

by computing the Pearson’s correlation between BOLD time series from the 300 ROIs. 

Averaging between-network and within-network correlations produced a similarity map for 

the 15 RSNs.

Feature selection

RSNs were ranked according to their predictive value using a Relief algorithm18. Additional 

details can be found in supplementary material. Features were evaluated according to 

different age groups (<35 years old, 35–55 years old, >55 years old). Input to the Relief 

algorithm included the 120 RS-FC correlations from the 15 RSNs for participants within 

a given age group. Comparing PLWH with controls, the response variable was HIV status. 

When comparing between the two PLWH groups, the response variable was cognitive 

impairment status. To rank the importance of RSNs, all within and between network weights 

for the 15 RSNs were averaged to generate an aggregate input feature. The aggregate 

features with an average weight ≥ 0.5 were considered strong predictors. Feature weights 

were validated on 5 iterations with different subsets of data.

Deep learning

A three-dimensional convolutional neural network (3DCNN) was trained to generate 

voxelwise maps of RSNs. Training and validation of the model are described in 

supplementary material. In short, random subsampling of ROIs within a given predefined 
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network was used to extract a 3D similarity map by computing the Pearson’s correlation 

between the mean of the subsampled BOLD signals and every other voxel in the brain. 

The 3D similarity map was then assigned to one of the 15 RSNs based on the highest 

correlation between the subsampled signal and the signal for each RSN. The resulting RSN 

maps represent the probability of a given voxel belonging to each of the 15 RSNs. The 

3DCNN was implemented in Matlab R2019b (www.mathworks.com). Supplemental figure 1 

summarizes the analysis process outlined in this research.

Results

Demographics of the cohort

The majority of the control cohort (N=1509) were males (62%) with an average age of 45.4 

(±23.6) years. The majority of the PLWH CN cohort (N=181) were males (65%) with an 

average age of 50.5 (±12.9) years. The majority of the PLWH CI cohort (N=116) were males 

(69%) with an average age of 44.6 (±14.4) years. Detailed demographics are presented in 

Table 1.

Controls compared to PLWH CN

Figure 1 (red bars) shows the results of the Relief algorithm when comparing controls to 

PLWH CN. The bar heights represent the relative importance of each RSN in differentiating 

individuals as either controls or PLWH with normative cognitive performance, with a “1” 

indicating the strongest predictive network. The PMN, SAL, and VIS were the RSNs that 

had the strongest predictive ability for differentiating the two groups. A voxel-wise analysis 

of topographic changes in the SAL revealed that the group difference was driven mostly 

by alterations in connectivity in the anterior cingulate cortex (ACC) and the dorsolateral 

prefrontal cortex (DLPFC) (Figure 2). For the PMN the greatest differences were observed 

in parietal regions and the retrosplenial cortex (Figure 3). Lastly, for VIS the greatest 

difference was in the occipital lobe. The PMN and VIS were important discriminators across 

all bins. The SAL was a moderately strong predictor in the younger age group (<35), and 

became a stronger predictor with age (>35).

Controls compared to PLWH CI

Figure 1 (yellow bars) shows the results of the Relief algorithm when comparing controls to 

PLWH CI. The PMN, SAL, and FPN differentiated these two groups. Voxel-wise analysis 

of topographic changes identified the largest anatomical differences in the SAL, which 

included both the ACC and DLPFC (Figure 2). Voxelwise maps of the PMN showed 

that the largest differences were in parietal regions and the retrospenial cortex (Figure 

2). Differences in the FPN were primarily in the DLPFC, rostral lateral prefrontal cortex 

(RLPFC), and portions of the parietal lobule (Figure 3). The PMN and SAL maintained their 

strong predictive strength across the age bins. While the FPN was a strong predictor in all 

age groups, it had reduced predictive strength for older ages.

PLWH CN compared to PLWH CI

Figure 1 (green bars) shows the results comparing PLWH CN to PLWH CI with cognitive 

impairment being the main discriminator. The REW, SAL, VAN, FPN, BGN, and VIS 
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differentiated PLWH according to cognitive impairment status. Voxel-wise analysis of 

topographic changes in the SAL identified the greatest differences occurred in the ACC and 

the DLPFC (Figure 2). Differences in the FPN were primarily in the RLPFC and portions 

of the parietal lobule (Figure 3). Differences observed in the BGN were primarily seen in 

the caudate, globus pallidus, and posterior putamen. Differences in the REW were seen in 

the ventromedial prefrontal cortex, amygdala, nucleus accumbens, and orbitofrontal regions. 

Each of these networks were important determinants of cognitive status across age bins.

Discussion

This study identified several novel findings with regards to changes in the functional 

organization of the brain in the context of HIV status, cognitive impairment, and age. The 

strongest RSNs that were predictive for each of the comparisons included: the SAL, PMN, 

and VIS when comparing controls and PLWH CN; SAL, PMN, and FPN when comparing 

controls and PLWH CI; and the REW, SAL, VAN, FPN, BGN, and VIS when comparing 

PLWH CN to PLWH CI. Multiple RSNs were associated with cognitive impairment when 

comparing PLWH CN to PLWH CI. The RSNs that had the strongest predictive ability 

across the age spectrum or became stronger with increasing age were the SAL, PMN, 

and FPN. However, anatomical variability occurred in network strength with respect to the 

different age groups (Figure 2–4). These results point to a complex phenotype imposed by 

HIV infection, even with viral suppression with cART.

When comparing controls to PLWH CN with HIV status, the PMN, SAL, and VIS networks 

were the strongest differentiators. When mapping these networks onto the brain with deep 

learning, differences in RSN topology were primarily observed in the DLPFC, parietal 

regions, and the ACC. In our previous work, significant differences were observed in 

both intra-network and inter-network connectivity in SAL8. Using independent component 

analysis of controls and PLWH, previous studies using RS-FC have shown the occipital lobe 

to be affected as well as reduced co-activation in occipital and parietal regions, possibly 

associated with VIS and PMN19. Chang et al.20 also observed altered connectivity in 

numerous regions, including the DLPFC and parietal regions. Other studies have also shown 

altered connectivity in the ACC21. While these and our studies used different methodologies, 

the results consistently identified the SAL, VIS, and regions of the frontostriatal circuit as 

vulnerable to HIV independent of cognitive status.

The PMN, SAL, and FPN were the strongest predictors when comparing controls to PLWH 

CI with HIV status as the outcome. Similar to PLWH CN, topographic differences were 

primarily observed in the DLPFC, parietal regions, and the ACC. In addition, portions of the 

FPN including the RLPFC and parietal lobule were identified. Previously, Chaganti et al.22 

showed similar results when comparing controls to PLWH CI, with significant differences in 

both the SAL and executive networks. Similar to our current results, Chaganti et al.22 also 

observed no significant differences in the somatosensory, DMN, and VAN networks when 

comparing these two groups.

With regards to cognitive impairment due to HIV (PLWH CN to PLWH CI), the strongest 

predictors were the REW, SAL, VAN, FPN, BGN, and VIS. Like the other comparisons, the 
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ACC and DLPFC were identified as regions with large differences in voxelwise analysis. In 

addition, this voxelwise analysis identified the caudate, globus pallidus, posterior putamen, 

ventromedial prefrontal cortex, amygdala, nucleus accumbens, and orbitofrontal regions. 

With regards to the basal ganglia, others have observed reductions in RS-FC in the caudate 

and globus pallidus23.

The networks identified as the strongest predictors were important features for all three 

age groups. Our past research has demonstrated both HIV and age independently affect 

fMRI measures, but no interactions were observed24. Other studies have also observed that 

age and HIV were independent risk factors for developing HIV-associated neurocognitive 

disorders25. Voxelwise differences in RSNs generated with deep learning showed more 

variability with age than comparing weights at the network level. This is an indication that 

analysis of RSNs at the voxel level with deep learning could provide further insight into 

the effects of HIV on RSNs than analysis at the network ROI level. Other studies have 

also found age and task dependent variability in network activations26. The age variability 

in RSN topology and strength observed in our study is likely due to numerous factors, 

including cognitive reserve, legacy effects, response to cART, and/or compensation due to 

neuronal damage.

Several important networks, including SAL and FPN, are disproportionately affected by 

HIV. The SAL was a strong classifier across all age groups. The SAL network is believed 

to be responsible for the mediation of switching between the DMN and networks involved 

in executive function (FPN), and contributes to numerous complex brain functions27. In 

contrast, the controls and PLWH CI comparison and PLWH CN/PLWH CI comparison also 

showed the FPN as a strong predictor. The FPN is associated with numerous cognitive 

functions including attention, problem-solving, and working memory28, each representing 

foundational components of complex, downstream cognitive operations. The FPN and SAL 

constitute two of the three RSNs that comprise the “triple network model”28. The triple 

network model consist of task negative states (DMN), task positive states (FPN), and 

switching states (SAL). Our results indicate that altered connectivity in both SAL and FPN 

underlies the shift from normative to impaired cognitive status among PLWH.

With regards to topographic changes, the ACC and DLPFC were important classifiers of 

HIV status and cognitive impairment status. The ACC and DLPFC are regions associated 

with the frontostriatal circuit, which is known to be associated with neurodegenerative 

and neuropsychiatric disorders29. In HIV, previous research has demonstrated altered 

connectivity in the DLPFC, dorsal caudate, and frontal and parietal regions connected to 

the DLPFC30. These changes have been observed in both cognitively normal and cognitively 

impaired PLWH. Studies have shown that the use of transcranial magnetic stimulation 

(TMS) leads to increased functional connectivity between the DLPFC and other regions of 

the frontostriatal circuit31,32. TMS directed at neural components of the FPN and/or SAL 

may help to mitigate the deleterious effects of HIV neuropathogenesis.

The main limitation of our study is the use of a cross-sectional research design. Research 

using prospective designs is needed to develop a clearer picture of the influence of HIV on 

RSNs. Further, cognitive impairment was assessed based on a summary measure of multiple 
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domains. Future studies should evaluate differences that are unique to specific domains. 

Future studies should also evaluate multiple feature selection algorithms to cross-check the 

predictive features identified in the current study. Lastly, studies are needed to understand 

the contribution of social determinants of health as salient features in studies of brain 

integrity among PLWH.

Conclusion

In this work, novel methods identified biomarkers of change in the functional organization 

of the brain in PLWH. We have identified RSNs that discriminate between controls, PLWH 

CN, and PLWH CI using machine learning for feature selection. Further, deep learning 

models identified anatomical regions where the largest changes in RSNs occurred. Finally, 

these analyses revealed patterns of change across age groups, suggesting that RSNs and 

cognitive changes for individuals may vary over time. This work provides group-level 

functional and anatomical inferences that could be foundations for future pharmacologic or 

rehabilitative interventions for PLWH. The deep learning models developed in this work 

can provide inferences for individuals, providing RSN maps that could be used in precision 

medical care.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Strongest predictors for each group comparison.
Red bars are strongest predictors when comparing HIV status between controls and persons 

living with HIV (PLWH) cognitively normal. Yellow bars are strongest predictors when 

comparing HIV status between controls and PLWH cognitively impaired. Green bars are 

strongest predictors of cognitive impairment status between PLWH cognitively normal (CN) 

and PLWH cognitively impaired (CI). Black error bars indicate standard deviations of 

predictor strengths over 5 validation. Y-axis represents the predictive strength (weights) of 

the given networks. Weights were calculated by averaging the intra/inter network weights 

identified by the Relief algorithm and rescaled to a [0, 1] interval. Networks with weights 

close to one were the strongest predictors for a given outcome variable.
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Figure 2: Difference maps for the salience (SAL) resting state network (RSN).
Difference maps for the SAL network at 0.2 minimum threshold, which was identified as 

a RSN with strong predictive ability to differentiate the three groups. Mixtures of higher 

and lower resting state functional connectivity (RS-FC) for group dependent regions were 

observed in the anterior cingulate cortex (ACC) and dorsolateral prefrontal cortex (DLPFC). 

Red indicates regions where controls have a stronger network signal compared to PLWH 

(top 2 rows), or PLWH CN have a higher network strength than PLWH CI (bottom row). 

Blue indicates regions where controls have a weaker network signal compared to PLWH 

(top 2 rows), or PLWH CN have a weaker network strength than PLWH CI (bottom row).
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Figure 3: Difference maps for the parietal memory network (PMN).
Difference maps of PMN at 0.2 minimum threshold, identified as a strong predictor between 

controls and PLWH CN groups and controls and PLWH CI groups. Differences were 

primarily observed in parietal regions and the retrospenial cortex. Red indicates regions 

where controls have a stronger network signal compared to PLWH. Blue indicates regions 

where controls have a weaker network signal compared to PLWH.
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Figure 4: Difference maps for the frontal parietal network (FPN).
Difference maps of FPN at 0.2 minimum threshold, identified as a strong predictor between 

controls and PLWH CI groups and PLWH CN and PLWH CI groups. The DLPFC, rostral 

lateral prefrontal cortex, and portions of the parietal lobule showed large differences. Red 

indicates regions where controls have a stronger network signal compared to PLWH (top 

rows), or PLWH CN have a higher network strength than PLWH CI (bottom row). Blue 

indicates regions where controls have a weaker network signal compared to PLWH (top 

rows), or PLWH CN have a weaker network strength than PLWH CI (bottom row).
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Table 1.

Demographics of cohort

Controls, N=1509 PLWH CN, N=181 PLWH CI, N=116 p value

Age (years) , mean (SD) 45.4 ± 23.6 50.5 ± 12.9 44.6 ± 14.4 0.17

Sex (% Male) 62% 65% 69% 0.20

Education, mean (SD) (years) 14.1 ± 2.4 13.9 ± 2.4 13.7 ± 2.3 0.18

Race (% Caucasian) 79% 40% 27% <0.001

Race (% African American) 10% 59% 73% <0.001

Race (% Other) 11% 1% 0% <0.001

Duration of Infection (years), mean (SD) 15.1 ± 8.2 15.1 ± 7.3 0.97

Current CD4 cells/μl, median (IQR) 595 (415) 614 (390) 0.31

SD=standard deviation, cART=combination antiretroviral therapy, IQR=interquartile range.
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