
Synergies between therapeutic ultrasound, gene therapy and 
immunotherapy in cancer treatment

Nisi Zhang1,2, James Wang1, Josquin Foiret1, Zhifei Dai2,*, Katherine W. Ferrara1,*

1 Department of Radiology, Stanford University, Palo Alto, CA, USA

2 Department of Engineering, Peking University, Beijing, China

Abstract

Due to the ease of use and excellent safety profile, ultrasound is a promising technique for 

both diagnosis and site-specific therapy. Ultrasound-based techniques have been developed to 

enhance the pharmacokinetics and efficacy of therapeutic agents in cancer treatment. In particular, 

transfection with exogenous nucleic acids has the potential to stimulate an immune response in 

the tumor microenvironment. Ultrasound-mediated gene transfection is a growing field, and recent 

work has incorporated this technique into cancer immunotherapy. Compared with other gene 

transfection methods, ultrasound-mediated gene transfection has a unique opportunity to augment 

the intracellular uptake of nucleic acids while safely and stably modulating the expression of 

immunostimulatory cytokines. The development and commercialization of therapeutic ultrasound 

systems further enhance the potential translation. In this Review, we introduce the underlying 

mechanisms and ongoing preclinical studies of ultrasound-based techniques in gene transfection 

for cancer immunotherapy. Furthermore, we expand on aspects of therapeutic ultrasound that 

impact gene therapy and immunotherapy, including tumor debulking, enhancing cytokines and 

chemokines and altering nanoparticle pharmacokinetics as these effects of ultrasound cannot 

be fully dissected from targeted gene therapy. We finally explore the outlook for this rapidly 

developing field.
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I. Introduction

Ultrasound has been used as a common diagnostic tool in medicine for more than fifty 

years. Recently, ultrasound therapy has expanded in clinical applications. Ultrasound can 

be combined with other therapies to treat various diseases, including cancer [1–4]. The 

ability of ultrasound to simultaneously image and generate local therapeutic effects improves 
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spatial selectivity and therefore can reduce systemic toxicity [5]. Here, we will examine 

the application of therapeutic ultrasound in cancer immunotherapy, with a particular focus 

on the incorporation of ultrasound-mediated transfection to alter tumor and immune cell 

phenotypes.

The effect of ultrasound on tissue varies with the acoustic frequency (Figure 1), and 

therapeutic ultrasound typically employs a center frequency ranging from 20 kHz to 5 MHz. 

Within the lower frequency range (20–100 kHz) sound waves can destroy kidney stones or 

coronary artery calcifications [6, 7] and enhance transdermal drug delivery [8, 9], allowing 

lidocaine, insulin or vaccines to diffuse through the permeabilized skin. With frequencies 

ranging from 500 kHz to 2 MHz, focused ultrasound enhances drug transport through the 

cornea [10] and enhances fracture healing [11]. Frequencies above 1 MHz have also been 

applied in mechanical and thermal high-intensity focused ultrasound (HIFU) for tumor 

ablation [12, 13]. Some of these treatments have been approved for clinical use, whereas 

most are in pre-clinical development.

Microbubbles (MBs) are used as contrast agents in diagnostic applications, and MBs have 

been explored recently in therapeutic protocols [4]. The combination of ultrasound and MBs 

has been applied for transient blood-brain barrier (BBB) opening [3, 14], thrombolysis 

[15], and gene transfection [16, 17]. Particularly in the presence of MBs, ultrasound 

can achieve localized transfection [18]. Ultrasound-mediated gene therapy (UMGT) is 

minimally invasive, and has been safely applied over a range of frequency (250 kHz - 2.25 

MHz) and intensity (0.1 – 4 W/cm2).

UMGT is typically performed in vivo after systemic or local administration of MBs and 

nucleic acids. While in vivo UMGT is reported to achieve a 10 to 30-fold increase in 

transfection efficiency over the application of nucleic acids alone, in vitro results have 

shown up to several thousand-fold increase in efficacy, motivating numerous studies to 

further optimize preclinical ultrasound transfection parameters [19]. In comparison to 

other transfection approaches, UMGT may improve spatial and temporal control, since 

transfection can be localized, monitored by imaging and titrated as to the dose [20]. In 

addition, molecularly-targeted MBs can be employed to carry nucleic acids. Molecular 

targeting enhances UMGT by bringing MBs and genetic materials close to the tumor cells 

[21].

Importantly, UMGT does not require dedicated therapeutic ultrasound devices. Fully 

featured, affordable and practical theragnostic devices can be applied in combination with 

specific ultrasound intensities and protocols [22]. Still, there are limitations of diagnostic 

equipment in theragnostics. The center frequency, acoustic intensity and pulse repetition 

frequency operate within limits that were optimized for imaging rather than therapy. Further, 

the sequencing of pulses between lines-of-sight within an image frame is often difficult to 

discern and therefore quantification of the acoustic dose is challenging.

Immunotherapy has shifted the paradigm for cancer treatment, and can induce long-lasting 

responses in patients with a subset of cancers. Immunotherapeutic agents are often used 

to activate the immune system, or to block immunosuppressive checkpoints in the tumor 
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microenvironment (TME) [23, 24]. To date, the benefit of immunotherapy has been limited 

to a minority of patients with specific cancer types, with particular limitations in the 

treatment of solid tumors. The ability of ultrasound to debulk the TME while enhancing 

beneficial immune cell populations is particularly attractive. Herein, this review begins 

with a concise background on gene therapy, the underlying mechanisms of therapeutic 

ultrasound and the related bioeffects, followed by a summary of the opportunities to 

integrate ultrasound within gene therapy and immunotherapy protocols. We particularly 

focus on the intersection of ultrasound, gene therapy and immunotherapy.

II. Gene delivery

Currently, there are various methods for the delivery of therapeutic genetic materials, 

including viral and non-viral delivery systems, each with advantages and limitations 

discussed below (Table 1).

2.1 Viral vectors

Viral vectors have been widely applied in clinical transfection protocols due to the fact that 

viruses efficiently transfer DNA or RNA into host cells. Recently, gene therapy clinical 

trials have relied on adenoviruses [25], lentiviruses [25, 47] and adeno-associated viruses 

(AAVs) [48]. Although viral vectors have substantially advanced the field of gene-based 

immunotherapy, disadvantages and safety issues include potential toxic immunostimulatory 

effects, varied tropism and difficulties in targeting tissues of interest [28]. Other concerns 

include limited gene payload capacity, induction of a potentially fatal inflammatory 

response, carcinogenesis, and insertional mutagenesis [29, 49].

2.2 Non-viral delivery systems

Non-viral delivery vehicles and other physical methods have been investigated to provide 

an alternative to viral systems. Chemical approaches include modified delivery systems that 

can bind or electrostatically-encapsulate condensed gene constructs to facilitate endocytosis 

[50]. Delivery systems include liposomes, nanoparticles, polymers and dendrimers [30], 

and typically incorporate cationic or ionizable lipids, peptides, or polymers to enhance 

uptake and nuclear localization [4, 51]. Nanoparticles can be designed with a high loading 

capacity, extended pharmacokinetic profile and controlled release properties to increase the 

therapeutic index of immunotherapeutic genes and protect nucleic acids from degradation 

[32]. By modifying surface ligands, nanoparticles can specifically target host cells and can 

be engineered to release their cargo in response to biochemical changes in the TME or 

external stimuli [33]. In addition, nanoparticles can be tuned to stimulate immune cells 

[34]. Furthermore, nanoparticle delivery systems can prevent off-target effects and systemic 

toxicity, when compared to viruses, reducing dose-limiting toxicity. Molecularly-targeted 

non-viral delivery systems can selectively activate immunotherapies at the target site [50]. 

Nevertheless, the transfection efficiency of nanoparticle delivery systems is less than that 

obtained with viruses [30, 51].

Physical methods, including microinjection [36], biolistic particle bombardment [37], 

phototransfection [38], electroporation [40, 41] and ultrasound-mediated transfection [22] 
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induce pores in cell membranes to introduce their cargo into cells. These methods often 

lead to transient therapeutic gene expression [36–38, 52]. Electroporation can deliver genetic 

materials by applying short electric pulses that can transiently generate perforations in 

the cell membrane [40, 41, 52]. This technology was used with cDNA in natural killer 

(NK) cells, to engineer primary NK cells to express chimeric antigen receptors (CARs) 

[39] or generate immune cytokines [53]. Stable transgene expression has been achieved 

with electroporation-based regimens; however, the efficacy is typically lower compared 

to viral transfection. In some cases, such physical methods are invasive and limited to 

superficial tissues; this reduces the potential applications [50]. This drawback can potentially 

be circumvented with ultrasound techniques.

2.3 UMGT

UMGT has shown the capacity for delivering genes into cells of interest and includes 

a variety of applications [43, 54–56]. For example, 1-MHz focused ultrasound enhanced 

DNA plasmid transfer with polyethyleneimine (PEI) MBs in xenograft sarcoma models 

[57]. Systemic administration of DNA-cationic lipid complexes followed by the localized 

application of ultrasound in mice increased transfection, and consequently led to a 

significant tumor growth reduction [45]. Similarly, in hepatocellular carcinoma models, 

following the transfection of pre-miR-139 and -378a plasmids, phosphoinositide 3-kinase 

catalytic subunit alpha (PI3K CA) expression was inhibited, resulting in tumor suppression 

[58].

Advantages for those entering the field include the site specificity; disadvantages include 

the currently limited number of preclinical studies and the technical challenges for 

those trained in the biological sciences. Many parameters impact the resulting efficacy 

of ultrasound techniques, and the nonlinear oscillation and nonlinear response to input 

parameters can be difficult for those lacking training in physics to appreciate. For example, 

while most studies have used low ultrasound frequencies and a relatively small range of 

parameters, transfection can also be accomplished with higher frequencies. Yoon et al. used 

150-MHz (high-frequency) ultrasound to accomplish precise targeting and size-dependent 

macromolecular delivery with low cytotoxicity [59]. The acoustic pulses perturbed the lipid 

bilayer of the cell membrane of a targeted cell to induce intracellular delivery of exogenous 

molecules. Clustered regularly interspaced short palindromic repeats-associated protein-9 

nuclease (CRISPR-Cas9) was then used for gene editing [60].

In the following section, as summarized in Figure 2, we explore the mechanisms of 

therapeutic ultrasound in gene therapy.

III. Therapeutic ultrasound and its applications in gene therapy and 

immunotherapy

The key to the versatility of therapeutic ultrasound results from the range of interactions and 

the titrated and controlled intensity of these interactions. Further development of ultrasound 

in gene therapy requires a better understanding of these underlying mechanisms in order to 

plan for future clinical applications. The TME, which not only includes tumor cells, but also 
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stromal fibroblasts, infiltrating immune cells, blood vessels and the extracellular matrix [61], 

plays an important role in cancer growth, development and progression [62]. Ultrasound­

induced effects spanning each TME component are the foundation for ultrasound-mediated 

gene transfer. Therefore, here we begin with a brief discussion of the underlying physical 

mechanisms by which ultrasound results in transfection or alters the biodistribution of 

therapeutics. Such mechanisms include thermal and mechanical effects. Although pressure 

oscillations directly affect cells and tissues, secondary effects of insonation can also play an 

important role and are also described here.

3.1 Thermal effects

Ultrasound has the potential to rapidly increase the local temperature due to energy 

absorption. The impact of ultrasound-induced heating varies with the amplitude and duration 

of the temperature change. Thermal effects directly alter gene and protein expression 

[63–65], e.g., heat shock proteins in the TME can influence immunotherapy and cancer 

therapeutic efficacy [66, 67]. A commonly utilized metric to gauge these effects is the 

cumulative equivalent minutes at 43°C (CEM43).

CEM43 = ∫0
t
R(43 − T)dt(min)

where t represents the treatment time, T is the applied temperature at the target site during 

the treatment, and R is a constant. The CEM43 reflects the impact of the heat exposure 

[68]. For a low CEM43 as encountered in hyperthermia, temporary and reversible effects, 

such as vasodilation or vasoconstriction or a change in pH enhanced immune response 

[69, 70]. Higher CEM43 can result in permanent changes such as tissue coagulation and 

cellular effects such as apoptosis, necrosis, immunogenic cell death and cytokine release. 

A CEM43 thermal dose of 240 or above results in tissue ablation [71]. The presence of 

MBs or nanodroplets can significantly enhance the energy absorption and consequently the 

temperature elevation [72, 73]. Clinical adaptation of local hyperthermia has been limited 

due to the challenge of non-invasive temperature and CEM43 control. Magnetic Resonance 

Imaging (MRI) is frequently applied for real-time and noninvasive thermometry but the cost 

limits its usage.

The acoustic intensity in tissue is determined by the pulse duration, instantaneous intensity 

(directly related to the acoustic pressure), and pulse repetition frequency (PRF) [74]. 

Intensity can be reported in terms of spatial peak (SP, referring to the region in space 

where the intensity is maximum) or spatial average (SA, integrating the intensity field and 

its variations in space) and temporal peak (TP, referring to the maximum instantaneous 

intensity during the pulse) or temporal average (TA, integrating the intensity in time). For 

example, the spatial-peak temporal-average acoustic intensity (ISPTA, commonly expressed 

in W/cm2) is defined as the maximum intensity measured at any point in the ultrasound 

beam averaged over the pulse repetition period and is a good indicator of the magnitude of 

thermal bioeffects (e.g. a higher ISPTA will result in a greater temperature change). A given 

temporal-average intensity (ITA) can be achieved both with a low amplitude and long pulse 

with a high PRF (high duty cycle) or a short and high amplitude pulse with a low PRF 
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(low duty cycle) (Figure 3). In many therapeutic ultrasound papers, the specific intensity 

measure (e.g. ISPTA vs ISATA) is not clearly described and in those cases is described here 

as intensity or is interpreted from the referenced papers. This is a limitation of current 

therapeutic ultrasound research.

Energy absorption in tissue is also proportional to the ultrasound frequency, meaning that 

at a given ITA, a higher frequency will yield a greater temperature elevation. The spatial 

characteristics of the acoustic beam (focal depth and focus size) are set by the transducer 

dimensions and shape (flat or focused). Focused transducers are generally employed in 

UMGT to limit exposure to the surrounding healthy tissue. The use of phased arrays adds 

the ability to move the focus in space under imaging guidance with electronic steering but 

requires dedicated hardware [75].

3.2 Mechanical force and cavitation

Mechanical effects of insonation also play an important role in ultrasound therapy. 

Cavitation results from the nucleation, growth and collapse of gaseous cavities induced 

by pressure changes from ultrasound waves [77]. Such cavities can be generated from 

dissolved gas in the bloodstream. The acoustic pressure induced by ultrasound waves 

oscillates between compression and rarefaction phases; during rarefaction phases of high 

amplitude, bubble nucleation can occur (Figure 4A). While high amplitude, short ultrasound 

bursts propagate through tissue and interact with bubbles, cavitation can be accomplished 

with minimal thermal elevation. A parameter used to determine the likelihood of cavitation 

is the mechanical index (MI) [78]. The MI is defined as the maximum value of the peak 

rarefactional pressure (or peak negative pressure) divided by the square root of the acoustic 

center frequency. In the presence of MBs, this index has been updated due to the greater 

effect of center frequency [79]. Injected MBs enhance and localize cavitation activity with 

the oscillation characterized by high-speed photography of MB oscillation (Figure 4B) [80, 

81].

Cavitation regimes include stable and inertial cavitation [77]. Stable cavitation is the 

sustained oscillation of gas bubbles as the pressure fluctuates, which can result in adiabatic 

heat generation, microstreaming of surrounding fluid and localized shear stresses [82]. Such 

cavitation can induce cellular changes such as membrane permeabilization, referred to as 

sonoporation [83].

When the rate of MB collapse is enhanced by fluid inertia, the collapse velocity is enhanced 

and the phenomenon is termed inertial cavitation. The energy released during bubble 

collapse can generate violent shock waves with pressure up to 10,000 atm during a single 

ultrasound exposure within a duration of <1 μs [84]. Inertial cavitation can cause irreversible 

tissue lesions, depending on the bubble size range. Both cavitation regimes can lead to 

substantial physical, chemical and biological effects in surrounding tissues [85].

3.3 Endocytosis and therapeutic delivery via sonoporation

A common mechanism behind ultrasonic enhancement of drug or gene uptake involves 

cavitation-induced transient membrane perforation of target cells, e.g. endothelial cells on 

the BBB or tumor cells in the TME [87, 88] (Figure 5A). For example, cellular uptake of 
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hypoxia-inducible factor 1 alpha (HIF-1α) siRNA was increased by 90% in MDA-MB-231 

human breast cancer cells following insonation [89]. The concentration of pDNA encoding 

for luciferase was enhanced significantly in the cytoplasm and not in endosomes as a result 

of ultrasound, indicating that the internalization can be diffusive and not endocytosis-based.

The MBs used in transfection protocols are commercially available and are approved for 

use in clinical imaging protocols. Importantly, since MBs act both as contrast agents and 

transfection potentiators, it is possible to increase the spatial localization of gene delivery 

by monitoring MB oscillation in tumors through ultrasound imaging guidance [21, 86]. 

MB-mediated gene delivery achieved localized transfection within the area of ultrasound 

exposure, and can further refine site-specificity on the cellular or even molecular level. MBs 

can also be functionalized by conjugating peptide ligands or antibodies on the surface [90]. 

MB accumulation in tumors was enhanced by surface grafting of ligands such as vascular 

endothelial growth factor receptor 2 (VEGFR2) or αvβ3 integrins [91–93].

The ultrasound intensity required for sonoporation typically ranges between 0.5 and 3 W/

cm2. The peak negative pressure (PNP) required for inertial cavitation in the presence of 

MBs is frequency dependent and is typically in the range of 0.2 to 1.5 MPa. For example, 

at a PNP of 200 kPa and frequency of 2.25 MHz, transfection was obtained in 5–10% of 

total cells with cell viability of 80–90% [94]. When the acoustic pressure was increased 

above 300 kPa, MB destruction increased, 15–25% expressed the reporter gene, and the cell 

viability was ~70%. At a frequency near 1.3 MHz, sonoporation has been accomplished with 

diagnostic ultrasound systems and intensities (0.1 to 100 mW/cm2) [16, 95]. The duty cycle 

is an additional important parameter in UMGT [96], and typically ranges from 20 to 50% in 

gene therapy studies. The reported ultrasound exposure duration ranges from a few seconds 

to 30 minutes. The thermal effect also depends on ultrasound exposure parameters, tissue 

properties and beam configuration [97]. Tran et al. investigated lower-pressure conditions 

close to the inertial cavitation threshold of MBs, and discovered that prolonging pulse 

duration time enhanced gene transfer efficiency without cell damage [98].

3.4 Effect of ultrasound on vasculature

3.4.1 Vasodilation and constriction—Due to the direct reflective activation of 

vascular smooth muscles via temperature receptors, when the CEM43 is low, thermal effects 

can induce vasodilation [99], increasing blood flow in a local region. The enhanced blood 

volume can enhance drug or gene delivery to the target site (Figure 5A). In the context of 

mild hyperthermia, intratumoral pressure can be reduced and nanoparticle accumulation 

increased [100]. In the context of thermal ablation, nanoparticle accumulation can be 

enhanced in the ablated rim [13].

For mild hyperthermia, the process is largely reversible, and vessels can respond 

without tissue damage. However, a higher CEM43 can induce temporary or permanent 

vasoconstriction within the tumor core while also creating a hyperemic rim. As shown in 

Figure 5B, when exposed to high intensity ultrasonic pulses, blood vessels can undergo 

a temporary or even permanent reduction in diameter. HIFU can also be combined with 

MBs to achieve an anti-vascular effect to deprive nutrients to the TME [101]. Antivascular 

treatments result in hypoxia and enhanced immune cell recruitment [102].
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3.4.2 Endothelial permeability enhancement—In addition to cell membrane 

permeability enhancement, cavitation can enhance the effective endothelial permeability 

to further enhance therapeutic delivery (Figure 5C). Physiological barriers exist between 

the vessel lumen and surrounding tissue, including tight junctions that limit drug delivery 

to the target sites [103]. In addition to the thermal effects on the vasculature described 

above, focused ultrasound can transiently increase vascular permeability through mechanical 

effects, thereby temporarily allowing therapeutic agents to diffuse into the surrounding tissue 

with higher efficiency [104, 105]. The systemic administration of MBs acting as cavitation 

nuclei particularly enhances permeability at the site of ultrasound application [80]. This 

phenomenon has been studied in opening the blood-brain barrier (BBB), a particularly 

challenging tight obstruction of capillary endothelial cells that can inhibit the invasion 

of exotoxins and therapeutics [106]. Using cytokine analysis and enzyme-linked immuno 

sorbent assay (ELISA), ultrasound-mediated BBB opening produced an immediate sterile 

inflammatory response (SIR) in the parenchyma including increases in heat-shock protein 

(HSP) 70, interleukin-1 (IL-1), IL-18, and tumor necrosis factor-alpha (TNFα) [107]. Within 

limited ultrasound parameter sets, the BBB opening has been shown to be reversible after 

several hours via MRI and histological analysis [108]. Mechanical BBB opening has been 

applied in UMGT for the treatment of brain tumors, such as glioma [109] or glioblastoma 

[110]. In a preclinical dose escalation study, increasing focused ultrasound intensity within 

safety limits in glioblastoma tumors induced therapeutic benefits including increasing tumor 

infiltrating lymphocytes (TILs) and creating an immunostimulatory TME [111]. We find that 

ultrasound-mediated BBB opening has been combined with either gene therapy [109, 110, 

112] or immune therapy [113, 114] but not yet reported with the combination of the two.

3.5 Triggered release from vehicles

Ultrasound can also trigger therapeutic agent release from delivery systems (Figure 6A) such 

as MBs [115], nanoparticles [116], liposomes [117] and polymeric constructs [118]. For 

example, in [93], a plasmid encoding for herpes simplex virus thymidine kinase (pHSV-TK) 

was bound to VEGFR2-targeted cationic MBs to reduce the required systemic dose. The 

plasmids were released at the tumor site by applying ultrasound. In vivo studies with brain 

tumor-bearing rats showed that the tumor volume was reduced significantly after systemic 

administration of MBs-encapsulated pHSV-TK combined with focused ultrasound [93].

3.6 Reactive oxygen species (ROS) and sonochemical effects

Particularly when MBs are used to deliver gene therapy through enhanced membrane 

permeability, focused ultrasound can produce free radicals that result in chemical 

transformations in the surrounding environment [119]. During the cavitation of gaseous 

bubbles, the core temperature can instantaneously increase by ~1000 K, leading to 

sonochemical effects in the medium. Such effects induce the reaction of water molecules 

and dissolved oxygen, resulting in a higher local concentration of free radicals, such 

as reactive oxygen species (ROS), to enhance cytotoxicity (Figure 6B). Additionally, 

ultrasound can be combined with sonosensitive compounds to facilitate the generation 

of ROS that induces peroxidation to cell membranes and mitochondria, referred to 

as the sonodynamic effect [120]. Sonosensitive compounds are usually photosensitizers 

owning to their aromatic ring structure that facilitates effective photon energy transfer, 
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including hematoporphyrin, phthalocyanine, pheophorbide or erythrosine [121]. The 

incorporation of sonodynamic effects has been proposed as a synergistic technique for 

cancer immunotherapy, leading to calreticulin expression on the cell surface, an antitumor 

vaccination and abscopal effects [122].

3.7 Release of antigen

The thermal and mechanical effects generated by focused ultrasound can facilitate the 

release of tumor antigen into the bloodstream and the draining lymphatics [123–126]. Tumor 

antigen released into circulation can be used as a biomarker for cancer progression or 

recurrence [127]. These biomarkers are typically too dilute to be detected in the blood. 

However, after insonation, increased levels may be more easily detected. After tumor 

treatment, focused ultrasound is proposed to track therapeutic efficacy by monitoring 

circulating biomolecules [128]. Several groups have focused on the detection of circulating 

protein and nucleic acid biomarkers that are enhanced after insonation. For example, 

preclinically, carcinoembryonic antigen (CEA), cancer antigen 19–9 (CA19–9), miR-141 

and miR-200c were enhanced by insonation of liver tumors [125]. Detection of enhanced 

protein markers was also established after uterine ablation in human studies [125]. Antigenic 

debris can recruit antigen-presenting cells (APCs), such as DCs and macrophages which 

prime CD8+ T cells for an antigen-specific cellular response [129]. Tumor-specific antigen 

[130] has been detected on macrophages or DCs in the blood and spleen following 

immunotherapy protocols that incorporate ultrasound [123].

3.8 Impact of therapeutic ultrasound on tumor burden, cytokines and chemokines

In UMGT, therapeutic ultrasound can also debulk tumors [21]. The T-cell invigoration­

to-tumor burden ratio has been shown to be associated with anti-PD-1 response [131]. 

Therefore, reducing tumor burden through UMGT may impact treatment efficacy even in the 

absence of an effective transfection.

Following specific focused ultrasound protocols, wound healing and inflammation in the 

TME upregulate danger signals, such as HSPs, damage-associated molecular patterns 

(DAMPs) [97] and ATP [132, 133]. In [134], a non-ablative pulsed ultrasound protocol (1.15 

MHz, PNP of 6 MPa, intensity spatial average temporal peak (ISATP) of 2683 W/cm2, 10% 

duty cycle, 5 Hz PRF, 100 pulses per site), altered the expression of cytokines, chemokines, 

and cell adhesion molecules, and immune cell phenotypes shifted to an inflamed TME. 

Melanoma (B16 cell line) and breast cancer (4T1 cell line) growth rates decreased as a 

result of the protocol. Proteomic changes were observed within 24 h, and the tumor growth 

rate slowed over 5 days after pulsed ultrasound. However, the immune cell trafficking and 

activation of signaling pathways between the two tumor types differed [134].

As a result of thermal and mechanical ablative ultrasound alone or in combination with 

immune agonists, RNA sequencing (RNAseq) and T cell receptor sequencing (TCRseq) 

have been applied to define the changes in the tumor and TME [80, 135]. MRI was 

used to monitor the tumor temperature in each study. For thermal ablation, the goal was 

to achieve a local temperature of 65°C or slightly greater within the central ½ fraction 

of the murine tumor. For mechanical ablation, a PNP of 16.9 MPa at 3 MHz was used 
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to mechanically disrupt the tumor [135]. Based on this work, both mechanical HIFU 

and thermal ablation induced a potent inflammatory response and changed macrophage 

polarization compared to a no-treatment control (NTC). HIFU also upregulated innate 

immune receptors and related pathways. Priming with an immune agonist (CpG) attenuated 

the increase in inflammatory cytokines (e.g. IL-6) and further increased expression of 

innate immune receptors. Intra-tumoral antigen cross-presentation reached ~8% of CD45+ 

cells with ablation alone. Ablation combined with CpG amplified cross-presentation in 

the same-site draining lymph node (~16% of CD45+ cells) compared to ablation only 

(~0.1% of CD45+ cells). Type I interferon (IFN) release also increased with the ablation­

immunotherapy treatment as compared with ablation or immunotherapy alone. Expression 

of T-cell activation genes increased up to 89-fold with ablation-immunotherapy treatment as 

compared to the NTC. Similar CDR3 sequences arose between mice after immunotherapy, 

whereas TCR overlap between mice was minimal before treatment. The number of unique 

CDR3 rearrangements in the distant tumor increased when ablation was combined with the 

immunotherapy protocol.

Non-thermal HIFU ablation, specifically histotripsy [136, 137] and boiling histotripsy 

also induce bioeffects that complement immunotherapy. Histotripsy is defined as short 

(<50 msec) very high intensity ultrasound pulses that create controlled cavitation and 

mechanically homogenize targeted tissues. Histotripsy (50 pulses at 100 Hz PRF, estimated 

~30 MPa PNP, duration from 4 to 15 min) increased both innate and adaptive immune cell 

populations in treated and distant tumors [136]. Boiling histotripsy is defined as a shock 

front with amplitude sufficient to induce vapor bubble formation in less than 20 msec, 

pulse lengths of 2 to 4 times longer than the time to reach boiling, and duty factors of less 

than 2%. In [138], the time to reach boiling was estimated as 2.7 msec (shock amplitude 

of 70 MPa, pulse duration of 10 msec and PRF of 1 Hz) and the protocol released 3 

– 32-fold more tumor-derived miRNA than ultrasound permeabilization or mild heating. 

Similarly, in a renal cell carcinoma rat model, boiling histotripsy enhanced CD8+ cytotoxic 

T cell infiltration in both treated and abscopal tumors [139]. Combining boiling histotripsy 

(shockwave amplitude of 80 MPa, peak positive pressure of 85 MPa, peak negative pressure 

of 14 MPa) with checkpoint inhibitors such as anti-PD-1 and anti-CTLA-4 resulted in an 

increase of systemic TILs that translated to improved survival benefits [140].

In breast cancer patients, HSP-70 expression increased in cancer cells within the central 

necrotic zone after insonation, while only a few positively-stained cells were observed 

in the periphery [141, 142]. Further, focused ultrasound can decrease the level of 

immunosuppressive cytokines, such as VEGF and transforming growth factor-beta (TGF- 

β), to alleviate tumor-induced immunosuppression and renew antitumor immunity [142, 

143]. TGF-β can reduce antigen presentation to DCs, T cell differentiation, macrophage 

and NK cell proliferation, and immunostimulatory cytokine secretion [144]. Consequently, 

therapeutic ultrasound application can result in tumor regression and a reduction in 

metastasis [145]. These effects must also be considered when dissecting the impact of 

UMGT on the immune system.
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IV. Current immunotherapy approaches

New immunotherapy protocols aim to improve efficacy and safety. To date, the benefit 

of immunotherapy has been limited to a minority of patients with specific cancer types. 

Further, a considerable subset of patients who initially respond eventually relapse [146]. 

Conventional vaccination methods for immunotherapy can induce tumor-associated antigen 

(TAA)-specific cytotoxic T lymphocytes (CTLs), but have typically shown limited clinical 

efficacy [147].

Recombinant cytokines for immune cell activation were the first immunotherapies approved 

by the US Food and Drug Administration (FDA), including interferon-alpha (INF-α) for 

hairy cell leukemia [148] and IL-2 for metastatic renal cancer and metastatic melanoma 

[149]. However, unfavorable pharmacokinetics of these recombinant cytokines can cause 

severe adverse effects such as cytokine release syndrome [150]. Over the past several 

years, ipilimumab, a checkpoint inhibitor that can specifically target cytotoxic T lymphocyte 

associated protein 4 (CTLA4) [151] was approved for clinical treatment of advanced 

melanoma [152, 153]. Shortly thereafter, mAbs targeting programmed cell death 1 (PD-1) 

or its ligand, PD-1 ligand 1 (PD-L1) were developed for clinical use [154]. While these 

mAbs showed high efficacy in certain groups of patients, efficacy is greatest in cancers with 

elevated expression of checkpoint receptors [155, 156].

Recently, CAR-T cell therapy was developed as an alternative approach to small molecule 

and biologic-based therapies. Similar to adoptive cell transfer commonly seen in preclinical 

models, T cells isolated from the host were modified with gamma-retroviral or lentiviral 

vectors to express a CAR and then re-injected. CAR-T therapy has been approved to 

treat hematological malignancies with trials in other tumors underway [157]. Despite the 

remarkable efficacy in hematological cancer, it remains challenging to promote infiltration 

of CAR-T cells into solid tumors. Major hurdles of current immunotherapeutic interventions 

include inefficient tumor infiltration and changes in the T cell phenotype after migration 

[158]. Overcoming the aforementioned impediments will likely require innate immune 

activation. To introduce nucleic acids, including plasmids, small interfering RNA (siRNA), 

messenger RNA (mRNA) or microRNA (miRNA) [159] into target cells, the fundamental 

engineering challenge is to develop safe and effective techniques to deliver those nucleic 

acids [160]. In the next section, we describe the combination of UMGT and immunotherapy 

protocols.

V. Ultrasound, gene delivery and immunotherapy

In combination with immunotherapy, UMGT can be used to treat cancer and produce 

an efficacious immune response in preclinical models. UMGT can be subdivided to 

include four approaches: tumor transfection with ultrasound only, MB-based transfection, 

ultrasound-sensitive delivery systems and modulation of immune cell functionality. As 

summarized in Table 2, the parameters in UMGT vary and the corresponding approaches are 

explained in the following sections.
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5.1 Transfection with ultrasound without other components

Ultrasound alone has been observed to deliver DNA plasmids efficiently, accurately and 

safely without transfection reagents. In one study, an unfocused therapeutic ultrasound 

system (Sonitron 2000, Rich-Mar Corp., Inola, OK, USA) with an unfocused 1.13-cm2 

1-MHz applicator was used to insonify a relatively large region. ISATA of 1.0 W/cm2 

at 20% duty cycle for 5 min (60 J/cm2) was found to optimize transfection of reporter 

genes and was applied in an immunotherapy regimen [159]. Higher intensities reduced 

the effective transfection. In this work, naked plasmids coding for granulocyte-macrophage 

colony-stimulating factor (GM-CSF) were used to treat fibrosarcoma-bearing mice (Figure 

7A). The efficiency was comparable to electroporation-based gene transfer. Ultrasonic 

shock-wave treatment combined with IL-12 plasmids has been investigated in both mouse 

melanoma and renal carcinoma models. A laboratory lithotripter system applied 500 shock 

waves at a 2-Hz rate to enhance IL-12 expression, resulting in significant tumor reduction as 

compared to the corresponding monotherapies [160].

5.2 MB-based transfection

MB-based gene delivery is performed by administration of MBs and immunotherapeutic 

materials prior to insonation. Many studies have utilized a transmission center frequency 

of 1 MHz, and the ultrasound intensity ranged from 0.15 to 2 W/cm2. Lower insonation 

pressures can prolong pulse duration time and enhance gene transfer efficiency without cell 

damage [162]. For example, SonoVue MBs were used to transfer an IL-27 plasmid with a 

1 MHz transducer at an ISATA of 1 W/cm2 (SonoPore KTAC-4000, Protech International) 

[161]. The sonoporation strategy was studied in both fully murine models and human 

prostate tumor xenografts, resulting in over 60-fold increase in expression as compared 

with either MBs alone or naked DNA. Similarly, Sonazoid MBs combined with 1.011 MHz 

oscillation frequency at an ISATA of 0.22 W/cm2 (SonoPore KTAC-4000) facilitated IFN-β 
plasmid delivery to treat melanoma [162]. In the above studies, MBs were simply mixed 

with genes, while in [35] cationic lipid MBs were used as carriers for miR34a, and were 

designed to treat cervical cancer by improving the efficacy in anti-PD-1 therapy.

Additionally, a protocol with a lower transmission frequency (250 kHz) and PNP of 500 

kPa efficiently transfected tumor and stromal cells with DNA plasmid encoding IFN-β [21] 

(Figure 7B). MB wall collapse velocity was more rapid with the lower ultrasound frequency. 

The MB oscillation reached an expansion ratio of 35, resulting in a 150-fold increase of 

transfected cells observed after the 250 kHz insonation (H115, Sonic Concepts, Bothell, 

Washington). As reported in this study, the tumors were debulked, the plasmid transfection 

rates were increased, and more immune cells infiltrated the TME.

5.3 Ultrasound-responsive delivery systems

With systemic injection of plasmids, in vivo MB-based gene transfer is inefficient due 

to the different pharmacokinetic profiles of the nucleic acids and MBs. MBs have a 

limited circulation time (typically a few minutes), while nucleic acids can be loaded by 

alternative carriers for prolonged half-life and have been reported to circulate for extended 

periods after cutaneous injection [165]. Therefore, it is challenging to efficiently deliver 

both MBs and nucleic acids to the target sites simultaneously. Ultrasound-responsive 
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liposomes with diameters ranging from 150 to 200 nm have been used to improve 

delivery. In one study, liposomes encapsulating perfluoropropane gas were used to deliver 

the IL-12 gene with a 1-MHz center frequency and intensity of 0.7 W/cm2 [164]. This 

approach reduced systemic adverse effects and resulted in a tumor regression rate of 

80%. In other studies, mannosylated lipoplexes encapsulating perfluoropropane gas were 

developed to selectively target and transfect APCs to treat cancer [166]. With ultrasound 

exposure (f = 2.062 MHz, intensity 4.0 W/cm2), the transfection efficiency of pCMV­

OVA was significantly increased. Mannose-modified lipoplexes encapsulating pCMV-OVA 

[165] or pUb-M encoding ubiquitylated melanoma-specific antigens, gp100 and tyrosinase­

related protein (TRP-2) [166] were then applied in lymphoma or melanoma therapy, 

respectively (Figure 7C). As a result, the immune response was enhanced and sustained 

after transfection.

5.4 Modulation of immune cell functionality

Adoptive cell therapy uses cells from the patients’ own immune system to eliminate cancer 

[172] after isolation and expansion in vitro. Ultrasound is an ideal tool to precisely control 

genes to enhance immune response. Chimeric antigen receptor-expressing T (CAR-T) cells 

are commonly used as immune cell vaccines [173]. Piezo-1 in T cells was integrated with 

engineered genetic circuits in live HEK293T cells to convert ultrasound-activated Piezo1 

into transcriptional activity. MB oscillation using ultrasound at a center frequency of 2 MHz 

and PNP of 0.6 MPa stimulated the expression of the anti-CD19-CAR, enabling T cells to 

recognize and kill CD19+ cancer cells [167].

Heat generated by an MRI-guided focused ultrasound system composed of a 1.5 MHz 8­

element annular array transducer has also been used for CAR-T control through a heat shock 

protein driven Cre-lox gene switch [168]. By generating heat (43°C), ultrasound induced the 

activation of the Cre-lox gene, and elevated the level of anti-CD19-CAR or prostate-specific 

membrane antigen (PSMA)-CAR expression. In both lymphoma and prostate cancer mouse 

models, CAR-T cells were injected locally at tumor sites and led to a reduction in tumor 

growth.

For DC-based vaccines, the feasibility and safety were tested with in vitro DCs harvested 

from murine bone marrow. Messenger RNA encoding GFP or luciferase was mixed with 

cationic lipoplexes, and MBs loaded with mRNA-lipoplexes were incubated with DCs. As 

a result of insonation of the complex, transfection efficiency was enhanced, with limited 

impact on DC viability and maturation [170]. In another study, MBs loaded with both TAA­

encoding mRNA as well as immunomodulating TriMix mRNA were utilized to sonoporate 

using ultrasound at a frequency of 1 MHz and ISPTA of 2 W/cm2 to load the mRNA 

[170]. The resulting DCs activated CD8+ T cells produce antigen-specific lysis of target 

cells (Figure 7D), resulting in significant tumor regression. 30% of the vaccinated animals 

maintained long-term antigen-specific immunological memory.

Lastly, MB-based techniques have been applied to transfect regulatory T cells (Tregs) 

with Forkhead box P3 (Foxp3) [171]. Tregs are responsible for reducing immune response 

to maintain homeostasis and self-tolerance, but also inhibit anti-cancer immunity. The 

ultrasound parameters were optimized to result in 50% in Treg transfection without an effect 
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on proliferation. Once transfected with Foxp3 siRNA using ultrasound with 2.5-MHz center 

frequency and MI of 1.4, the Tregs were deactivated, and the immunosuppressive TME was 

reversed [171].

5.5 Integration of UMGT in combinational regimens

UMGT has been combined with other immunotherapies, such as immune checkpoint 

blockade, to improve the recruitment of tumor-specific T cells and their functionality [21, 

174, 175]. UMGT-based immunotherapy can further modulate TME and prime immune 

cells by combining the technique with other non-immunological approaches, such as 

radiotherapy, chemotherapy [176], ablation therapy [135], photothermal therapy (PTT) 

[177], and photodynamic therapy (PDT) [89]. By exploiting the immunogenic cell death­

inducing properties of conventional therapies, UMGT-based strategies can not only kill 

cancer cells but also stimulate in situ vaccination. Moreover, the gene transfection process 

can also be enhanced by combinatorial methods. A challenge of adenoviral methods is their 

high immunogenicity and host-specificity during systemic circulation. Therefore, a method 

using MBs and ultrasound was developed to protect human adenoviruses and deliver them to 

the target tumor site [178]. Transfection efficiency was enhanced without reducing activation 

of innate or acquired immunity.

VI. Limitations, challenges and future application of ultrasound in 

immunotherapy

The combination of ultrasound with drug and gene therapy is attractive due to the unique 

capabilities of therapeutic ultrasound to reduce major physiological barriers for delivery. In 

addition, the rapid growth of our understanding of immune cell receptors and signaling has 

provided a wealth of opportunities to transfect tumor, immune and stromal cells to treat 

cancer. Thus, the convergence of therapeutic ultrasound, gene therapy and immunotherapy 

is a particularly timely area of study. Further, the number of clinical studies that incorporate 

therapeutic ultrasound is rapidly increasing. At Stanford University, successful clinical trials 

have now led to the incorporation of therapeutic ultrasound in clinical care. Still, the safety 

of therapeutic ultrasound in particular tissues and organs must be established before gene 

therapy or immunotherapy can be incorporated. Such safety studies are underway around 

the world, and we are optimistic that combinatorial studies will follow soon. A study of 

the combination of focused ultrasound ablation and aPD-1 is underway (NCT04116320), 

and it is likely that other studies combining therapeutic ultrasound with approved agonist 

or checkpoint antibodies will emerge soon. Ablative protocols do induce a vaccination 

effect and this is exploited in such studies. Similarly, the use of ultrasound and MBs 

to open the BBB is the focus of multiple planned and recruiting human trials [179], 

and therefore the opportunity to pair this work with approved immunotherapies is likely 

imminent. The incorporation of UMGT with nanodelivery of nucleic acids in human 

immunotherapy protocols will require additional study. Most optimization studies for such 

UMGT techniques have been limited to pre-clinical models, and have not yet been tested in 

primates nor humans. Studies in large models (particularly porcine and canine models) will 

be required steps for translation.
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Importantly, we emphasize that the many biological effects of therapeutic ultrasound can 

be synergistic with gene and immune therapy. Therapeutic ultrasound has the potential to 

selectively ablate tissue deep within the body without impacting the surrounding tissue, and 

can be repeated as needed. This debulking effect, together with the ability to release tumor­

specific protein and nucleic acids are likely the greatest strengths of the technique. However, 

many therapeutic ultrasound protocols do induce additional biological changes. Therefore, 

combinatorial protocols involving ultrasound and gene therapy or immunotherapy must 

carefully account for individual effects through adequate controls. In this review, we have 

included considerations of vasoconstriction or dilation, cell membrane perforation, triggered 

cargo release, ROS generation, antigen release, and cytokine and chemokine production, as 

each will impact the ultimate therapeutic result.

6.1 Parameter space

A subset of current studies has shown different outcomes and effects depending on 

ultrasound parameters, MB, drug and gene dosage, and administration routes of MBs and 

genes. It will be important for prospective studies to systematically assess the parameter 

space of UMGT. Consistent reporting of all parameters is also key to the repeatability 

and assessment of protocols. In many cases, ISPTA is reported; however, PNP and duty 

cycle or equivalent parameters must also be provided in order to replicate the study. The 

development of standardized methods to measure and report pressure, pulse length and 

associated parameters is needed. Although the American Institute of Ultrasound in Medicine 

(AIUM) established guidelines for safe use of ultrasound [180], there are still few standards 

for therapeutic ultrasound and UMGT applications.

6.2 Drug carriers and targeted MBs

New delivery systems to carry and release nucleic acids are needed. Many recent studies 

involve loading nucleic acids onto cationic MBs; however, cationic materials suffer from 

limited circulation time and potential toxicity [181]. Additionally, improving MB binding 

specificity could enhance transfection efficiency and therapeutic outcome. Strategies include 

the development of alternate bioconjugation methods, and the identification of additional 

disease-specific ligands [182].

Further, much of the previous work has emphasized DNA as the nucleic acid cargo due to 

its stability. However, transport across the nuclear membrane is challenging and relatively 

few studies have documented how this transport changes with ultrasound or MB parameters. 

The emergence of RNA therapeutics provides an attractive alternative for UMGT with both 

silencing and transfection options increasing.

6.3 Molecular imaging

Molecular Imaging is an evolving discipline that enables the noninvasive visualization, 

evaluation and quantification of specific biologic processes at the cellular levels in living 

subjects [183, 184] and provides a potential strategy to characterize transfection efficiency 

and immunotherapeutic efficacy during and after UMGT [185]. For example, CAR-T cells 

designed to express both herpes simplex virus type 1 thymidine kinase (HSV1-TK) as a 
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reporter gene and IL-13 as a therapeutic gene have been reported [186]. This concept could 

be applied to further improve the UMGT development in immunotherapy.

Final summary—Strategies to combine therapeutic ultrasound with gene and immune 

therapies are developing to treat cancer, and the convergence of the three fields is 

particularly exciting. We look forward to further advances in this promising field.
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Figure 1. 
Schematic of current research related to therapeutic ultrasound and UMGT with the 

corresponding frequency ranges.
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Figure 2. 
The mechanisms of therapeutic ultrasound in gene therapy, including mechanical and 

thermal effects with the induced biological effect in various aspects.
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Figure 3. 
A) Schematic of thermal effects produced by ultrasound. The temperature elevation varies 

with acoustic intensity, duty cycle, treatment time and ultrasound frequency. At a given 

duty cycle, higher intensity leads to greater heat accumulation. B) Infrared (IR) temperature 

maps at the corresponding time points before and after ultrasound irradiation cycles, and 

the measured maximum temperature at each point [76]. Adapted from [76]. Copyright from 

Ivyspring International Publisher.
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Figure 4. 
A) Schematic of non-thermal mechanical force, and the induced acoustic cavitation effect. In 

an oscillating pressure field, MBs expand and contract in response to the compression and 

rarefaction phases of the pressure wave. Stable cavitation occurs at low pressures resulting 

in microstreaming around the MBs. At higher pressures, this regime transforms into inertial 

cavitation where the increased expansion is followed by a violent collapse generating shock 

waves and the MBs destruction. B) Images of oscillating MBs (initial radius = 1.5 μm) 

captured by ultra-high-speed camera showing the transition from stable to inertial cavitation 

at ultrasound frequency of 250 kHz when increasing the acoustic pressure [86].
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Figure 5. 
Schematics of A) vasodilation caused by minimal local hyperthermia, B) vasoconstriction 

and thermal ablation with the increased energy absorption, and C) temporary enhancement 

of vascular permeability by reversible inhibition of tight junction between endothelial cells.
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Figure 6. 
Schematic of the effect on cells for transfection, including A) triggering gene release from 

gene-loading carriers and enhanced gene internalization by sonoporation, and B) generation 

of cytotoxic radicals by the sonochemical effect.
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Figure 7. 
Approaches of UMGT for cancer immunotherapy. A) Transfection with plasmids and 

ultrasound. The ultrasound parameters were optimized to administer an immune gene 

construct in murine fibrosarcoma tumor models [159]. Copyright (2010) Elsevier; B) 

Transfection mediated by MB oscillation. Low frequency ultrasound was applied with 

the mixture of IFN-β plasmids and targeted MBs, and the immune cells were recruited 

at both sites of treated and distant tumors [21]. Copyright (2020) National Academy of 

Sciences; C) Transfection by ultrasound-sensitive delivery system. The mannose-modified 

lipoplexes were developed as ultrasound-responsive and APC-selective carriers for tumor 

antigen gene delivery. Reprinted with permission from [166]. Copyright (2011) American 

Chemical Society; D) Modulation of immune cells using UMGT. TriMix mRNA-loaded 

MBs were used to transfect DCs by sonoporation to activate T cells [170] Copyright (2014) 

Elsevier.
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Table 1.

Summary of the advantages and limitations of gene transfection methods.

Methods Advantages Limitations Ref.

Viral 
delivery

Adenovirus
Retrovirus
Lentiviruses
AAVs

High transfer efficiency
Clinically approved
Varied duration of expression

Innate immune response
Insertional mutagenesis
Complexity in production and scaleup
Small payload in AAVs

[25–29]

Non-viral 
vectors

Liposomes
Nanoparticles
Polymers
Dendrimers

Easy to prepare
Inexpensive to produce
Targeted delivery
Enhanced circulation time for some 
constructs

Relatively low transfer efficiency
Burden on the liver to metabolize
Toxicity of cationic lipids

[30–35]

Physical 
methods

Microinjection
Biolistic particle delivery
Electroporation
Phototransfection

Relatively high transfer efficiency
Less dependent on cell types and 
conditions
No need for vectors and carriers

Invasive
Requires expensive and dedicated 
instrumentation
Low penetration of light in tissues

[36–41]

UMGT Noninvasive
Site-specific
Viral vectors and carriers enhance 
efficacy but are not required
Temporal control
Available devices

Insufficient preclinical and clinical 
research
Technically demanding

[21, 42–
46]

Adv Drug Deliv Rev. Author manuscript; available in PMC 2022 November 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zhang et al. Page 35

Table 2.

Summary of preclinical studies of UMGT for cancer immunotherapy.

UMGT 
Approaches

Tumor models Gene 
constructs

Ultrasound parameters Target cell Ref.

5.1 Transfection 
with ultrasound

Fibrosarcoma, murine 
models

GM-CSF pDNA f = 1 MHz, ISATA = 1.0 W/cm2, Duty cycle = 
20%, t = 5 min

Tumor 
cells

[159]

Melanoma and renal 
carcinoma murine 
models

IL-12 pDNA f = 200 kHz (laboratory lithotripter similar to 
Dornier HM-3 lithotripter), PNP = 7.4 MPa, PRF 
= 2 Hz, Shock Waves = 500 (Duty cycle: 0.5%) 
+ intratumoral air bubbles

Tumor 
cells

[160]

5.2 MB-based 
transfection

Prostate cancer 
murine models, 
human prostate tumor 
xenografts

IL-27 pDNA f = 1 MHz, PNP = 0.12 MPa, ISATA = 1 W/cm2, 
PRF = 2 Hz, Duty cycle = 50%, t = 2 min, + 
SonoVue MBs

Tumor 
cells

[161]

Melanoma murine 
models

IFN-β pDNA f = 1.011 MHz, ISATA = 0.22 W/cm2, Duty cycle 
= 50%, PRF = 0.5 Hz, t = 3 min, + Sonazoid 
MBs

Tumor 
cells

[162]

Cervical cancer 
murine models

miR-34a f = 1 MHz, I = 1.5 W/cm2, Duty cycle = 50%, t = 
90 s, + cationic lipid MBs

Tumor 
cells

[163]

Breast cancer, murine 
models

IFN-β pDNA f = 250 kHz, PNP = 500 kPa, ISPTA = 1 W/cm2, 
PRF = 30 Hz, t = 3 min, Duty Cycle = 12%, + 
anti-EpCAM conjugated MBs

Stromal 
cells, 
tumor cells

[21]

5.3 Ultrasound­
responsive delivery 
system

Ovarian carcinoma, 
murine models

IL-12 pDNA f = 1 MHz, I = 0.7 W/cm2, t = 60 s, + liposomal 
bubbles

Cells in 
TME

[164]

Lymphoma murine 
models

OVA pDNA f = 2.062 MHz, I = 4 W/cm2, Duty cycle = 50%, 
t = 20 s, +mannose-modified liposomes

APCs [165]

Melanoma murine 
models

pUb-M cDNA Duty cycle = 50%, PRF = 10 Hz, t = 2 min, 
+mannose-modified liposomes
f = 1.045 MHz, I = 1 W/cm2 (for intravenous 
injection)
f = 2.062 MHz, I = 4 W/cm2 (for intradermal and 
intrasplenic injection)

APCs [166]

5.4 Modulation 
of immune cell 
functionality

Lymphoma and 
leukemia cell models

Anti-CD19 
CAR gene 
loaded 
lentiviruses

f = 2 MHz, ISPTA = 0.6 W/cm2, PNP = 0.6 MPa, 
PRF = 5 Hz, Duty cycle = 5%, t = 10 min, +MBs

Jurkat T 
cells and 
PBMCs

[167]

Lymphoma and 
prostate cancer 
models

Cre-lox gene 
with HSP 
promotor

f = 1.5 MHz T cells [168]

DCs from bone 
marrow of C57Bl/6 
mice

mRNA 
encoding 
luciferase or 
GFP

f = 1 MHz, I = 2 W/cm2, Duty cycle = 50% t = 
30 s, + lipoplexes + MBs

DCs [169]

Melanoma lung 
metastasis murine 
models

Antigen mRNA 
and TriMix 
mRNA

f = 1 MHz, ISPTA = 2 W/cm2, PNP = 800 kPa, 
Duty cycle = 20%, PRF = 100 Hz, t = 30 s, lipid 
MBs

DCs [170]

Hepatocellular 
carcinoma human 
cells

Foxp3 siRNA f = 2.5 MHz, MI = 1.4, t = 150 s, + SonoVue 
MBs

Tregs [171]

Abbreviation: f: frequency, I: acoustic intensity (this notation is used when the specific intensity metric cannot be determined), PNP: peak negative 
pressure, PRF: pulse repetition frequency, MI: mechanical index, EpCAM: Epithelial cell adhesion molecule, IFN-β: Interferon-beta, IL-27: 
interleukin 27, IL-12: interleukin 12, GM-CSF: granulocyte-macrophage colony-stimulating factor, OVA: ovalbumin, HSP: heat shock protein, 
Foxp3: Forkhead box P3, APC: antigen-presenting cells, DCs: dendritic cells, PMBCs: peripheral blood mononuclear cells, ISPTA: Spatial peak 

temporal average intensity, ISATA: Spatial average temporal average intensity
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