Skip to main content
. 2021 Oct 30;139:105002. doi: 10.1016/j.compbiomed.2021.105002

Table 2.

Performance metrics (%) for lung region and COVID-19 infected region segmentation computed over test (unseen) set with three network models and five encoder architectures. x ± y means that the achieved metric value is x with standard deviation y.

Task Model Encoder Accuracy IoU DSC
Lung
Segmentation
U-Net ResNet18 99.07 ± 0.23 95.91 ± 0.47 97.88 ± 0.34
ResNet50 99.08 ± 0.23 95.93 ± 0.47 97.89 ± 0.34
DenseNet121 99.1 ± 0.22 96.06 ± 0.46 97.96 ± 0.34
DenseNet161 99.1 ± 0.22 96.02 ± 0.47 97.94 ± 0.34
InceptionV4 99.07 ± 0.23 95.9 ± 0.47 97.88 ± 0.34
U-Net ++ ResNet18 99.07 ± 0.23 95.9 ± 0.47 97.88 ± 0.34
ResNet50 99.1 ± 0.22 96.04 ± 0.46 97.95 ± 0.34
DenseNet121 99.11 ± 0.22 96.1 ± 0.46 97.98 ± 0.33
DenseNet161 99.09 ± 0.23 95.98 ± 0.47 97.92 ± 0.34
InceptionV4 99.08 ± 0.23 95.96 ± 0.47 97.91 ± 0.34
FPN ResNet18 99.06 ± 0.23 95.86 ± 0.47 97.86 ± 0.34
ResNet50 99.07 ± 0.23 95.91 ± 0.47 97.88 ± 0.34
DenseNet121 99.12 ± 0.22 96.11 ± 0.46 97.99 ± 0.33
DenseNet161 99.09 ± 0.23 96.01 ± 0.47 97.94 ± 0.34
InceptionV4 99.07 ± 0.23 95.92 ± 0.47 97.89 ± 0.34
Infection
Segmentation
U-Net ResNet18 98.02 ± 0.8 82.92 ± 2.16 88.1 ± 1.86
ResNet50 97.84 ± 0.83 81.73 ± 2.22 87.02 ± 1.93
DenseNet121 97.98 ± 0.81 82.53 ± 2.18 87.74 ± 1.88
DenseNet161 97.86 ± 0.83 81.95 ± 2.21 87.19 ± 1.92
InceptionV4 97.98 ± 0.81 82.03 ± 2.2 87.11 ± 1.92
U-Net ++ ResNet18 97.9 ± 0.82 82.9 ± 2.16 88.06 ± 1.86
ResNet50 97.93 ± 0.82 82.59 ± 2.18 87.78 ± 1.88
DenseNet121 97.97 ± 0.81 83.05 ± 2.15 88.21 ± 1.85
DenseNet161 97.95 ± 0.81 81.55 ± 2.23 86.66 ± 1.95
InceptionV4 97.9 ± 0.82 81.13 ± 2.25 86.22 ± 1.98
FPN ResNet18 97.84 ± 0.83 81.9 ± 2.21 87.25 ± 1.91
ResNet50 97.84 ± 0.83 80.83 ± 2.26 86.25 ± 1.98
DenseNet121 97.99 ± 0.81 82.55 ± 2.18 87.71 ± 1.88
DenseNet161 97.95 ± 0.81 81.89 ± 2.21 87.08 ± 1.93
InceptionV4 97.99 ± 0.81 83.08 ± 2.15 88.13 ± 1.86