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a b s t r a c t 

Every day, large-scale data are continuously generated on social media as streams, such as Twitter, which 

inform us about all events around the world in real-time. Notably, Twitter is one of the effective plat- 

forms to update countries leaders and scientists during the coronavirus (COVID-19) pandemic. Other peo- 

ple have also used this platform to post their concerns about the spread of this virus and a rapid increase 

of death cases globally. The aim of this work is to detect anomalous events associated with COVID-19 

from Twitter. To this end, we propose a distributed Directed Acyclic Graph topology framework to ag- 

gregate and process large-scale real-time tweets related to COVID-19. The core of our system is a novel 

lightweight algorithm that can automatically detect anomaly events. In addition, our system can also 

identify, cluster, and visualize important keywords in tweets. On 18 August 2020, our model detected the 

highest anomaly since many tweets mentioned the casualties’ updates and the debates on the pandemic 

that day. We obtained the three most commonly listed terms on Twitter: “covid”, “death”, and “Trump”

(21,566, 11,779, and 4761 occurrences, respectively), with the highest TF-IDF score for these terms: “peo- 

ple” (0.63637), “school” (0.5921407) and “virus” (0.57385). From our clustering result, the word “death”, 

“corona”, and “case” are grouped into one cluster, where the word “pandemic”, “school”, and “president”

are grouped as another cluster. These terms were located near each other on vector space so that they 

were clustered, indicating people’s most concerned topics on Twitter. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

In December 2019, the global pandemic of COVID-19 hit the 

orld, and people began to worry about the rapid spread of this 

irus. Researchers, especially from the computer science field, have 

tarted to propose many innovative solutions for this pandemic cri- 

is and prevent the spread of this virus [1,2] . Some have used AI

nd machine learning methods to detect patterns from large-scale 

eal-time video, image, and text data. For video-based cases, re- 

earchers utilised computer vision to identify human’s body tem- 

erature or detecting whether or not people wear masks [3] . As 

or the text-based cases, we contribute by discovering the virus 

utbreak or the infection cases from event stream tweets through 

eveloping a novel big data stream analytic method. 

Every day, over 500 million tweets are posting on Twitter [4] , in 

articular from early 2020, people have started to post information 
∗ Corresponding author. 
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elated to the COVID-19 on Twitter. This platform has been utilised 

s a real-time communication media between world leaders and 

heir citizens, scientists and healthcare organisations. According to 

azi et al. [5] , there have been an increased amount of generated 

eal-time tweet contents associated with COVID-19 started from 

he early weeks of the outbreak, where it reached about 1 million 

weets per day. As of April 2020, this has approximately reached 

0.5 million tweets per day. This evidence showed that the use of 

ocial media, in particular Twitter, has increased during the pan- 

emic. For this purpose, we investigate the adoption of incremental 

eal-time pattern detection from large-scale Twitter events. Hence, 

e define the keyword “death” as the event, which could lead to 

he anomaly, and we need to investigate the source and cause of 

he anomaly in this research. 

The aim of this paper is to detect anomalous events associated 

ith COVID-19 from Twitter. Here, we identify our objectives for 

his research: 

1. We build a distributed Directed Acyclic Graph topology model 

to aggregate large-scale real-time tweets related to COVID-19. 

https://doi.org/10.1016/j.patcog.2021.108404
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2021.108404&domain=pdf
mailto:Bakhtiar.Amen@liverpool.ac.uk
mailto:Syahirul.Faiz@gmail.com
mailto:Toan.Do@monash.edu
https://doi.org/10.1016/j.patcog.2021.108404
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2. We propose a novel algorithm that uses the predictive sta- 

tistical analysis technique (i.e., “PESCAD” Algorithm) to detect 

anomalous events. 

3. We examine the frequency and the importance of keywords to 

figure out what people are thinking on Twitter during this pan- 

demic period. 

We will discuss the previous related works in Section 2 , and 

e will break down the detailed methodology of our approach in 

ection 3 . We also illustrate the experiment of our algorithm in 

ection 4 . Finally, we outline the discussion of our results and find- 

ngs in Section 5 . 

. Related works 

In this research, we acknowledge the fundamental concept of 

nomaly or event detection from large-scale data and its applica- 

ility in real-world problems from Amen et al. [6] . The theoret- 

cal concept of large-scale anomaly detection of both batch and 

ata streams, along with its constraints and limitations, were also 

iscussed in Amen and Grigoris [7] . Meanwhile, the authors in 

men and Grigoris [8] have implemented collective anomaly de- 

ection on data sensor streams, where the algorithm’s accuracy 

utperformed compared to Adaptive Stream Projected Outlier De- 

ector (A-SPOT) algorithm. The survey about the anomaly detec- 

ion technique with its various big data solution technologies is 

lso explained in Habeeb et al. [9] , including the performance of 

arious anomaly detection algorithms such as Bayesian Network, 

eural Network (NN), and Support Vector Machine (SVM). We can 

lso understand the anomaly detection method using the Isola- 

ion Forest Algorithm from [10] . Meng Li et al. [11] proposed a 

 -Nearest Neighbour algorithm implementation to detect anomaly 

sing blockchain and sensor networks. 

According to Amen and Lu [12] , a big data framework (e.g., 

pache Storm) has been improved and outperformed well to 

etects large-scale abnormal events in real-time. In [13] , Patel 

t al. introduced the sentiment-based classification to detect the 

nomaly in Twitter, whereas [14] discussed the sentiment analy- 

is technique using a tree-learning algorithm using Apache Storm 

ramework. Toshiwal et al. [15] discussed the comprehensive Twit- 

er monitoring utility function and how to evaluate throughput as 

ell as the performance of the framework mentioned above in Mc- 

readie et al. [16] . Meanwhile, in Zhao et al. [17] , we can observe

he example implementation of Apache Storm for anomaly detec- 

ion in a real-time network. 

In [18] , Twitter was utilised to monitor incidents such as an 

arthquake but without using any big data middleware. Gupta 

t al. [19] , discussed how to identify hybrid hashtags for Twit- 

er classification, with several machine learning classification al- 

orithms (i.e., Naïve Bayes, k -Nearest Neighbor, and SVM), and 

20] extends the experiment in big data domain with Apache 

torm. Both [21,22] demonstrated the Poisson distribution’s imple- 

entation for detecting the anomalies. However, in Sapegin et al. 

22] , the method is only used in a non-distributed environment 

o track log-in accounts. Meanwhile, Turcotte et al. [23] imple- 

ented the Poisson factorisation to find the anomaly in user cre- 

entials in a corporate network. Keval et al. [24] also briefly dis- 

ussed anomaly detection using the Poisson probability and ma- 

hine learning but also not in the distributed problem domain. 

To support our understanding of the basic concept of Term 

requency-Inverse Document Frequency (TF-IDF), we acquire the 

undamental concept from Manning et al. [25] , as well as the 

ethod to extract the keyword using semantic association in Liu 

t al. [26] and learn about keyword relevance using TF-IDF in 

aiser and Ali [27] . From Amin et al. [28] , we also discover a novel

roposed technique for automatic monitoring for dengue disease 
2 
etection, based on analysing the Twitter’s statuses only, and de- 

ide whether the people are infected or not, including for dengue 

irus control spread. 

According to Alom et al. [29] , there are several ready-to-use 

ibraries for machine learning utilisation, such as Deeplearning4j, 

n which we adopt this library since this library provides us with 

he functionality we require (i.e. Word Embedding, Clustering, and 

rincipal Component Analysis). Meanwhile, the scalability of the 

reviously mentioned library on the GPU-cored distributed com- 

uting is also discussed in Li et al. [30] . In [31] , Doshi et al. demon-

trated the implementation of the leaflet.js library for locating the 

ser’s tweets coordinates on the world map and the chart.js library 

unction for the visualisation. 

As we mentioned earlier, we acknowledge and are inspired by 

he research from Sapegin et al. [22] , which discussed the Pois- 

on distribution’s implementation for detecting the anomalies in a 

ompany network. The research applies Point-based anomaly de- 

ection explicitly as compared to our research method, Collective 

nomaly detection. Apart from that, the anomaly detection method 

s only used in a non-distributed environment to monitor the log- 

n accounts where ours is on distributed computing. One inter- 

sting novelty about the previous research is how they introduce 

he elbow function as the anomaly detection threshold. The elbow 

unction is one way to find a curvature in the optimum/minimum 

alue of the function (or ‘elbow point’). 

Therefore, we initially planned to design our PESCAD algorithm 

sing the elbow function. For the computation of this threshold, 

he ‘death’ keyword from the last intervals will be counted, and 

 lower bound is defined and initialised as the upper limit of the 

elbow function’ calculations. The method will need to calculate a 

econd-order central difference derivative with this ‘elbow func- 

ion’ where it represents the curvature of discrete data (compat- 

ble with the Poisson discrete random variable) [32] . Hence, it is 

xpected to obtain a minimum value of the threshold using the 

lbow function. We did not adopt this method/function because it- 

rating the curvature array caused a slower system and consumed 

normous computing resources (memory). The previous algorithm 

onsists of two outer for-loop. We analyse that the algorithm will 

ave asymptotic order of magnitude (i.e., the �-class) as �(n 2 ) . 

n the contrary, our proposed algorithm ( Algorithm 1 ) will only 

ave one outer loop (i.e., implicitly, as incoming data streams are 

ed continuously from Twitter). Therefore, the order of our pro- 

osed algorithm will only have asymptotic order of magnitude (i.e., 

he �-class) as �(n ) . Hence, since �(n 2 ) > �(n ) , we assume that

ur algorithm is more lightweight than the previous research. 

In summary, the previous related works only focused on par- 

icular study cases of abnormal behaviour, or some were too spe- 

ific types of anomaly detection. On the contrary, in this research, 

e point out our novelty and our research contribution by propos- 

ng a lightweight solution for anomaly detection in real-time Twit- 

er data stream by implementing the Directed Acyclic Graph model 

nd the Poisson distribution. 

. Methods 

.1. Methodology framework 

The followings are the overview of the methodology framework 

f our research: 

.1.1. Theory 

We describe the association of our research with the big data 

roblem in the Big Data Problem Background ( Section 3.2 ). In Di- 

ected Acyclic Graph Topology Model ( Section 3.3 ), we explain the 

opology model design of our system. Meanwhile, in Grouping Type 
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Fig. 1. Methodology framework - implementation. 

Algorithm 1 PESCAD algorithm. 

1: procedure PESCAD ( { T weet} D 
i =1 

) 

2: SCIE = 0 

3: sumT otalEv ent = 0 

4: sumT otalT weet = 0 

5: for tweet i ∈ { T weet} D 
i =1 

do 

6: sumT otalT weet = sumT otalT weet + 1 

7: if is _ e v ent == 1 then 

8: { idStat usList } ← extract id _ status from the current 

interval and put into array 

9: SCIE ← SCIE + 1 

10: end if 

11: if time _ interv al == 1 ~min then 

12: sumT otalEv ent ← sumT otalEv ent + SCIE 

13: λ ← 

sumTotalEv ent 
sumTotalT weet 

14: probability ← Poisson (SCIE, λ) 

15: P O ← probability ∗ sumT otalT weet 

16: AO ← sumT otalEv ent 

17: if AO > P O then 

18: Mark all { idStat usList } as collective anomaly 

19: Print all collective anomalies 

20: end if 

21: Empty the { idStat usList } array 

22: SCIE ← 0 

23: end if 

24: end for 

25: end procedure 
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 Section 3.4 ) and Event Stream ( Section 3.5 ), we outline two fun-

amental theories related to how and what data being passed, re- 

pectively. 

.1.2. Implementation 

We state what tools/software we use to implement our theory 

n System Environment ( Section 3.6 ). In Data Collection ( Section 3.7 ),

e discuss how we collect our data. After collecting data, we 

escribe how we pre-process the data in Pre-processing Phase 

 Section 3.8 ) and subsequently break down the data processing in 

arallel: TF-IDF Phase ( Section 3.9 ), Clustering Phase ( Section 3.10 ), 

nd Anomaly Detection Phase ( Section 3.11 ). Overall, we illustrate 

ur implementation elements, as we explain above, in Fig. 1 . 

To aid the explanation of Fig. 1 , we add the sequence di- 

gram in Fig. 2 . From the sequence diagram, we can see that 
3 
he actor/user initially triggers the Topology class. The Topology 

lass then generates the PreprocessingBolt (i.e., it pre-processes the 

ncoming tweet keywords from the ‘Spout’). Subsequently, three 

ther bolts (i.e., ClusteringBolt, TFIDFBolt , and PESCADBolt ) are cre- 

ted and work in parallel, as indicated in the ‘par’ frame in the 

iagram. After that, the cluster will divide the topology instances 

ccording to the server configuration cluster (either standalone or 

istributed). During the runtime, the user will receive a message 

egarding the group of anomalous events in the idStatusList array 

rom the system. 

.2. Big data problem background 

There are challenges/dimensions of big data called ‘the 4V’s of 

ig Data’: Volume, Velocity, Variety and Veracity. Meanwhile, there 

re two types of big data processing: batch-based processing and 

tream-based processing [33] . In batch-based processing, each data 

lock is processed sequentially one by one in a period of time. 

his processing type is mainly for overcoming the ‘volume’ chal- 

enges of Big Data. The famous framework for this batch process- 

ng is Apache Hadoop. On the other hand, stream-based processing 

s always associated with ‘velocity’ challenges where the real-time 

rocessing of fast-growth data is needed (such as Twitter datas- 

ream). For stream processing type, Apache Storm is the forefront 

ramework and is designed to answers the challenges in the ve- 

ocity aspect. Not only to solve the velocity challenges, but the 

pache Storm can also be implemented in larger organisation clus- 

ers (i.e., scalable) for online decision making. Therefore, we use 

pache Storm since it is scalable and it can process a million tu- 

les per second in real-time from Twitter [34] . 

.3. Directed acyclic graph topology model 

We utilise the distributed Directed Acyclic Graph topology 

odel in our system and implement using Apache Storm , which 

onsists of the spout (s) and bolt (s) ( Fig. 3 ). The spout is the source

f the event stream (i.e., tuple or data), and the bolt is for pro- 

essing the tuple stream. The arrow lines in ( Fig. 3 ) represent the 

irected stream of events. In terms of the event stream, Fig. 3 illus- 

rates that the PreprocessingBolt processes the largest number of 

ata tuple. Subsequently, the ClusteringBolt processes fewer tuples 

rom the PreprocessingBolt and the TFIDFBolt processes even fewer 

uples (i.e., output only important keywords). Lastly, the PESCAD- 

olt processes the least number of the data tuple which related to 

hese keywords, such as “death”, “covid”, and “corona”. 
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Fig. 2. Sequence diagram of the system. 

Fig. 3. Example representation of directed acyclic graph topology model of storm framework. 
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.4. Grouping type 

To pass the tuple (data) from the spout to the bolt or from one 

olt to the next bolt, we need to define and implement the type of 

rouping. This type of grouping is also one fundamental concept in 

ig Data processing for large-scale, distributed real-time data ana- 

ytics [15] . 

Global grouping is a grouping type where all the tuples go to 

ne of the bolt workers. This grouping type is proper when we 

ave to run a computational process with a tuple value. The down- 

ide to this grouping type is the network and memory overhead. 

Shuffle Grouping is a grouping type where each worker in a bolt 

s guaranteed to receive the same amount of tuples. The advantage 

f shuffle grouping is to provide load balancing and avoid overhead 
4 
s the worker is allocated to the process, and the tuples are parti- 

ioned in parallel. 

Field Grouping is a grouping type where the tuples are parti- 

ioned by the “id” field defined by the programmer/user. We im- 

lemented this grouping type in our research to combine collec- 

ive tuples with identical values into a given worker in a bolt. The 

xample illustration of the grouping type is shown in Fig. 4 . 

.5. Event stream 

The Twitter stream we collect includes an unbounded informa- 

ion sequence (event) known as a tuple, which is a multi-field, key- 

alue pair data structure [6] . For our three separate primary bolts, 
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Fig. 4. Grouping type of tuple. 
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here are three types of event stream equations: 

 = { (id _ status 1 , is _ e v ent 1 ) , (id _ status 2 , is _ e v ent 2 ) , . . . 

(id _ status n , is _ e v ent n ) } (1) 

 = { (topic 1 , word 1 ) , (topic 2 , word 2 ) , . . . (topic n , word n ) } (2)

 = { (id _ status 1 , word 1 ) , id _ status 2 , word 2 ) , . . . (id _ status n , word n ) } 
(3) 

Eq. 1 illustrates the grouping formula in our PESCADBolt (i.e. 

oisson Event Stream Collective Anomaly Detection Bolt) as the 

ystem performs field-grouping for both id _ status and is _ e v ent for 

ach event. We assign is _ e v ent = 1 if a tweet contains a “death”

eyword. Then we sum is _ e v ent and compare it to the predicted 

ate, which is calculated using the Poisson probability. If the sum 

f is _ e v ent is greater than the predicted rate, we will mark all

d _ status as collective anomalies. As shown in Eq. (2) , we also 

roup word and topic in TFIDFBolt. We calculate the TF-IDF fre- 

uency score from each keyword relative to all the tweets collected 

n our system. 

We will then apply the field grouping for id _ status and word in 

he ClusteringBolt, as given in Eq. (3) , which transforms each key- 

ord into a vector with the word embedding technique and groups 

t into a graphical 2-D representation in its associated clusters. 

.6. System environment 

For aggregating the incoming rapid real-time tweets, we require 

 framework for Streaming Processing Computation, Apache Storm 

at least version 1.2.x) [16] . We also require Java JDK 11 installed 

nd Ubuntu 18.04 LTS (for the latest package updates and the con- 

enience of configuration). 

We need the Twitter4j library (at least version 4.0) configured 

ith Twitter API keys to access several Twitter entities. To com- 

ile the project and use the dependencies needed, we require 

maven’ (at least version 3.x). We launch our experiments by cre- 

ting and configuring two nodes in this research: a nimbus node 

nd a supervisor node. In the nimbus node, we configured Apache 

ookeeper (at least version 3.4.x) to coordinate the communication 

etween the nimbus node and the supervisor node. Python version 

.x installed for executing part of Storm dependencies. 

The nimbus node is also utilised as the visualisation server. All 

odes set up on the virtual machines (Virtual Box at least ver- 

ion 6.0.x). The visualisation server uses LAMP, which consists of 

 database server (MySQL 10.4.11), a web server (Apache 2.4.43), 

nd a programming language (PHP 7.2.31). 
5 
.7. Data collection 

We collect the data using the Twitter API, allowing us to re- 

rieve the essential object information (such as accounts, hash- 

ags, tweets), namely as ‘entities’. In our case, we use “status” and 

user” entities. From status entity, we extract following fields: “cre- 

ted_at”, “geolocation”, “place”, and “status’. On the user entity, we 

btain the “location” and “screen_name” fields. Since we will need 

o detect the origin/source of the anomaly tweet, both geolocation 

nd location are essential information. However, in reality, not all 

ser account disclose these two pieces of information. Therefore, 

e can only show the source/location of the anomalous tweet in 

he map (more in Section 4.4 ) only for tweets or account if their 

eolocation and location are not null. However, we still list all the 

nomalous tweets (more in Section 4.3 ). 

.8. Pre-processing phase 

After acquiring the tuple from Spout (“start” mark in Fig. 1 ), we 

etrieve the hashtag and user-mention entities, tokenise the tweet 

entence, and delete the stopwords on the PreprocessingBolt (or- 

nge rectangles). Then we do the lemmatisation to get a standard- 

sed keyword that suits the dictionary in the real world. 

.9. TF-IDF phase 

We measure the number of keywords in TFIDFBolt 

green/middle-right rectangles in Fig. 1 ) and determine its 

requency (i.e. Term Frequency-Inverse Document Frequency / 

F-IDF). The TF-IDF is a statistical formula that indicates the 

mportance of a word in a document relative to a collection of 

ocuments or corpus. This research uses this formula to extract the 

ost important keyword from a tweet sentence that does not con- 

ain hashtags and user-mentions. We compute the TF-IDF scores 

nd return the keyword with the highest score. Subsequently, we 

efine the keyword with the highest score as the “important”

eyword of the tweet. To measure the Term Frequency (TF), we 

etermine how many times a keyword occurs in a tweet divided 

y the total number of word counts in that tweet sentence (to get 

he normalised value). Let |{ w ∈ T }| be the number of times the

eyword shown in a tweet, and let | T | be the total number of all

ords in a tweet: 

f (w, T ) = 

|{ w ∈ T }| 
| T | (4) 

For the Inverse Document Frequency (IDF), we determine the 

atural logarithm of the total number of tweets obtained in our 

weet database divided by the number of tweets where a specific 

eyword occurs. Let CT be the collection of the tweet obtained in 

ur database, then, the IDF formula: 

df (w, CT ) = log 
| CT | 

|{ T ∈ CT : w ∈ T }| (5) 
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Therefore, the whole TF-IDF formula: 

f _ idf (w, T , CT ) = t f (w, T ) ∗ idf (w, CT ) (6)

Following is an example of TF-IDF calculation. Given a tweet 

entence T containing 200 words where the word w “covid” ap- 

ears 5 times in that sentence. The term frequency (i.e., tf) for 

covid” is then (5 / 200) = 0 . 025 . Subsequently, assume we have

0 0 0 tweets in document collection CT and the word “covid” ap- 

ears in 10 tweet sentences T among these 10 0 0 tweets in docu- 

ent collection CT . Therefore, the inverse document frequency (i.e., 

df) is calculated as log (1 , 0 0 0 / 10) = 2 . Thus, the Tf-idf weight of

he word “covid” is the multiplication of these two: 0 . 025 × 2 = 

 . 5 . 

.10. Clustering phase 

In the ClusteringBolt (red/lower-right rectangles in Fig. 1 ), we 

se the word embedding to represent each keyword as a vector 

f 100 dimensions. We group the keyword vectors using clustering 

k-means clustering) and then project the 100-dimensional vectors 

nto 2-dimensional vectors via the Principal Component Analysis 

PCA) to plot the keyword clusters in a 2D visual image. 

.10.1. Word embedding (Word2Vec) 

Word2vec is a neural network model with a hidden layer that 

ransforms a word into a real number vector (i.e., Word Embed- 

ing ). This vector represents the coordinate in a high dimensional 

ector space, such that keyword with a high similarity can be lo- 

ated next to each other [35] . 

We decide to choose this strategy to represent a keyword as a 

ector and map it in a visual representation. Our word embedding 

pproach will use the Skip-gram algorithm [36] , which employs a 

et of keywords extracted from the tweets (i.e., as a corpus), then 

he model loops on the words and applies the current keyword to 

nfer or predict its neighbours (i.e. context). In this research, we 

mplement Word2Vec with the help of deeplearning4j library [29] . 

With built-in functions, the string collection ( CollectionSen- 

enceIterator ) will be tokenised ( DefaultTokenizerFactory ), and the 

odel will iterate through tokens, and delete the stopwords. Af- 

er the pre-processing step, the library collects the tokenised 

eywords, and it selects unique words only, one by one, un- 

il they form a vocabulary that consists of 20 0 0 unique words. 

ach token will be supplied to Word2Vec neural network (using 

ord2Vec.Builder() ). 

In this project, the size of our vocabulary is 20 0 0 words. Also, 

e use windowSize parameter of 5. Meanwhile, we set the hidden 

ayer size of our neural network (i.e., layerSize ) with 100, i.e., every 

ord in the vocabulary will be represented by a 100-dimensional 

ector. 

.10.2. KMeans clustering 

Once transformed into a 100-dimensional vector, we use the 

eeplearning4j library [29] to perform KMeans clustering. 

KMeans Clustering is a type of unsupervised learning which 

lusters finite n instances of the dataset with d dimensional real 

ectors into k clusters by minimising the distances between data 

nstances and several cluster centres/centroids. The data instances, 

n this case, are the keywords, and each keyword consists of a vec- 

or with real numbers. The distance metric we use in this KMeans 

lustering is the Euclidean distance. 

.10.3. Principal component analysis 

In this research, we use Principal Component Analysis (PCA) 

rom the deeplearning4j library [29] . PCA is a technique for di- 

ensionality reduction to project and keep the essential informa- 

ion from a higher dimension to a smaller vector subspace. The 
6 
echnique maximises the projected data variance. The word em- 

eddings will be projected to a two-dimensional space using PCA, 

hich allows us to visualise the word clusters. 

.11. Anomaly detection phase 

Finally, in PESCADBolt (blue/upper-right rectangles in Fig. 1 ), 

e used the Poisson Event Stream Collective Anomaly Detection 

PESCAD) algorithm. The rate of events (i.e., the keyword “death”) 

s computed as the actual events, and we forecast the predicted 

umber of events, which we want to approximate by using Pois- 

on distribution. If the number of actual events in the interval is 

reater than the predicted number of events, we shall mark them 

s a collective anomaly. 

The Apache Storm adopts the scalable Directed Acyclic Graph 

opology design [37] , and our PESCADBolt can scale according 

o our topology definition in our code along with the number 

f nodes configuration in our cluster (either standalone or dis- 

ributed). Intuitively, with more nodes in the cluster, it can detect 

ultiple anomalies at the same time. 

.11.1. Collective anomaly detection 

In the previous related works, there are three forms of anomaly 

etection: Point, Collective, and Contextual [38] . Point anomaly in- 

icates a single data (point) anomaly compared with the rest of the 

ata, e.g., tracking a user’s network intrusion detection. Meanwhile, 

ontextual anomaly is associated with abnormal occurrence in par- 

icular/specific circumstance (context), such as the network’s ob- 

cure intrusion detection late at night. Lastly, the Collective anomaly 

etects the group of abnormal occurrences over a period of time. 

herefore, we decide to use collective anomaly detection because 

e attempt to detect a collection of “death” keyword/event in a 

pecific time interval. 

.11.2. Poisson distribution 

Given the average rate event (λ) , the Euler’s constant number 

 e = 2 , 71828 ), we use the Poisson P (x, λ) as the statistical method

o calculate the probability of x occurrences of the event over a 

pecific period: 

 (x, λ) = 

λx e −λ

x ! 
(7) 

We get the λ by dividing the total number of occurrences of 

vents by the total of all tweets: 

= 

sum _ total _ e v ent 

sum _ total _ tweet 
(8) 

We specify the time interval in one minute because this death 

vent could occur at a monitoring interval of at least one minute 

rom the six weeks of our observation. 

.11.3. Poisson event stream collective anomaly detection (PESCAD) 

lgorithm 

This algorithm, PESCAD, is our highlight since event detection 

s the motivation of our research ( Algorithm 1 ). The main princi- 

le is to use the Poisson distribution to measure occurrences using 

he current interval and compare it to actual occurrences to decide 

hether an anomaly occurs. 

Firstly, we extract from the tuple these fields: id_status and 

s_event , and calculate sumTotalTweet . From is_event counts, we 

ount the sumTotalEvent (also as “ActualOccurrences”) and sum cur- 

ent interval event (SCIE) independently. We will then use two pa- 

ameters ( λ and sum current interval event(SCIE) ) to calculate the 

oisson probability. After that, by multiplying the Poisson proba- 

ility and the sumTotalTweet , we can calculate the PredictedOccur- 

ences (PO) . Later, the ActualOccurrences (AO) is compared to the 
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redictedOccurrences (PO) . If the ActualOccurrences (AO) is greater 

han the PredictedOccurrences (PO) , we record all of id_status as 

roup/collective anomaly in the current interval. 

We explain the details of the algorithm as follows. The in- 

ut of the algorithm is the array of tweet streams with an arbi- 

rary length of D which previously converted as the data tuples 

rom the Pre-processing phase. We then initialise sum current inter- 

al event(SCIE), sumTotalEvent , and sumTotalTweet with 0. The SCIE 

ounts how many tweets which contain the “death” keyword in 

he current interval of one minute. The sumTotalEvent counts how 

any tweets which contain the “death” keyword in whole length 

ime monitoring (e.g., 1 h). The sumTotalTweet counts the total 

weet collected in whole length time monitoring. 

For all incoming tweet data tuples, we increment the ( sumTo- 

alTweet ). If a tweet contains a “death” keyword ( is_event == 1), 

e record id_status of that tweet into { idStat usList } array, and in-

rement the SCIE . In every one minute, we add SCIE into sumTo- 

alEvent . We also calculate λ by dividing sumTotalEvent by sum- 

otalTweet which represent the average of event occured in the 

hole monitoring time ( Section 3.11.2 ). With the λ obtained and 

CIE we calculate the Poisson probability and we obtain Predicte- 

Occurrences (PO) . Meanwhile, we also assign the sumTotalEvent 

ount into ActualOccurrences (AO) . If ActualOccurrences (AO) is 

arger than PredictedOccurrences (PO) , we mark all id_status in the 

 idStat usList } array as a group anomaly and print all the anomaly 

n the system. Subsequently, we empty the { idStat usList } array and 

eset the SCIE into 0. The above steps keep iterating until every 

ime we reach 1 min. 

. Testing 

After designing our methodology and implemented our algo- 

ithm, we then test our system. Since we undertake research re- 

ated to the outbreak or anomaly detection monitoring, there is a 

ypothesis and primary aim that we require to test: our system 

hould identify abnormal events/abnormal rate occurring in a spe- 

ific interval, which leads to an incident, and the system should be 

ble to detect the incident’s source at the same time. 

This Section 4 only discusses and analyses a subset of our find- 

ngs from our monitoring on 14 August 2020 . We will discuss the 

omplete result discussion from research and monitoring during 1–

0 August 2020 in Section 5 . We have also designed a web app 

1 

ith interactive visualisation charts and map chart for the conve- 

ience of analysing the anomalies using chart.js 2 and leaflet.js. 3 

.1. Sensitivity analysis of parameters 

We analysed the two essential aspects: apache storm parameters 

nd topology components of our framework. We subsequently ob- 

erved whether these two aspects would affect how many tweets 

e will obtain during a specific monitoring time. 

Table 1 illustrates the tuning of apache storm parameters (i.e., 

umber of workers, number of ackers, maximum task parallelism, 

aximum spout pending ) [41] and how many the tweets obtained 

rom the respective tuning value parameter. 

The number of workers denotes how many workers instances 

n Java Virtual Machine that storm creates for the topology. The 

umber of ackers is the number of threads for processing tuple ac- 

nowledgements. The maximum task parallelism defines maximum 

umber of threads that generates spout and bolts. Maximum spout 

ending specifies how many data tuples have been processed from 

he spout and ready to be processed by ackers. 
1 The homepage of the Github project: PESCAD Storm 

2 The homepage of the library: https://www.chartjs.org/ [39] . 
3 The homepage of the library: https://leafletjs.com/ [40] . 

g

p

7 
We perform five monitoring time durations (i.e., 1, 5, 10, 20, or 

0 min) with the above parameters. We use a similar tuning value 

s demonstrated in Bilal [42] . 

For example, when we set the number of workers = 3 and we 

tart to monitor for 1 min long, we obtained 3254 tweets. The 

ame applies when the number of workers equals 6, 9, and 12 (also 

n 1 min); we obtained pretty similar amounts: 3045, 3629, and 

390 tweets, respectively. 

When we experimented on the other three parameters, we kept 

btaining about 30 0 0 tweets in 1 min despite the value we as- 

igned. 

However, we significantly collected more tweets than the pre- 

ious duration when we increased the monitoring duration (i.e., 

rom 5 until 60 min). For instance, when we set the maximum 

pout pending as 80 0 0, we collected 2988 tweets in one minute. 

n the other hand, when we increased the duration for 5, 10, 

0, and 60 min, we collected 10,230, 22,898, 48,090, and 143,489 

weets, respectively. 

Meanwhile, Table 2 shows how the topology components will 

ffect the number of tweets collected. We decided to use 60 min of 

onitoring time as our baseline, based on the previous Table 1 ex- 

eriment. 

In this experiment, we designed a simple topology with 3 com- 

onents: spout, bolt1 , and bolt2 . A number of spouts will collect 

any tweets, and a number of bolt1 will receive the tweets from 

he spout and then forward to bolt2 . Therefore, we tuned only for 

pout and bolt1 . We set bolt2 = 1 because this bolt task is to ac-

umulate the number of tweets collected. If we set bolt2 into 2 or 

, they would work independently so that we would not be able 

o record the total number of tweets, and we would have to add 

hem manually. 

As shown in Table 2 , when we set the spout = 3, bolt1 = 2, and

olt2 = 1, we collected 141,545 tweets. It also applies when we 

ncreased both spout and bolt, we obtained a fluctuated amount of 

weets ranging from 142,899 to 148,695. 

We can conclude that we kept obtaining about 140,0 0 0 tweets 

uring 60 min of monitoring despite how many topology compo- 

ents we added. However, we will show that if we add more com- 

uter nodes (in distributed mode), we will obtain more tweets in 

ection 5 . 

.2. Anomaly detection calculation 

If we execute the system in standalone mode particularly with 

 suitable Integrated Development Environment (IDE) that displays 

utput consoles we can see our PESCAD Algorithm in detail. Fig. 5 

s the excerpt of the example message console during our stan- 

alone test run. As we can see, we observe following variables: 

1. How many total tweets we capture during all monitoring period 

( sumTotalTweet ). 

2. The average of events during all monitoring period ( lambda ). 

3. The sum of all events detected during all monitoring period 

( ActualOccurrences ). 

4. The list of status id(s) of the events during the current moni- 

tored interval ( idStatusList ). 

5. The Poisson probability calculation for the current interval 

( probability ). 

6. The predicted rate occurrences of the event obtained from the 

Poisson calculation ( PredictedOccurrences ). 

7. The list of all marked anomalies during the current interval 

( ANOMALY ). 

From Fig. 5 , as an example, at that arbitrary moment, we have 

athered 227 tweets during the monitoring, and in that arbitrary 

eriod, we obtained lambda = 

ActualOccurrences 
sumTotalT weet 

= 4 . 0 
227 ≈ 0 . 0176211 . 

https://github.com/syahirulfaiz/PESCAD_Storm
https://www.chartjs.org/
https://leafletjs.com/
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Table 1 

Storm parameter tuning on tweets obtained. 

Monitoring 

time 

Apache storm parameters 

num of worker tweets num of acker tweets max task parallelism tweets max spout pending tweets 

1 min 3 3254 3 3493 3 3104 2000 3120 

6 3045 6 3623 6 3229 4000 3075 

9 3629 9 3139 9 3043 6000 2959 

12 3390 12 3127 12 3316 8000 2988 

5 min 3 10,233 3 10,323 3 11,203 2000 11,232 

6 11,200 6 10,432 6 10,943 4000 10,992 

9 10,523 9 11,293 9 11,123 6000 11,029 

12 10,983 12 10,849 12 10,320 8000 10,230 

10 min 3 24,024 3 23,765 3 21,343 2000 24,044 

6 23,049 6 23,658 6 23,984 4000 24,578 

9 22,043 9 22,674 9 23,995 6000 23,989 

12 24,045 12 22,874 12 22,900 8000 22,898 

20 min 3 47,945 3 48,783 3 46,458 2000 45,884 

6 48,640 6 46,939 6 47,999 4000 46,989 

9 46,399 9 48,999 9 48,799 6000 47,989 

12 47,989 12 46,989 12 45,889 8000 48,090 

60 min 3 148,200 3 146,379 3 148,900 2000 145,778 

6 139,000 6 147,890 6 148,970 4000 143,899 

9 145,980 9 140,887 9 143,478 6000 143,689 

12 146,839 12 144,783 12 144,788 8000 143,489 

Fig. 5. The excerpt of the system’s console. 

Table 2 

Topology components tuning on tweets obtained. 

Monitoring 

time 

Storm topology components 

Tweets 
num of spout num of bolt1 num of bolt2 

60 min 3 2 1 141,545 

6 4 1 148,695 

10 4 1 146,898 

12 8 1 144,909 

24 16 1 142,899 

48 32 1 146,288 
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ince we have collected two events (from a total actual four oc- 

urrences) in the current interval (i.e., as shown in the idStatus- 

ist size), we can calculate Poisson (x, λ) = Poisson (2 , 0 . 0176211) ≈
 . 0 0 01525 . We then calculate the event occurrences PredictedOc- 

urrences = Poisson (2, 0.0176211) ∗ sumTotalTweet ≈ 0.034626. 

ince ActualOccurrences (i.e., 4.0) is greater than PredictedOccur- 

ences (i.e., 0.034626), we mark all of the id _ status in idStatusList 

f that current interval as the group/collective anomaly and being 

nserted to ANOMALY array. 

.3. Anomaly detection chart 

Fig. 6 depicts our findings during 14 August 2020 monitoring. 

n the figure, the “event” is the tweet that contains the “death”

eyword, which could potentially become anomalous. Meanwhile, 

he “anomaly” is the event tweet that becomes an anomaly ac- 

ording to our statistical computation and Algorithm 1 . The fig- 

re also shows the varied amounts of events and anomalies cor- 
8 
esponding to the grouping time interval per one-minute. We also 

ee at which time the most number of anomalies occurred and 

hich time there is no anomaly at all (i.e., least abnormal event 

aptured). From the figure, we can understand that we obtained 

he highest cumulative anomaly (three events) on 14 August 2020 

t 21:41 . 

Apart from that, we also show the list of anomalous tweet on 

ur system, as shown in Fig. 7 . If we click one of the tweet lists,

e may redirect automatically to the tweet page source ( Fig. 9 ). 

n the following subsection, alternatively, we can also locate the 

nomalous tweet’s source using the world map. 

.4. Anomaly detection map 

Fig. 8 shows the location of anomalous tweets (i.e., only for 

he tweet which contains geolocation or place entities). These enti- 

ies are needed to pinpoint the location and identifying the source 

f the anomalous tweets/incidents. We plot the anomalous tweets 

nto a tilemap and implicitly construct the URL so that the user 

an view the original tweet on the Twitter website. 

When we click on the located pin and the popup on the map, 

e can be redirected to the exact web page of the anomalous 

weet, which for example, explains the casualties updates on 14 

ugust 2020 reached 46,707 in the United Kingdom ( Fig. 9 ). 

It demonstrates that the Collective Anomaly was accurately de- 

ected by our system on 14 August 2020 at 21:41 , because three 

vents of “death” in tweets associated with COVID-19 occurred, 

nd our system can correctly determine and pinpoint the source 

f the incident (i.e., accomplished the second objective of our 

roject). As opposed to this Section 4 , which only discuss a spe- 
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Fig. 6. The collective anomaly detection on 14 August 2020. The asterisk ( ∗) denotes the highest collective anomaly detected (i.e., three anomalies) on that specific time. 

Fig. 7. The excerpt of three collective anomalies detected on 14 August 2020 at 21:41. 

Fig. 8. The source location of the specific tweet which contains the anomalous event (i.e., “death” keyword). 

9 
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Fig. 9. The source of the tweet: status. 
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ific finding on 14 August 2020, Section 5 will discuss our findings 

n accumulated monitoring during 1–30 August 2020. 

. Results 

We have conducted 15 tests between single versus dual ma- 

hines (e.g. 15 tests × 2 machines = 30 days) between 1 and 30 

ugust 2020 and compare them, as shown in Fig. 10 . 

From Fig. 10 , we can see that the distributed machine peaked at 

0th test (3372 tweets) as compared to the standalone one (1654 

weets). Although dropped at 11th test, the distributed framework 

till surpassed the standalone one (1330 tweets as compared to 
Fig. 10. Standalone vs. Dual-machine Tweet collec

Fig. 11. Anomalous tweets vs. Event tweets

10 
71 tweets respectively), and it shows that the distributed frame- 

ork outperforms the standalone machine in all tests (i.e., accom- 

lished the first objective of the project). 

Fig. 11 illustrates the number of anomalous tweets collected 

mong the total of event tweet during 30 days. The highest anoma- 

ous tweet rate detected on 18 August 2020 (134 anomalies from 

he total of 136 events). When we analyse the tweet source (on 

hat date), multiple tweets are associated with the COVID-19 ca- 

ualties update. Also, most of the tweets contain debates about 

hether comorbidity causes death. This problem caused a spike in 

he event rate (i.e., many tweets contained the keyword “death”), 

nd subsequently, our PESCAD algorithm can successfully detect 

he anomaly (i.e. accomplished the second objective of the project). 

Fig. 12 shows the most mentioned words on Twitter during our 

onitoring, e.g., “covid” (21,566 incidents), “death” (11,799 inci- 

ents) and “trump” (4761 incidents). Meanwhile, Fig. 13 showed 

he words with highest TF-IDF scores, e.g., “people” (0.63637), 

school” (0.5921407), and “virus” (0.57385). When we observed 

witter in August 2020, we find that the United States has had 

rouble with COVID-19, causing people ask to their president at 

hat time (Trump) to be responsible for the increasing death 

vents. Meanwhile, also in August 2020 (in the United Kingdom), 

he government started to loosen the restrictions, reopening school 

ut causing the increased COVID-19 case, thus resulting in some 

oncerns for the people. 

Fig. 14 illustrates the clusters of 25 most mentioned keywords 

uring our monitoring time. In the figure, we can find the key- 

ords “school”, “pandemic”, and “president” grouped into a clus- 

er. Meanwhile, the keywords “death”, “case”, and “corona” are in 

nother separated cluster. We can conclude, the relationship of 

igs. 12–14 as follows: Fig. 12 illustrates the keyword occurrence 

term frequency), and in Fig. 13 , we use that information (word 
tion comparisons during 1–30 August 2020. 

 collected during 1–30 August 2020. 
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Fig. 12. Word count calculation during 1–30 August 2020. 

Fig. 13. TF-IDF score during 1–30 August 2020. 

Fig. 14. Word Cluster chart during 1–30 August 2020. 
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ccurrence/term frequency) combined with inverse document fre- 

uency, to calculate the TF-IDF, which represents the importance 

f that word among our collected tweets. Meanwhile, Fig. 14 illus- 

rates how we visualise the keywords in a 2-Dimension graph as 

f the words are grouped and formed a certain topic grouping. In 

ummary, these three figures illustrate what people concern dur- 

ng this pandemic period (i.e., accomplished the third objective of 

ur project). 

. Conclusion 

In conclusion, we have obtained more tweets from distributed 

omputing results than a single machine from 1 to 30 August 2020 . 

n 18 August 2020 , we received the highest number of anomalous 

weets, discussing the pandemic casualties’ updates and COVID-19 

ebates. During our monitoring time, we obtain the three most- 

ppeared words on Twitter: “covid”, “death”, and “Trump”, which 

llustrate the most frequently mentioned keywords. Meanwhile, the 

eywords “people”, “school”, and “virus” have the highest score of 
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he TF-IDF and reflects the most important keywords on Twitter. 

he keywords “death”, “corona”, and “case” are grouped in a clus- 

er, whereas “pandemic”, “school”, and “president” also grouped in 

nother different cluster. Those results indicate what people con- 

ern during this pandemic period. We have proven that our dis- 

ributed Directed Acyclic Graph model framework collected more 

weets than the standalone machine. Our system also successfully 

etect anomalous events from Twitter with its source location and 

ccount in real-time. 

The weakness of our work is that we require extra testing hours 

o give us more precise insight into our conclusions, where they 

ay be different from our current results. We also developed our 

roject with minimal resources. Hence, we hope larger organisa- 

ions (e.g., public health organisations) can benefit from this work 

y adopting our concept in larger computing clusters. The strength 

f our work is that we have successfully designed the Directed 

cyclic Graph model combined with the Poisson distribution to de- 

ect the anomaly (i.e., PESCAD algorithm) so that others can bene- 

t from the idea of the algorithm for their research. Also, although 

e have built our research with small computer nodes, we have 

chieved our research’s objectives. For future work, we plan to use 

ore computing resources to improve our performance. We also 

lan to implement our algorithm and apply our method in other 

vent detection scenarios such as disaster monitoring, earthquakes, 

res or storms. 
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