Skip to main content
. 2021 Oct 30;139:105002. doi: 10.1016/j.compbiomed.2021.105002

Table 3.

COVID-19 detection performance results (%) computed over test (unseen) set with three network models, and five encoder architectures. x ± y means that the achieved metric value is x with standard deviation y.

Model Encoder Accuracy Precision Sensitivity F1-score Specificity
U-Net ResNet18 98.89 ± 0.6 99.14 ± 0.53 98.63 ± 0.67 98.88 ± 0.6 99.14 ± 0.53
ResNet50 98.89 ± 0.6 98.47 ± 0.7 99.31 ± 0.48 98.89 ± 0.6 98.46 ± 0.71
DenseNet121 98.8 ± 0.62 97.98 ± 0.81 99.66 ± 0.33 98.81 ± 0.62 97.94 ± 0.82
DenseNet161 98.71 ± 0.65 97.97 ± 0.81 99.49 ± 0.41 98.72 ± 0.65 97.94 ± 0.82
InceptionV4 98.03 ± 0.8 98.28 ± 0.75 97.77 ± 0.85 98.02 ± 0.8 98.28 ± 0.75
U-Net ++ ResNet18 99.23 ± 0.5 100 ± 0 98.46 ± 0.71 99.22 ± 0.5 100 ± 0
ResNet50 99.14 ± 0.53 99.83 ± 0.24 98.46 ± 0.71 99.14 ± 0.53 99.83 ± 0.24
DenseNet121 99.23 ± 0.5 99.14 ± 0.53 99.31 ± 0.48 99.22 ± 0.5 99.14 ± 0.53
DenseNet161 98.2 ± 0.76 97.95 ± 0.81 98.46 ± 0.71 98.2 ± 0.76 97.94 ± 0.82
InceptionV4 98.2 ± 0.76 98.45 ± 0.71 97.94 ± 0.82 98.19 ± 0.77 98.46 ± 0.71
FPN ResNet18 98.54 ± 0.69 97.48 ± 0.9 99.66 ± 0.33 98.56 ± 0.68 97.43 ± 0.91
ResNet50 98.46 ± 0.71 98.46 ± 0.71 98.46 ± 0.71 98.46 ± 0.71 98.46 ± 0.71
DenseNet121 98.97 ± 0.58 99.65 ± 0.34 98.28 ± 0.75 98.96 ± 0.58 99.66 ± 0.33
DenseNet161 98.11 ± 0.78 97.3 ± 0.93 98.97 ± 0.58 98.13 ± 0.78 97.26 ± 0.94
InceptionV4 99.23 ± 0.5 99.31 ± 0.48 99.14 ± 0.53 99.22 ± 0.5 99.31 ± 0.48