S

ELS

Since January 2020 Elsevier has created a COVID-19 resource centre with
free information in English and Mandarin on the novel coronavirus COVID-
19. The COVID-19 resource centre is hosted on Elsevier Connect, the

company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related
research that is available on the COVID-19 resource centre - including this
research content - immediately available in PubMed Central and other
publicly funded repositories, such as the WHO COVID database with rights
for unrestricted research re-use and analyses in any form or by any means
with acknowledgement of the original source. These permissions are
granted for free by Elsevier for as long as the COVID-19 resource centre

remains active.

Pattern Recognition 123 (2022) 108404

journal homepage: www.elsevier.com/locate/patcog

Contents lists available at ScienceDirect

Pattern Recognition

Big data directed acyclic graph model for real-time COVID-19 twitter n

stream detection

Bakhtiar Amen?, Syahirul Faiz"* Thanh-Toan Do°¢

Check for
updates

2 Department of Computer Science, School of Electrical Engineering, Electronics, and Computer Science, University of Liverpool, Liverpool L69 3BX, UK

b State Islamic Institute of Surakarta (IAIN Surakarta), Indonesia

¢ Department of Data Science and Al, Faculty of Information Technology, Monash University, Australia

ARTICLE INFO

Article history:

Received 28 March 2021

Revised 15 September 2021
Accepted 24 October 2021
Available online 26 October 2021

Keywords:

Anomaly detection
Big data

COVID-19

Directed acyclic graph
Event stream

ABSTRACT

Every day, large-scale data are continuously generated on social media as streams, such as Twitter, which
inform us about all events around the world in real-time. Notably, Twitter is one of the effective plat-
forms to update countries leaders and scientists during the coronavirus (COVID-19) pandemic. Other peo-
ple have also used this platform to post their concerns about the spread of this virus and a rapid increase
of death cases globally. The aim of this work is to detect anomalous events associated with COVID-19
from Twitter. To this end, we propose a distributed Directed Acyclic Graph topology framework to ag-
gregate and process large-scale real-time tweets related to COVID-19. The core of our system is a novel
lightweight algorithm that can automatically detect anomaly events. In addition, our system can also
identify, cluster, and visualize important keywords in tweets. On 18 August 2020, our model detected the
highest anomaly since many tweets mentioned the casualties’ updates and the debates on the pandemic
that day. We obtained the three most commonly listed terms on Twitter: “covid”, “death”, and “Trump”
(21,566, 11,779, and 4761 occurrences, respectively), with the highest TF-IDF score for these terms: “peo-
ple” (0.63637), “school” (0.5921407) and “virus” (0.57385). From our clustering result, the word “death”,
“corona”, and “case” are grouped into one cluster, where the word “pandemic”, “school”, and “president”
are grouped as another cluster. These terms were located near each other on vector space so that they

were clustered, indicating people’s most concerned topics on Twitter.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

In December 2019, the global pandemic of COVID-19 hit the
world, and people began to worry about the rapid spread of this
virus. Researchers, especially from the computer science field, have
started to propose many innovative solutions for this pandemic cri-
sis and prevent the spread of this virus [1,2]. Some have used Al
and machine learning methods to detect patterns from large-scale
real-time video, image, and text data. For video-based cases, re-
searchers utilised computer vision to identify human’s body tem-
perature or detecting whether or not people wear masks [3]. As
for the text-based cases, we contribute by discovering the virus
outbreak or the infection cases from event stream tweets through
developing a novel big data stream analytic method.

Every day, over 500 million tweets are posting on Twitter [4], in
particular from early 2020, people have started to post information

* Corresponding author.
E-mail addresses: Bakhtiar Amen@liverpool.ac.uk (B. Amen),
Syahirul.Faiz@gmail.com (S. Faiz), Toan.Do@monash.edu (T.-T. Do).

https://doi.org/10.1016/j.patcog.2021.108404
0031-3203/© 2021 Elsevier Ltd. All rights reserved.

related to the COVID-19 on Twitter. This platform has been utilised
as a real-time communication media between world leaders and
their citizens, scientists and healthcare organisations. According to
Qazi et al. [5], there have been an increased amount of generated
real-time tweet contents associated with COVID-19 started from
the early weeks of the outbreak, where it reached about 1 million
tweets per day. As of April 2020, this has approximately reached
10.5 million tweets per day. This evidence showed that the use of
social media, in particular Twitter, has increased during the pan-
demic. For this purpose, we investigate the adoption of incremental
real-time pattern detection from large-scale Twitter events. Hence,
we define the keyword “death” as the event, which could lead to
the anomaly, and we need to investigate the source and cause of
the anomaly in this research.

The aim of this paper is to detect anomalous events associated
with COVID-19 from Twitter. Here, we identify our objectives for
this research:

1. We build a distributed Directed Acyclic Graph topology model
to aggregate large-scale real-time tweets related to COVID-19.

https://doi.org/10.1016/j.patcog.2021.108404
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2021.108404&domain=pdf
mailto:Bakhtiar.Amen@liverpool.ac.uk
mailto:Syahirul.Faiz@gmail.com
mailto:Toan.Do@monash.edu
https://doi.org/10.1016/j.patcog.2021.108404

B. Amen, S. Faiz and T.-T. Do

2. We propose a novel algorithm that uses the predictive sta-
tistical analysis technique (i.e., “PESCAD” Algorithm) to detect
anomalous events.

3. We examine the frequency and the importance of keywords to
figure out what people are thinking on Twitter during this pan-
demic period.

We will discuss the previous related works in Section 2, and
we will break down the detailed methodology of our approach in
Section 3. We also illustrate the experiment of our algorithm in
Section 4. Finally, we outline the discussion of our results and find-
ings in Section 5.

2. Related works

In this research, we acknowledge the fundamental concept of
anomaly or event detection from large-scale data and its applica-
bility in real-world problems from Amen et al. [6]. The theoret-
ical concept of large-scale anomaly detection of both batch and
data streams, along with its constraints and limitations, were also
discussed in Amen and Grigoris [7]. Meanwhile, the authors in
Amen and Grigoris [8] have implemented collective anomaly de-
tection on data sensor streams, where the algorithm’s accuracy
outperformed compared to Adaptive Stream Projected Outlier De-
tector (A-SPOT) algorithm. The survey about the anomaly detec-
tion technique with its various big data solution technologies is
also explained in Habeeb et al. [9], including the performance of
various anomaly detection algorithms such as Bayesian Network,
Neural Network (NN), and Support Vector Machine (SVM). We can
also understand the anomaly detection method using the Isola-
tion Forest Algorithm from [10]. Meng Li et al. [11] proposed a
k-Nearest Neighbour algorithm implementation to detect anomaly
using blockchain and sensor networks.

According to Amen and Lu [12], a big data framework (e.g.,
Apache Storm) has been improved and outperformed well to
detects large-scale abnormal events in real-time. In [13], Patel
et al. introduced the sentiment-based classification to detect the
anomaly in Twitter, whereas [14] discussed the sentiment analy-
sis technique using a tree-learning algorithm using Apache Storm
framework. Toshiwal et al. [15] discussed the comprehensive Twit-
ter monitoring utility function and how to evaluate throughput as
well as the performance of the framework mentioned above in Mc-
Creadie et al. [16]. Meanwhile, in Zhao et al. [17], we can observe
the example implementation of Apache Storm for anomaly detec-
tion in a real-time network.

In [18], Twitter was utilised to monitor incidents such as an
earthquake but without using any big data middleware. Gupta
et al. [19], discussed how to identify hybrid hashtags for Twit-
ter classification, with several machine learning classification al-
gorithms (i.e., Naive Bayes, k-Nearest Neighbor, and SVM), and
[20] extends the experiment in big data domain with Apache
Storm. Both [21,22] demonstrated the Poisson distribution’s imple-
mentation for detecting the anomalies. However, in Sapegin et al.
[22], the method is only used in a non-distributed environment
to track log-in accounts. Meanwhile, Turcotte et al. [23]| imple-
mented the Poisson factorisation to find the anomaly in user cre-
dentials in a corporate network. Keval et al. [24] also briefly dis-
cussed anomaly detection using the Poisson probability and ma-
chine learning but also not in the distributed problem domain.

To support our understanding of the basic concept of Term
Frequency-Inverse Document Frequency (TF-IDF), we acquire the
fundamental concept from Manning et al. [25], as well as the
method to extract the keyword using semantic association in Liu
et al. [26] and learn about keyword relevance using TF-IDF in
Qaiser and Ali [27]. From Amin et al. [28], we also discover a novel
proposed technique for automatic monitoring for dengue disease

Pattern Recognition 123 (2022) 108404

detection, based on analysing the Twitter's statuses only, and de-
cide whether the people are infected or not, including for dengue
virus control spread.

According to Alom et al. [29], there are several ready-to-use
libraries for machine learning utilisation, such as Deeplearning4j,
in which we adopt this library since this library provides us with
the functionality we require (i.e. Word Embedding, Clustering, and
Principal Component Analysis). Meanwhile, the scalability of the
previously mentioned library on the GPU-cored distributed com-
puting is also discussed in Li et al. [30]. In [31], Doshi et al. demon-
strated the implementation of the leaflet.js library for locating the
user’s tweets coordinates on the world map and the chart.js library
function for the visualisation.

As we mentioned earlier, we acknowledge and are inspired by
the research from Sapegin et al. [22], which discussed the Pois-
son distribution’s implementation for detecting the anomalies in a
company network. The research applies Point-based anomaly de-
tection explicitly as compared to our research method, Collective
anomaly detection. Apart from that, the anomaly detection method
is only used in a non-distributed environment to monitor the log-
in accounts where ours is on distributed computing. One inter-
esting novelty about the previous research is how they introduce
the elbow function as the anomaly detection threshold. The elbow
function is one way to find a curvature in the optimum/minimum
value of the function (or ‘elbow point’).

Therefore, we initially planned to design our PESCAD algorithm
using the elbow function. For the computation of this threshold,
the ‘death’ keyword from the last intervals will be counted, and
a lower bound is defined and initialised as the upper limit of the
‘elbow function’ calculations. The method will need to calculate a
second-order central difference derivative with this ‘elbow func-
tion’” where it represents the curvature of discrete data (compat-
ible with the Poisson discrete random variable) [32]. Hence, it is
expected to obtain a minimum value of the threshold using the
elbow function. We did not adopt this method/function because it-
erating the curvature array caused a slower system and consumed
enormous computing resources (memory). The previous algorithm
consists of two outer for-loop. We analyse that the algorithm will
have asymptotic order of magnitude (i.e., the ®-class) as ©(n?).
On the contrary, our proposed algorithm (Algorithm 1) will only
have one outer loop (i.e., implicitly, as incoming data streams are
fed continuously from Twitter). Therefore, the order of our pro-
posed algorithm will only have asymptotic order of magnitude (i.e.,
the ©-class) as ®(n). Hence, since ®(n?) > ®(n), we assume that
our algorithm is more lightweight than the previous research.

In summary, the previous related works only focused on par-
ticular study cases of abnormal behaviour, or some were too spe-
cific types of anomaly detection. On the contrary, in this research,
we point out our novelty and our research contribution by propos-
ing a lightweight solution for anomaly detection in real-time Twit-
ter data stream by implementing the Directed Acyclic Graph model
and the Poisson distribution.

3. Methods
3.1. Methodology framework

The followings are the overview of the methodology framework
of our research:

3.1.1. Theory

We describe the association of our research with the big data
problem in the Big Data Problem Background (Section 3.2). In Di-
rected Acyclic Graph Topology Model (Section 3.3), we explain the
topology model design of our system. Meanwhile, in Grouping Type

B. Amen, S. Faiz and T.-T. Do

Pattern Recognition 123 (2022) 108404

| PESCADBolt
| (Anomaly Detection Phase) |
I
| Poisson I
Event o Anomaly
B B M
| Analysis
;_ PreProcessingBolt || P oo -
(Pre-Processing Phase) | I TFIDFBolt |
| 1k (TF-IDF Phase)
| Extract —
#hashtag & » lemmatisation|-|-|—Ly IIOH > THidf
; | I Count
_@usermention | y
N ____
Tokenisation) || prm e e s e
| Stopwords | | .
—————————————— 4 or PCA to
embeddlng Clustering 2D
-D vec
(word2vec)
ClusteringBolt |

| (Clustering Phase) I

Fig. 1. Methodology framework - implementation.

Algorithm 1 PESCAD algorithm.

1: procedure PESCAD({Tweet}?)
2: SCIE=0

3 sumTotalEvent = 0

4: sumTotalTweet = 0

5: for tweet; € {Tweet}P | do
6

7

8

sumTotalTweet = sumTotalTweet + 1
if is_event == 1 then
{idStatusList} < extract id_status from the current
interval and put into array

9: SCIE < SCIE +1

10: end if

11: if time_interval == 1~min then

12: sumTotalEvent « sumTotalEvent + SCIE
13: A« sumTotalEvent

sumTotalTweet

14: probability < Poisson(SCIE, A)

15: PO < probability » sumTotalTweet

16: AO <« sumTotalEvent

17: if AO > PO then

18: Mark all {idStatusList} as collective anomaly
19: Print all collective anomalies
20: end if

21: Empty the {idStatusList} array
22: SCIE <0
23: end if

24: end for
25: end procedure

(Section 3.4) and Event Stream (Section 3.5), we outline two fun-
damental theories related to how and what data being passed, re-
spectively.

3.1.2. Implementation

We state what tools/software we use to implement our theory
in System Environment (Section 3.6). In Data Collection (Section 3.7),
we discuss how we collect our data. After collecting data, we
describe how we pre-process the data in Pre-processing Phase
(Section 3.8) and subsequently break down the data processing in
parallel: TF-IDF Phase (Section 3.9), Clustering Phase (Section 3.10),
and Anomaly Detection Phase (Section 3.11). Overall, we illustrate
our implementation elements, as we explain above, in Fig. 1.

To aid the explanation of Fig. 1, we add the sequence di-
agram in Fig. 2. From the sequence diagram, we can see that

the actor/user initially triggers the Topology class. The Topology
class then generates the PreprocessingBolt (i.e., it pre-processes the
incoming tweet keywords from the ‘Spout’). Subsequently, three
other bolts (i.e., ClusteringBolt, TFIDFBolt, and PESCADBolt) are cre-
ated and work in parallel, as indicated in the ‘par’ frame in the
diagram. After that, the cluster will divide the topology instances
according to the server configuration cluster (either standalone or
distributed). During the runtime, the user will receive a message
regarding the group of anomalous events in the idStatusList array
from the system.

3.2. Big data problem background

There are challenges/dimensions of big data called ‘the 4V’s of
Big Data’: Volume, Velocity, Variety and Veracity. Meanwhile, there
are two types of big data processing: batch-based processing and
stream-based processing [33]. In batch-based processing, each data
block is processed sequentially one by one in a period of time.
This processing type is mainly for overcoming the ‘volume’ chal-
lenges of Big Data. The famous framework for this batch process-
ing is Apache Hadoop. On the other hand, stream-based processing
is always associated with ‘velocity’ challenges where the real-time
processing of fast-growth data is needed (such as Twitter datas-
tream). For stream processing type, Apache Storm is the forefront
framework and is designed to answers the challenges in the ve-
locity aspect. Not only to solve the velocity challenges, but the
Apache Storm can also be implemented in larger organisation clus-
ters (i.e., scalable) for online decision making. Therefore, we use
Apache Storm since it is scalable and it can process a million tu-
ples per second in real-time from Twitter [34].

3.3. Directed acyclic graph topology model

We utilise the distributed Directed Acyclic Graph topology
model in our system and implement using Apache Storm, which
consists of the spout(s) and bolt(s) (Fig. 3). The spout is the source
of the event stream (i.e., tuple or data), and the bolt is for pro-
cessing the tuple stream. The arrow lines in (Fig. 3) represent the
directed stream of events. In terms of the event stream, Fig. 3 illus-
trates that the PreprocessingBolt processes the largest number of
data tuple. Subsequently, the ClusteringBolt processes fewer tuples
from the PreprocessingBolt and the TFIDFBolt processes even fewer
tuples (i.e., output only important keywords). Lastly, the PESCAD-
Bolt processes the least number of the data tuple which related to
these keywords, such as “death”, “covid”, and “corona”.

B. Amen, S. Faiz and T.-T. Do

Pattern Recognition 123 (2022) 108404

sd Storm |

A

Actor

:Topology

1: main(args: String[l): vaid_ A config:

backtype.storm.Config

1.2 setMessageTlmeoutSecs(120)

Runtime: Runtime

b: backtype.storm.topology.TopologyBuilder

1.4: setSpout("Spout", new Spout(), 3) _ll

1.5: setBolt("PreprocessingBolt", new PreprocessingBolt(3), 2)
bt

r | F
)2a: setBolt("ClusteringBolt", new ClusteringBolt(60))

.1_
2b: setBolt("TFIDFBolt", new TFIDFBolt())

i
2c: setBolt("PESCADBOolt", new PESCADBolt(60))

<. idStatsList |

—————————— > backtype.storm.LocalCluster

4: submitTopology("Topology", config, b.createTopology())

cluster:

5: getRuntime()

Fig. 2. Sequence diagram of the system.

I Twitter I l

| PreProcessingBolt I | ClusteringBolt I TFIDFBolt PESCADBolt
Stream | wl aggrleglate aggr?gpte -
(:Ld status ,\\
—|—>C@uple1 tuple2, tuple3} C@tuplm tupleb, tuple9} Ck{tuple1 tuple4}/ “\Geath”) /
w2

i N\ B (id_status,
C({}uple4 tuple5 tuplee}/l <{tuple4, tuple2, tuple6} {EupIeZ tuple8} “covid”) >
v ‘ {id_status,\
R id status,
; :: C@“ple? tuple8 tuPleg}/l C@tuple? tuple8, tuple3} | : C /{tupleﬁ tuple9} | C SEoEsna”) /
el J I_ __________ [N P) [4
Spout Pre-Processing Clustering TF-IDF Anomaly Detection
Phase Phase Phase Phase

Fig. 3. Example representation of directed acyclic graph topology model of storm framework.

3.4. Grouping type

To pass the tuple (data) from the spout to the bolt or from one
bolt to the next bolt, we need to define and implement the type of
grouping. This type of grouping is also one fundamental concept in
Big Data processing for large-scale, distributed real-time data ana-
lytics [15].

Global grouping is a grouping type where all the tuples go to
one of the bolt workers. This grouping type is proper when we
have to run a computational process with a tuple value. The down-
side to this grouping type is the network and memory overhead.

Shuffle Grouping is a grouping type where each worker in a bolt
is guaranteed to receive the same amount of tuples. The advantage
of shuffle grouping is to provide load balancing and avoid overhead

as the worker is allocated to the process, and the tuples are parti-
tioned in parallel.

Field Grouping is a grouping type where the tuples are parti-
tioned by the “id” field defined by the programmer/user. We im-
plemented this grouping type in our research to combine collec-
tive tuples with identical values into a given worker in a bolt. The
example illustration of the grouping type is shown in Fig. 4.

3.5. Event stream
The Twitter stream we collect includes an unbounded informa-

tion sequence (event) known as a tuple, which is a multi-field, key-
value pair data structure [6]. For our three separate primary bolts,

B. Amen, S. Faiz and T.-T. Do

| tuplel tuple2 tuple3

Pattern Recognition 123 (2022) 108404

r|(Worker | (Worker
2 3

—P: [Workelj [WorkerJ [Wo:;kerJ

1 2

[
I 0
[

Boltl
S e
Spout | tuplel tuple2 tuple3 | ~Foo
O-—>| Worker | [Worker | [Worker | O“" Worke

N v 3 [1
e N e s 1 e e o, et e —

|

| w1

| ——

Global Grouping

Shuffle Grouping

Field Grouping

Fig. 4. Grouping type of tuple.

there are three types of event stream equations:

S = {(id_statusq, is_event,), (id_status,, is_event,), . ..
(id_statusy, is_event,)} (1)

S = {(topicy, word,), (topicy, wordy), ... (topic,, word,)} (2)

S = {(id_status;, word,), id_status,, wordy), ... (id_statusy, wordp)}
3)

Eq. 1 illustrates the grouping formula in our PESCADBolt (i.e.
Poisson Event Stream Collective Anomaly Detection Bolt) as the
system performs field-grouping for both id_status and is_event for
each event. We assign is_event =1 if a tweet contains a “death”
keyword. Then we sum is_event and compare it to the predicted
rate, which is calculated using the Poisson probability. If the sum
of is_event is greater than the predicted rate, we will mark all
id_status as collective anomalies. As shown in Eq. (2), we also
group word and topic in TFIDFBolt. We calculate the TF-IDF fre-
quency score from each keyword relative to all the tweets collected
in our system.

We will then apply the field grouping for id_status and word in
the ClusteringBolt, as given in Eq. (3), which transforms each key-
word into a vector with the word embedding technique and groups
it into a graphical 2-D representation in its associated clusters.

3.6. System environment

For aggregating the incoming rapid real-time tweets, we require
a framework for Streaming Processing Computation, Apache Storm
(at least version 1.2.x) [16]. We also require Java JDK 11 installed
and Ubuntu 18.04 LTS (for the latest package updates and the con-
venience of configuration).

We need the Twitter4j library (at least version 4.0) configured
with Twitter API keys to access several Twitter entities. To com-
pile the project and use the dependencies needed, we require
‘maven’ (at least version 3.x). We launch our experiments by cre-
ating and configuring two nodes in this research: a nimbus node
and a supervisor node. In the nimbus node, we configured Apache
Zookeeper (at least version 3.4.X) to coordinate the communication
between the nimbus node and the supervisor node. Python version
3.x installed for executing part of Storm dependencies.

The nimbus node is also utilised as the visualisation server. All
nodes set up on the virtual machines (Virtual Box at least ver-
sion 6.0.x). The visualisation server uses LAMP, which consists of
a database server (MySQL 10.4.11), a web server (Apache 2.4.43),
and a programming language (PHP 7.2.31).

3.7. Data collection

We collect the data using the Twitter API, allowing us to re-
trieve the essential object information (such as accounts, hash-
tags, tweets), namely as ‘entities’. In our case, we use “status” and
“user” entities. From status entity, we extract following fields: “cre-
ated_at”, “geolocation”, “place”, and “status’. On the user entity, we
obtain the “location” and “screen_name” fields. Since we will need
to detect the origin/source of the anomaly tweet, both geolocation
and location are essential information. However, in reality, not all
user account disclose these two pieces of information. Therefore,
we can only show the source/location of the anomalous tweet in
the map (more in Section 4.4) only for tweets or account if their
geolocation and location are not null. However, we still list all the
anomalous tweets (more in Section 4.3).

3.8. Pre-processing phase

After acquiring the tuple from Spout (“start” mark in Fig. 1), we
retrieve the hashtag and user-mention entities, tokenise the tweet
sentence, and delete the stopwords on the PreprocessingBolt (or-
ange rectangles). Then we do the lemmatisation to get a standard-
ised keyword that suits the dictionary in the real world.

3.9. TF-IDF phase

We measure the number of keywords in TFIDFBolt
(green/middle-right rectangles in Fig. 1) and determine its
frequency (i.e. Term Frequency-Inverse Document Frequency |
TF-IDF). The TF-IDF is a statistical formula that indicates the
importance of a word in a document relative to a collection of
documents or corpus. This research uses this formula to extract the
most important keyword from a tweet sentence that does not con-
tain hashtags and user-mentions. We compute the TF-IDF scores
and return the keyword with the highest score. Subsequently, we
define the keyword with the highest score as the “important”
keyword of the tweet. To measure the Term Frequency (TF), we
determine how many times a keyword occurs in a tweet divided
by the total number of word counts in that tweet sentence (to get
the normalised value). Let |{w € T}| be the number of times the
keyword shown in a tweet, and let |T| be the total number of all
words in a tweet:

tfw. 1) = T 4)
IT|

For the Inverse Document Frequency (IDF), we determine the
natural logarithm of the total number of tweets obtained in our
tweet database divided by the number of tweets where a specific
keyword occurs. Let CT be the collection of the tweet obtained in
our database, then, the IDF formula:

|CT|

idf (w,CT) = logm

(5)

B. Amen, S. Faiz and T.-T. Do

Therefore, the whole TF-IDF formula:
tf_idf(w,T,CT) =tf(w,T) xidf (w,CT) (6)

Following is an example of TF-IDF calculation. Given a tweet
sentence T containing 200 words where the word w “covid” ap-
pears 5 times in that sentence. The term frequency (i.e., tf) for
“covid” is then (5/200) = 0.025. Subsequently, assume we have
1000 tweets in document collection CT and the word “covid” ap-
pears in 10 tweet sentences T among these 1000 tweets in docu-
ment collection CT. Therefore, the inverse document frequency (i.e.,
idf) is calculated as log(1,000/10) = 2. Thus, the Tf-idf weight of
the word “covid” is the multiplication of these two: 0.025 x 2 =
0.5.

3.10. Clustering phase

In the ClusteringBolt (red/lower-right rectangles in Fig. 1), we
use the word embedding to represent each keyword as a vector
of 100 dimensions. We group the keyword vectors using clustering
(k-means clustering) and then project the 100-dimensional vectors
into 2-dimensional vectors via the Principal Component Analysis
(PCA) to plot the keyword clusters in a 2D visual image.

3.10.1. Word embedding (Word2Vec)

Word2vec is a neural network model with a hidden layer that
transforms a word into a real number vector (i.e., Word Embed-
ding). This vector represents the coordinate in a high dimensional
vector space, such that keyword with a high similarity can be lo-
cated next to each other [35].

We decide to choose this strategy to represent a keyword as a
vector and map it in a visual representation. Our word embedding
approach will use the Skip-gram algorithm [36], which employs a
set of keywords extracted from the tweets (i.e., as a corpus), then
the model loops on the words and applies the current keyword to
infer or predict its neighbours (i.e. context). In this research, we
implement Word2Vec with the help of deeplearning4;j library [29].

With built-in functions, the string collection (CollectionSen-
tencelterator) will be tokenised (DefaultTokenizerFactory), and the
model will iterate through tokens, and delete the stopwords. Af-
ter the pre-processing step, the library collects the tokenised
keywords, and it selects unique words only, one by one, un-
til they form a vocabulary that consists of 2000 unique words.
Each token will be supplied to Word2Vec neural network (using
Word2Vec.Builder()).

In this project, the size of our vocabulary is 2000 words. Also,
we use windowSize parameter of 5. Meanwhile, we set the hidden
layer size of our neural network (i.e., layerSize) with 100, i.e., every
word in the vocabulary will be represented by a 100-dimensional
vector.

3.10.2. KMeans clustering

Once transformed into a 100-dimensional vector, we use the
deeplearning4j library [29] to perform KMeans clustering.

KMeans Clustering is a type of unsupervised learning which
clusters finite n instances of the dataset with d dimensional real
vectors into k clusters by minimising the distances between data
instances and several cluster centres/centroids. The data instances,
in this case, are the keywords, and each keyword consists of a vec-
tor with real numbers. The distance metric we use in this KMeans
Clustering is the Euclidean distance.

3.10.3. Principal component analysis

In this research, we use Principal Component Analysis (PCA)
from the deeplearning4j library [29]. PCA is a technique for di-
mensionality reduction to project and keep the essential informa-
tion from a higher dimension to a smaller vector subspace. The

Pattern Recognition 123 (2022) 108404

technique maximises the projected data variance. The word em-
beddings will be projected to a two-dimensional space using PCA,
which allows us to visualise the word clusters.

3.11. Anomaly detection phase

Finally, in PESCADBolt (blue/upper-right rectangles in Fig. 1),
we used the Poisson Event Stream Collective Anomaly Detection
(PESCAD) algorithm. The rate of events (i.e., the keyword “death”)
is computed as the actual events, and we forecast the predicted
number of events, which we want to approximate by using Pois-
son distribution. If the number of actual events in the interval is
greater than the predicted number of events, we shall mark them
as a collective anomaly.

The Apache Storm adopts the scalable Directed Acyclic Graph
topology design [37], and our PESCADBolt can scale according
to our topology definition in our code along with the number
of nodes configuration in our cluster (either standalone or dis-
tributed). Intuitively, with more nodes in the cluster, it can detect
multiple anomalies at the same time.

3.11.1. Collective anomaly detection

In the previous related works, there are three forms of anomaly
detection: Point, Collective, and Contextual [38]. Point anomaly in-
dicates a single data (point) anomaly compared with the rest of the
data, e.g., tracking a user’s network intrusion detection. Meanwhile,
Contextual anomaly is associated with abnormal occurrence in par-
ticular/specific circumstance (context), such as the network’s ob-
scure intrusion detection late at night. Lastly, the Collective anomaly
detects the group of abnormal occurrences over a period of time.
Therefore, we decide to use collective anomaly detection because
we attempt to detect a collection of “death” keyword/event in a
specific time interval.

3.11.2. Poisson distribution

Given the average rate event (A), the Euler’s constant number
(e =2,71828), we use the Poisson P(x, A) as the statistical method
to calculate the probability of x occurrences of the event over a
specific period:
AXe~*

v (7)

We get the A by dividing the total number of occurrences of

events by the total of all tweets:

P(x, 1) =

B sum_total_event (8)
~ sum_total_tweet

We specify the time interval in one minute because this death
event could occur at a monitoring interval of at least one minute
from the six weeks of our observation.

3.11.3. Poisson event stream collective anomaly detection (PESCAD)
algorithm

This algorithm, PESCAD, is our highlight since event detection
is the motivation of our research (Algorithm 1). The main princi-
ple is to use the Poisson distribution to measure occurrences using
the current interval and compare it to actual occurrences to decide
whether an anomaly occurs.

Firstly, we extract from the tuple these fields: id_status and
is_event, and calculate sumTotalTweet. From is_event counts, we
count the sumTotalEvent (also as “ActualOccurrences”) and sum cur-
rent interval event (SCIE) independently. We will then use two pa-
rameters (A and sum current interval event(SCIE)) to calculate the
Poisson probability. After that, by multiplying the Poisson proba-
bility and the sumTotalTweet, we can calculate the PredictedOccur-
rences (PO). Later, the ActualOccurrences (AO) is compared to the

B. Amen, S. Faiz and T.-T. Do

PredictedOccurrences (PO). If the ActualOccurrences (AO) is greater
than the PredictedOccurrences (PO), we record all of id_status as
group/collective anomaly in the current interval.

We explain the details of the algorithm as follows. The in-
put of the algorithm is the array of tweet streams with an arbi-
trary length of D which previously converted as the data tuples
from the Pre-processing phase. We then initialise sum current inter-
val event(SCIE), sumTotalEvent, and sumTotalTweet with 0. The SCIE
counts how many tweets which contain the “death” keyword in
the current interval of one minute. The sumTotalEvent counts how
many tweets which contain the “death” keyword in whole length
time monitoring (e.g., 1 h). The sumTotalTweet counts the total
tweet collected in whole length time monitoring.

For all incoming tweet data tuples, we increment the (sumTo-
talTweet). If a tweet contains a “death” keyword (is_event == 1),
we record id_status of that tweet into {idStatusList} array, and in-
crement the SCIE. In every one minute, we add SCIE into sumTo-
talEvent. We also calculate A by dividing sumTotalEvent by sum-
TotalTweet which represent the average of event occured in the
whole monitoring time (Section 3.11.2). With the A obtained and
SCIE we calculate the Poisson probability and we obtain Predicte-
dOccurrences (PO). Meanwhile, we also assign the sumTotalEvent
count into ActualOccurrences (AO). If ActualOccurrences (AO) is
larger than PredictedOccurrences (PO), we mark all id_status in the
{idStatusList} array as a group anomaly and print all the anomaly
on the system. Subsequently, we empty the {idStatusList} array and
reset the SCIE into 0. The above steps keep iterating until every
time we reach 1 min.

4. Testing

After designing our methodology and implemented our algo-
rithm, we then test our system. Since we undertake research re-
lated to the outbreak or anomaly detection monitoring, there is a
hypothesis and primary aim that we require to test: our system
should identify abnormal events/abnormal rate occurring in a spe-
cific interval, which leads to an incident, and the system should be
able to detect the incident’s source at the same time.

This Section 4 only discusses and analyses a subset of our find-
ings from our monitoring on 14 August 2020. We will discuss the
complete result discussion from research and monitoring during 1-
30 August 2020 in Section 5. We have also designed a web app'
with interactive visualisation charts and map chart for the conve-
nience of analysing the anomalies using chart.js®> and leaflet.js.?

4.1. Sensitivity analysis of parameters

We analysed the two essential aspects: apache storm parameters
and topology components of our framework. We subsequently ob-
served whether these two aspects would affect how many tweets
we will obtain during a specific monitoring time.

Table 1 illustrates the tuning of apache storm parameters (i.e.,
number of workers, number of ackers, maximum task parallelism,
maximum spout pending) [41] and how many the tweets obtained
from the respective tuning value parameter.

The number of workers denotes how many workers instances
in Java Virtual Machine that storm creates for the topology. The
number of ackers is the number of threads for processing tuple ac-
knowledgements. The maximum task parallelism defines maximum
number of threads that generates spout and bolts. Maximum spout
pending specifies how many data tuples have been processed from
the spout and ready to be processed by ackers.

1 The homepage of the Github project: PESCAD Storm
2 The homepage of the library: https://www.chartjs.org/ [39].
3 The homepage of the library: https://leafletjs.com/ [40].

Pattern Recognition 123 (2022) 108404

We perform five monitoring time durations (i.e., 1, 5, 10, 20, or
60 min) with the above parameters. We use a similar tuning value
as demonstrated in Bilal [42].

For example, when we set the number of workers = 3 and we
start to monitor for 1 min long, we obtained 3254 tweets. The
same applies when the number of workers equals 6, 9, and 12 (also
in 1 min); we obtained pretty similar amounts: 3045, 3629, and
3390 tweets, respectively.

When we experimented on the other three parameters, we kept
obtaining about 3000 tweets in 1 min despite the value we as-
signed.

However, we significantly collected more tweets than the pre-
vious duration when we increased the monitoring duration (i.e.,
from 5 until 60 min). For instance, when we set the maximum
spout pending as 8000, we collected 2988 tweets in one minute.
On the other hand, when we increased the duration for 5, 10,
20, and 60 min, we collected 10,230, 22,898, 48,090, and 143,489
tweets, respectively.

Meanwhile, Table 2 shows how the topology components will
affect the number of tweets collected. We decided to use 60 min of
monitoring time as our baseline, based on the previous Table 1 ex-
periment.

In this experiment, we designed a simple topology with 3 com-
ponents: spout, bolt1, and bolt2. A number of spouts will collect
many tweets, and a number of bolt1 will receive the tweets from
the spout and then forward to bolt2. Therefore, we tuned only for
spout and bolt1. We set bolt2 = 1 because this bolt task is to ac-
cumulate the number of tweets collected. If we set bolt2 into 2 or
3, they would work independently so that we would not be able
to record the total number of tweets, and we would have to add
them manually.

As shown in Table 2, when we set the spout = 3, bolt1 = 2, and
bolt2 = 1, we collected 141,545 tweets. It also applies when we
increased both spout and bolt, we obtained a fluctuated amount of
tweets ranging from 142,899 to 148,695.

We can conclude that we kept obtaining about 140,000 tweets
during 60 min of monitoring despite how many topology compo-
nents we added. However, we will show that if we add more com-
puter nodes (in distributed mode), we will obtain more tweets in
Section 5.

4.2. Anomaly detection calculation

If we execute the system in standalone mode particularly with
a suitable Integrated Development Environment (IDE) that displays
output consoles we can see our PESCAD Algorithm in detail. Fig. 5
is the excerpt of the example message console during our stan-
dalone test run. As we can see, we observe following variables:

1. How many total tweets we capture during all monitoring period
(sumTotalTweet).

2. The average of events during all monitoring period (lambda).

3. The sum of all events detected during all monitoring period
(ActualOccurrences).

4, The list of status id(s) of the events during the current moni-
tored interval (idStatusList).

5. The Poisson probability calculation for the current interval
(probability).

6. The predicted rate occurrences of the event obtained from the
Poisson calculation (PredictedOccurrences).

7. The list of all marked anomalies during the current interval
(ANOMALY).

From Fig. 5, as an example, at that arbitrary moment, we have
gathered 227 tweets during the monitoring, and in that arbitrary

: : __ ActualOccurrences __ 4.0 .
period, we obtained lambda = Z0 e fES = 555 ~ 0.0176211.

https://github.com/syahirulfaiz/PESCAD_Storm
https://www.chartjs.org/
https://leafletjs.com/

B. Amen, S. Faiz and T.-T. Do

Table 1
Storm parameter tuning on tweets obtained.

Pattern Recognition 123 (2022) 108404

Monitoring Apache storm parameters

time num of worker tweets num of acker tweets max task parallelism tweets max spout pending tweets

1 min 3 3254 3 3493 3 3104 2000 3120
6 3045 6 3623 6 3229 4000 3075
9 3629 9 3139 9 3043 6000 2959
12 3390 12 3127 12 3316 8000 2988

5 min 3 10,233 3 10,323 3 11,203 2000 11,232
6 11,200 6 10,432 6 10,943 4000 10,992
9 10,523 9 11,293 9 11,123 6000 11,029
12 10,983 12 10,849 12 10,320 8000 10,230

10 min 3 24,024 3 23,765 3 21,343 2000 24,044
6 23,049 6 23,658 6 23,984 4000 24,578
9 22,043 9 22,674 9 23,995 6000 23,989
12 24,045 12 22,874 12 22,900 8000 22,898

20 min 3 47,945 3 48,783 3 46,458 2000 45,884
6 48,640 6 46,939 6 47,999 4000 46,989
9 46,399 9 48,999 9 48,799 6000 47,989
12 47,989 12 46,989 12 45,889 8000 48,090

60 min 3 148,200 3 146,379 3 148,900 2000 145,778
6 139,000 6 147,890 6 148,970 4000 143,899
9 145,980 9 140,887 9 143,478 6000 143,689
12 146,839 12 144,783 12 144,788 8000 143,489

@ Javadoc |2 Problems [i3 Declaration [Console 53 | & Progress x % A? @@ =B-5-=8
B T B Ao o L e G L R e rroT O UT e O T ROULIIE T Ta CUT TURETIZE .

245835 [Thread-18] INFO edu.stanford.nlp.pipeline.StanfordCoreNLP - Adding annotator ssplit

245835 [Thread-18] INFO edu.stanford.nlp.pipeline.StanfordCoreNLP - Adding annotator pos

245835 [Thread-18] INFO
sumTotalTweet size=227
lambda=©.01762114537444934
ActualOccurences=4.0

edu.stanford.nlp.pipeline.StanfordCoreNLP - Adding annotator lemma

idStatusList size=2 keys=[1400831443081711622, 1400831557447733249]

probability (2)=1.5254061970586298E-4

PredictedOccurences=0.03462672067321727: :<=probability [1.5254061970588298E-4] * sumTotalTweet.size() [227]

ANOMALY=[1400831443081711622, 1400831557447733249]

Fig. 5. The excerpt of the system’s console.

Table 2
Topology components tuning on tweets obtained.

Monitoring Storm topology components
time Tweets

num of spout num of bolt1 num of bolt2

60 min 3 2 1 141,545
6 4 1 148,695
10 4 1 146,898
12 8 1 144,909
24 16 1 142,899
48 32 1 146,288

Since we have collected two events (from a total actual four oc-
currences) in the current interval (i.e., as shown in the idStatus-
List size), we can calculate Poisson(x, A) = Poisson(2,0.0176211) ~
0.0001525. We then calculate the event occurrences PredictedOc-
currences = Poisson (2, 0.0176211) * sumTotalTweet ~ 0.034626.
Since ActualOccurrences (i.e., 4.0) is greater than PredictedOccur-
rences (i.e., 0.034626), we mark all of the id_status in idStatusList
of that current interval as the group/collective anomaly and being
inserted to ANOMALY array.

4.3. Anomaly detection chart

Fig. 6 depicts our findings during 14 August 2020 monitoring.
In the figure, the “event” is the tweet that contains the “death”
keyword, which could potentially become anomalous. Meanwhile,
the “anomaly” is the event tweet that becomes an anomaly ac-
cording to our statistical computation and Algorithm 1. The fig-
ure also shows the varied amounts of events and anomalies cor-

responding to the grouping time interval per one-minute. We also
see at which time the most number of anomalies occurred and
which time there is no anomaly at all (i.e., least abnormal event
captured). From the figure, we can understand that we obtained
the highest cumulative anomaly (three events) on 14 August 2020
at 21:41.

Apart from that, we also show the list of anomalous tweet on
our system, as shown in Fig. 7. If we click one of the tweet lists,
we may redirect automatically to the tweet page source (Fig. 9).
In the following subsection, alternatively, we can also locate the
anomalous tweet’s source using the world map.

4.4. Anomaly detection map

Fig. 8 shows the location of anomalous tweets (i.e., only for
the tweet which contains geolocation or place entities). These enti-
ties are needed to pinpoint the location and identifying the source
of the anomalous tweets/incidents. We plot the anomalous tweets
into a tilemap and implicitly construct the URL so that the user
can view the original tweet on the Twitter website.

When we click on the located pin and the popup on the map,
we can be redirected to the exact web page of the anomalous
tweet, which for example, explains the casualties updates on 14
August 2020 reached 46,707 in the United Kingdom (Fig. 9).

It demonstrates that the Collective Anomaly was accurately de-
tected by our system on 14 August 2020 at 21:41, because three
events of “death” in tweets associated with COVID-19 occurred,
and our system can correctly determine and pinpoint the source
of the incident (i.e., accomplished the second objective of our
project). As opposed to this Section 4, which only discuss a spe-

. Amen, S. Faiz and T-T. Do Pattern Recognition 123 (2022) 108404

O Anomalous Tweets

. *) W Event Tweets

Number of Twets
~

ISR
B3
d
2 ‘\} ‘,\,b‘ ;y"‘
Q Q' Q Q’o Q'Q% O'Q% y
v V2 2 % 2 v V2
[S S Y S 4

Monitoring Date and Time

Fig. 6. The collective anomaly detection on 14 August 2020. The asterisk (*) denotes the highest collective anomaly detected (i.e., three anomalies) on that specific time.

worldl I'wouldn e celebrating! Dea (o] and rising!

2020- @DannyDougherty Wow. ONLY 1M a week. Great work @realDonaldTrump - maybe next you can brag about keeping daily
08-14 Covid deaths below 1500 as “great work”.

21:40:56
2020- RT @LabourShaw: @ToryFibs Total Covid deaths on Wednesday:46 707. Technical problem on https://t.co/PvaQS8152d
08-14 deaths today:41 https://t.co...
21:41:42
2020- @Beeayle @SORRYBOUDIT @lapublichealth Just because you dont like the truth that being overweight or old is the main
08-14 cause of death due to covid. Im sure your mask will help you drop all that weight.
21:41:55
2020- RT @SpeakerPelosi: The smooth functioning of the @USPS during the COVID-19 pandemic is a matter of life-or-death and is
08-14 critical for prote...
21:41:59
2020- RT @IJReillyd: @LeesaRaaum @wendydavis @chiproytx 11K died from the flu over a full YEAR. The 1st COVID death in
08-14 Texas occurred only last...
21:42:04
Fig. 7. The excerpt of three collective anomalies detected on 14 August 2020 at 21:41.
=+
Newcastle
- ‘ upon Tyne
NORTHERN
IRELAND
| CaroleC39136307
e | RT @LabourShaw: @ToryFibs Total Covid deaths on
Wednesday:46 707. Technical problem on
https://t.co/PvaQS8152d deaths today:41 Wilhelmsha
Dublin https://t.co... s
Galway Ireland ® L ’ Groningen; g
S— N o ——— . 1

gham
Li m?rick Wolvcrt‘:amp Nor:‘.'lch Lelystad —
A q

Waterford WALES ENGLAND
Cork Netherlands
Cardiff Middelburg
' London 1 A Dusseldorf
’ -
L Brighton Brussels - A
S Lille) r-4{ Cologne
Plymouth = Belgium =
Amiens ‘,
" Luxembourg
Rouen N
Caen : Saarbriicken
Jersey ¢ .

Leaflet | Map data © OpenStreetMap contributors, CC-BY-SA, Imagery © Mapbox

Fig. 8. The source location of the specific tweet which contains the anomalous event (i.e., “death” keyword).

B. Amen, S. Faiz and T.-T. Do

< Tweet

13 € Campbell Retweeted

RN

s Shaw & Crompton Labour Branch
@LabourShaw

g

Replying to @ToryFibs

Total Covid deaths on Wednesday:46,707. Technical
problem on Thursday.Total deaths today:41,358.UK
must be the only country in the world where the stats
are going backwards!

10:48 pm - 14 Aug 2020 - Twitter Web App

4 Retweets 4 Likes

0 n Q

>

Fig. 9. The source of the tweet: status.

cific finding on 14 August 2020, Section 5 will discuss our findings
in accumulated monitoring during 1-30 August 2020.

5. Results

We have conducted 15 tests between single versus dual ma-
chines (e.g. 15 tests x 2 machines = 30 days) between 1 and 30
August 2020 and compare them, as shown in Fig. 10.

From Fig. 10, we can see that the distributed machine peaked at
10th test (3372 tweets) as compared to the standalone one (1654
tweets). Although dropped at 11th test, the distributed framework
still surpassed the standalone one (1330 tweets as compared to

Pattern Recognition 123 (2022) 108404

971 tweets respectively), and it shows that the distributed frame-
work outperforms the standalone machine in all tests (i.e., accom-
plished the first objective of the project).

Fig. 11 illustrates the number of anomalous tweets collected
among the total of event tweet during 30 days. The highest anoma-
lous tweet rate detected on 18 August 2020 (134 anomalies from
the total of 136 events). When we analyse the tweet source (on
that date), multiple tweets are associated with the COVID-19 ca-
sualties update. Also, most of the tweets contain debates about
whether comorbidity causes death. This problem caused a spike in
the event rate (i.e., many tweets contained the keyword “death”),
and subsequently, our PESCAD algorithm can successfully detect
the anomaly (i.e. accomplished the second objective of the project).

Fig. 12 shows the most mentioned words on Twitter during our
monitoring, e.g., “covid” (21,566 incidents), “death” (11,799 inci-
dents) and “trump” (4761 incidents). Meanwhile, Fig. 13 showed
the words with highest TF-IDF scores, e.g., “people” (0.63637),
“school” (0.5921407), and “virus” (0.57385). When we observed
Twitter in August 2020, we find that the United States has had
trouble with COVID-19, causing people ask to their president at
that time (Trump) to be responsible for the increasing death
events. Meanwhile, also in August 2020 (in the United Kingdom),
the government started to loosen the restrictions, reopening school
but causing the increased COVID-19 case, thus resulting in some
concerns for the people.

Fig. 14 illustrates the clusters of 25 most mentioned keywords
during our monitoring time. In the figure, we can find the key-
words “school”, “pandemic”, and “president” grouped into a clus-
ter. Meanwhile, the keywords “death”, “case”, and “corona” are in
another separated cluster. We can conclude, the relationship of
Figs. 12-14 as follows: Fig. 12 illustrates the keyword occurrence
(term frequency), and in Fig. 13, we use that information (word

4000
3500 -+
3000 -+
2
§2500 .
g
S 2000 -
s o o
2 L 4
£ 1500 - L 4 ®
= * o
® o o ¢ L 4
1000 { ¢ * *
500 A :
@ standalone dual-machine
0 T T T T T T T
0 2 4 6 8 10 12 14 16
Test Run
Fig. 10. Standalone vs. Dual-machine Tweet collection comparisons during 1-30 August 2020.
160
140 O Anomalous Tweets
120
E W Event Tweets
Emo
S g0
o
€ 60
3
Z 40
20 -
0
N2 v < > $H o A g O > 2] © aQ N 9 Q N 92 » D » A) N
I NG N SRS R S N N S S L R S S P SR . . " A AN (N G N A AR N I
FFFFFFFFF I I I I I I I IS IS FSSES
S A
DA > £ 4 g @ g g g @ P T P 4 » P 4 @ R 4 4 4
Monitoring Date

Fig. 11. Anomalous tweets vs. Event tweets collected during 1-30 August 2020.

10

B. Amen, S. Faiz and T-T. Do

Pattern Recognition 123 (2022) 108404

25000
20000 -
w
S 15000 -
o
b= _—
S
S 10000 -
o
5000 -
0 T [l | | B B B = [m
I I I I I I I I 1 1 1 1 I
Q X K ¥ & e A < ¢ W& & 5 A L O
S A& LS F LN &SNS
SPCAARR N O S ¥ &
< ¥ & Qe S %@ \.%Qb B
Keywords Q
Fig. 12. Word count calculation during 1-30 August 2020.
0,7
0,6 A
o 0,5 -
lo-
S 04 A
[F 9
2 0,3 -
L
= 0,2 -
0,1 A
0 =
O X L 2 2 2 3\ % 2 2 N RS 3
S8 X A QO Q) Q) > &K SSUNIPNY > \)
S 6& @@ e,oQ S ¥ LN RS &°
S8 N < 4
S 'bo
Keywords .
Fig. 13. TF-IDF score during 1-30 August 2020.
occurrence/term frequency) combined with inverse document fre-
quency, to calculate the TF-IDF, which represents the importance
of that word among our collected tweets. Meanwhile, Fig. 14 illus-
0.0101 State | trates how we visualise the keywords in a 2-Dimension graph as
Leopie rasiAeE o oe if the words are grouped and formed a certain topic grouping. In
Joday P chool summary, these three figures illustrate what people concern dur-
0.005 1 «ountry Jan fsfg‘o'rcy ing this pandemic period (i.e., accomplished the third objective of
Jyear death our project).
corona
0.000 1 fase 6. Conclusion
dife covid In conclusion, we have obtained more tweets from distributed
¥dc wvegas computing results than a single machine from 1 to 30 August 2020.
—0.005 7 Wetellj - #man On 18 August 2020, we received the highest number of anomalous
ﬁews;rﬁm ptime edia tweets, discussing the pandemic casualties’ updates and COVID-19
P " debates. During our monitoring time, we obtain the three most-
011 -010 -009 -008 -007 -006 —-0.05 appeared words on Twitter: “covid”, “death”, and “Trump”, which

Fig. 14. Word Cluster chart during 1-30 August 2020.

1

illustrate the most frequently mentioned keywords. Meanwhile, the
keywords “people”, “school”, and “virus” have the highest score of

B. Amen, S. Faiz and T.-T. Do

the TF-IDF and reflects the most important keywords on Twitter.
The keywords “death”, “corona”, and “case” are grouped in a clus-
ter, whereas “pandemic”, “school”, and “president” also grouped in
another different cluster. Those results indicate what people con-
cern during this pandemic period. We have proven that our dis-
tributed Directed Acyclic Graph model framework collected more
tweets than the standalone machine. Our system also successfully
detect anomalous events from Twitter with its source location and
account in real-time.

The weakness of our work is that we require extra testing hours
to give us more precise insight into our conclusions, where they
may be different from our current results. We also developed our
project with minimal resources. Hence, we hope larger organisa-
tions (e.g., public health organisations) can benefit from this work
by adopting our concept in larger computing clusters. The strength
of our work is that we have successfully designed the Directed
Acyclic Graph model combined with the Poisson distribution to de-
tect the anomaly (i.e., PESCAD algorithm) so that others can bene-
fit from the idea of the algorithm for their research. Also, although
we have built our research with small computer nodes, we have
achieved our research’s objectives. For future work, we plan to use
more computing resources to improve our performance. We also
plan to implement our algorithm and apply our method in other
event detection scenarios such as disaster monitoring, earthquakes,
fires or storms.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgements

The research was undertaken by Syahirul Faiz, sponsored by the
Indonesia Endowment Fund for Education (LPDP) for his study at
the University of Liverpool and supervised by Dr Bakhtiar Amen
and Dr Thanh-Toan Do.

References

[1] 1. Agbehadji, et al., Review of big data analytics, artificial intelligence and
nature-inspired computing models towards accurate detection of COVID-
19pandemic cases and contact tracing, Int.]. Environ. Res. Public Health 17
(2020) 5330, doi:10.3390/ijerph17155330.

[2] A. Haleem, et al., Significant applications of big data in COVID-19pandemic,

Indian J. Orthop. 54 (2020) 1-3, doi:10.1007/s43465-020-00129-z.

0. Bencharef, S. Gazzah, A Survey on how computer vision can re-

sponse to urgent need to contribute in COVID-19 pandemics, 2020, p. 1.

10.1109/ISCV49265.2020.9204043.

P. Gilabert, S. Segui, Gradient boosting and language model ensemble for

tweet recommendation, in: Proceedings of the Recommender Systems Chal-

lenge 2020, in: RecSysChallenge '20, Association for Computing Machinery,

New York, NY, USA, 2020, pp. 24-28. https://doi.org/10.1145/3415959.3415997

U. Qazi, M. Imran, F. Ofli, Geocov19: a dataset of hundreds of millions of mul-

tilingual COVID-19 tweets with location information, SIGSPATIAL Spec. 12 (1)

(2020) 6-15, doi:10.1145/3404820.3404823.

B. Amen, Distributed contextual anomaly detection from big event streams,

Doctoral thesis, University of Huddersfield (2018).

B. Amen, A. Grigoris, A theoretical study of anomaly detection, in: Big Data

Distributed Static and Stream Analytics, 2018, pp. 1177-1182, doi:10.1109/

HPCC/SmartCity/DSS.2018.00198.

B. Amen, A. Grigoris, Collective anomaly detection using big data distributed

stream analytics, in: IEEE. Guangzhou, China: IEEE, 2019, 2018, pp. 188-195,

doi:10.1109/SKG.2018.00035.

[9] A. Habeeb, et al., Real-time big data processing for anomaly detection: a sur-
vey, Int. J. Inf Manag. (2019), doi:10.1016/j.ijinfomgt.2018.08.006.

[10] Z. Ding, M. Fei, An anomaly detection approach based on isolation forest algo-
rithm for streaming data using sliding window, in: ICONS, 2013, pp. 12-17.

[11] M. Li, K. Zhang,]J. Liu, H. Gong, Z. Zhang, Blockchain-based anomaly detec-
tion of electricity consumption in smart grids, Pattern Recognit. Lett. 138
(2020) 476-482, doi:10.1016/j.patrec.2020.07.020. https://www.sciencedirect.
com/science/article/pii/S016786552030266X

13

[4

[5

6]

[7]

(8]

12

Pattern Recognition 123 (2022) 108404

[12] B. Amen,]. Lu, Sketch of big data real-time analytics model, in: The Fifth In-
ternational Conference on Advances in Information Mining and Management,
21st-26th June 2015, Brussels, Belgium, 2015, pp. 48-53.

K. Patel, O. Hoeber, H. Hamilton, Real-time sentiment-based anomaly detection

in twitter data streams, in: Advances in Artificial Intelligence, Springer Inter-

national Publishing, Cham, 2015, pp. 196-203.

[14] A. Rahnama, Distributed real-time sentiment analysis for big data social
streams, in: 2014 International Conference on Control, Decision and Informa-
tion Technologies (CoDIT), 2014, doi:10.1109/codit.2014.6996998.

[15] A. Toshniwal, et al., Storm@twitter, in: Proceedings of the 2014 ACM SIG-
MOD International Conference on Management of Data, SIGMOD '14, Asso-
ciation for Computing Machinery, New York, NY, USA, 2014, pp. 147-156,
doi:10.1145/2588555.2595641.

[16] R. McCreadie, et al., Scalable distributed event detection for twitter, in: IEEE,
2013, pp. 543-549, doi:10.1109/BigData.2013.6691620.

[17] S. Zhao, et al., Real-time network anomaly detection system using machine
learning, in: 2015 11th International Conference on the Design of Reliable
Communication Networks, DRCN 2015, 2015, pp. 267-270, doi:10.1109/DRCN.
2015.7149025.

[18] T. Sakaki, et al., Earthquake shakes twitter users: real-time event detection by
social sensors, in: Proceedings of the 19th International Conference on World
Wide Web, WWW 10, 2010, pp. 851-860, doi:10.1145/1772690.1772777.

[19] V. Gupta, R. Hewett, Harnessing the power of hashtags in tweet analytics, in:
2017 IEEE International Conference on Big Data (Big Data, 2017, pp. 2390-2395,
doi:10.1109/BigData.2017.8258194.

[20] V. Gupta, R. Hewett, Unleashing the power of hashtags in tweet analytics with

distributed framework on apache storm, in: 2018 IEEE International Confer-

ence on Big Data (Big Data), 2018, pp. 4554-4558, doi:10.1109/BigData.2018.

8622302.

D.A. Lind, W.G. Marchal, S.A. Wathen, Statistical Techniques in Business & Eco-

nomics, McGraw-Hill Education, 2008.

A. Sapegin, et al., Poisson-based anomaly detection for identifying mali-

cious user behaviour, in: International Conference on Mobile, Secure and Pro-

grammable Networking, Springer, 2015, pp. 134-150.

[23] M. Turcotte, et al., Poisson factorization for peer-based anomaly detection, in:
2016 IEEE Conference on Intelligence and Security Informatics (ISI), IEEE, 2016,
pp. 208-210.

[24] K. Doshi, Y. Yilmaz, Online anomaly detection in surveillance videos with
asymptotic bound on false alarm rate, Pattern Recognit. 114 (2021) 107865,
doi:10.1016/j.patcog.2021.107865. https://www.sciencedirect.com/science/
article/pii/S0031320321000522

[25] C.D. Manning, P. Raghavan, H. Schtze, Introduction to Information Retrieval,
Cambridge University Press, USA, 2008.

[26] Q. Liu, et al., Text features extraction based on TF-IDF associating semantic,
in: 2018 IEEE 4th International Conference on Computer and Communications
(ICCC), 2018, pp. 2338-2343, doi:10.1109/CompComm.2018.8780663.

[27] S. Qaiser, R. Ali, Text mining: use of TF-IDF to examine the relevance of words
to documents, Int. J. Comput. Appl. 181 (2018), doi:10.5120/ijca2018917395.

[28] S. Amin, M. Uddin, S. Hassan, A. Khan, N. Nasser, A. Alharbi, H. Alyami, Recur-

rent neural networks with TF-IDF embedding technique for detection and clas-

sification in tweets of dengue disease, IEEE Access 8 (2020) 131522-131533,

doi:10.1109/ACCESS.2020.3009058.

M.Z. Alom, et al., A state-of-the-art survey on deep learning theory and archi-

tectures, Electronics 8 (2019) 292.

B. Li, et al., Scaling word2vec on big corpus, Data Sci. Eng. 4 (2019), doi:10.

1007/s41019-019-0096-6.

Z. Doshi, S. Nadkarni, K. Ajmera, N. Shah, Tweeranalyzer: twitter trend detec-

tion and visualization, in: 2017 International Conference on Computing, Com-

munication, Control and Automation (ICCUBEA), 2017, pp. 1-6, doi:10.1109/

ICCUBEA.2017.8463951.

M. Antunes, D. Gomes, RL. Aguiar, Knee/elbow estimation based on first

derivative threshold, in: 2018 IEEE Fourth International Conference on Big

Data Computing Service and Applications (BigDataService), 2018, pp. 237-240,

doi:10.1109/BigDataService.2018.00042.

S. Benjelloun, M.E. El Aissi, Y. Loukili, Y. Lakhrissi, S.E.B. Ali, H. Chougrad,

A. El Boushaki, Big data processing: batch-based processing and stream-based

processing, in: 2020 Fourth International Conference On Intelligent Comput-

ing in Data Sciences (ICDS), IEEE, 2020, pp. 1-6, doi:10.1109/ICDS50568.2020.

9268684.

G. Sharma, V. Tripathi, A. Srivastava, Recent trends in big data ingestion tools:

a study, in: R. Kumar, N.H. Quang, V. Kumar Solanki, M. Cardona, P.K. Pattnaik

(Eds.), Research in Intelligent and Computing in Engineering, Springer Singa-

pore, Singapore, 2021, pp. 873-881.

T. Mikolov, K. Chen, G. Corrado,]. Dean, Efficient estimation of word represen-

tations in vector space, in: Y. Bengio, Y. LeCun (Eds.), 1st International Con-

ference on Learning Representations, ICLR 2013, Scottsdale, Arizona, USA, May

2-4, 2013, Workshop Track Proceedings, 2013, pp. 1-12.

T. Mikolov, 1. Sutskever, K. Chen, G.S. Corrado,]. Dean, Distributed

representations of words and phrases and their compositionality, in:

CJ.C. Burges, L. Bottou, Z. Ghahramani, K.Q. Weinberger (Eds.), Ad-

vances in Neural Information Processing Systems 26: 27th Annual Con-

ference on Neural Information Processing Systems 2013. Proceedings
of a meeting held December 5-8, 2013, Lake Tahoe, Nevada, United

States, 2013, pp. 3111-3119. https://proceedings.neurips.cc/paper/2013/hash/

9aa42b31882ec039965f3c4923ce901b-Abstract.html

[13]

[21]

(22]

(29]

(30]

[31]

(32]

[33]

(34]

[35]

(36]

https://doi.org/10.3390/ijerph17155330
https://doi.org/10.1007/s43465-020-00129-z
https://doi.org/10.1145/3415959.3415997
https://doi.org/10.1145/3404820.3404823
http://refhub.elsevier.com/S0031-3203(21)00580-X/sbref0006
http://refhub.elsevier.com/S0031-3203(21)00580-X/sbref0006
https://doi.org/10.1109/HPCC/SmartCity/DSS.2018.00198
https://doi.org/10.1109/SKG.2018.00035
https://doi.org/10.1016/j.ijinfomgt.2018.08.006
http://refhub.elsevier.com/S0031-3203(21)00580-X/sbref0010
http://refhub.elsevier.com/S0031-3203(21)00580-X/sbref0010
http://refhub.elsevier.com/S0031-3203(21)00580-X/sbref0010
https://doi.org/10.1016/j.patrec.2020.07.020
https://www.sciencedirect.com/science/article/pii/S016786552030266X
http://refhub.elsevier.com/S0031-3203(21)00580-X/sbref0012
http://refhub.elsevier.com/S0031-3203(21)00580-X/sbref0012
http://refhub.elsevier.com/S0031-3203(21)00580-X/sbref0012
http://refhub.elsevier.com/S0031-3203(21)00580-X/sbref0013
http://refhub.elsevier.com/S0031-3203(21)00580-X/sbref0013
http://refhub.elsevier.com/S0031-3203(21)00580-X/sbref0013
http://refhub.elsevier.com/S0031-3203(21)00580-X/sbref0013
https://doi.org/10.1109/codit.2014.6996998
https://doi.org/10.1145/2588555.2595641
https://doi.org/10.1109/BigData.2013.6691620
https://doi.org/10.1109/DRCN.2015.7149025
https://doi.org/10.1145/1772690.1772777
https://doi.org/10.1109/BigData.2017.8258194
https://doi.org/10.1109/BigData.2018.8622302
http://refhub.elsevier.com/S0031-3203(21)00580-X/sbref0021
http://refhub.elsevier.com/S0031-3203(21)00580-X/sbref0021
http://refhub.elsevier.com/S0031-3203(21)00580-X/sbref0021
http://refhub.elsevier.com/S0031-3203(21)00580-X/sbref0021
http://refhub.elsevier.com/S0031-3203(21)00580-X/sbref0022
http://refhub.elsevier.com/S0031-3203(21)00580-X/sbref0022
http://refhub.elsevier.com/S0031-3203(21)00580-X/sbref0022
http://refhub.elsevier.com/S0031-3203(21)00580-X/sbref0023
http://refhub.elsevier.com/S0031-3203(21)00580-X/sbref0023
http://refhub.elsevier.com/S0031-3203(21)00580-X/sbref0023
https://doi.org/10.1016/j.patcog.2021.107865
https://www.sciencedirect.com/science/article/pii/S0031320321000522
http://refhub.elsevier.com/S0031-3203(21)00580-X/sbref0025
http://refhub.elsevier.com/S0031-3203(21)00580-X/sbref0025
http://refhub.elsevier.com/S0031-3203(21)00580-X/sbref0025
http://refhub.elsevier.com/S0031-3203(21)00580-X/sbref0025
https://doi.org/10.1109/CompComm.2018.8780663
https://doi.org/10.5120/ijca2018917395
https://doi.org/10.1109/ACCESS.2020.3009058
http://refhub.elsevier.com/S0031-3203(21)00580-X/sbref0029
http://refhub.elsevier.com/S0031-3203(21)00580-X/sbref0029
http://refhub.elsevier.com/S0031-3203(21)00580-X/sbref0029
https://doi.org/10.1007/s41019-019-0096-6
https://doi.org/10.1109/ICCUBEA.2017.8463951
https://doi.org/10.1109/BigDataService.2018.00042
https://doi.org/10.1109/ICDS50568.2020.9268684
http://refhub.elsevier.com/S0031-3203(21)00580-X/sbref0034
http://refhub.elsevier.com/S0031-3203(21)00580-X/sbref0034
http://refhub.elsevier.com/S0031-3203(21)00580-X/sbref0034
http://refhub.elsevier.com/S0031-3203(21)00580-X/sbref0034
http://refhub.elsevier.com/S0031-3203(21)00580-X/sbref0035
http://refhub.elsevier.com/S0031-3203(21)00580-X/sbref0035
http://refhub.elsevier.com/S0031-3203(21)00580-X/sbref0035
http://refhub.elsevier.com/S0031-3203(21)00580-X/sbref0035
http://refhub.elsevier.com/S0031-3203(21)00580-X/sbref0035
https://proceedings.neurips.cc/paper/2013/hash/9aa42b31882ec039965f3c4923ce901b-Abstract.html

B. Amen, S. Faiz and T.-T. Do

[37] N. Cassavia, E. Masciari, Sigma: a scalable high performance big data archi-
tecture, in: 2021 29th Euromicro International Conference on Parallel, Dis-
tributed and Network-Based Processing (PDP), 2021, pp. 236-239, doi:10.1109/
PDP52278.2021.00044.

[38] V. Chandola, et al., Anomaly detection: a survey, ACM Comput. Surv. 41 (3)
(2009), doi:10.1145/1541880.1541882.

[39] Chart.js, Open source HTML5 charts for your website, 2020, (http://www.
chartjs.org/). Accessed: 2020-07-03.

[40] V. Agafonkin, Leaflet - a javascript library for interactive maps, 2020, (https:
/[leafletjs.com/). Accessed: 2020-07-11.

[41] H. Herodotou, Y. Chen, J. Lu, A survey on automatic parameter tuning for
big data processing systems, ACM Comput. Surv. 53 (2) (2020), doi:10.1145/
3381027.

[42] M. Bilal M.and Canini, Towards automatic parameter tuning of stream pro-
cessing systems, in: Proceedings of the 2017 Symposium on Cloud Comput-
ing, SoCC '17, Association for Computing Machinery, New York, NY, USA, 2017,
pp. 189-200, doi:10.1145/3127479.3127492.

Bakhtiar Amen received his Ph.D. at the University of Huddersfield in 2018. He
worked at Aston University (UK) as a post-doc research fellow. He is member of
British Computer Society (BCS), ACM, and IEEE. Now he is working as a lecturer in
the Department of Computer Science at the University of Liverpool.

13

Pattern Recognition 123 (2022) 108404

Syahirul Faiz received the BEng in informatics engineering from Telkom University,
Indonesia, in 2012. He received the M.Sc. in big data and high-performance com-
puting from the University of Liverpool, UK, in 2020, with distinction, under Dr.
Bakhtiar Amen'’s and Dr. Thanh-Toan Do’s supervision. His interests include machine
learning and big data analytics.

Thanh-Toan Do is a Senior Lecturer at the Faculty of Information Technology,
Monash University. He obtained his Ph.D. in computer science at the French Na-
tional Institute for Research in Computer Science and Control (INRIA) in 2012. From
2013 to 2016, he was a Research Fellow at the Singapore University of Technology
and Design. From 2016 to 2018, he was a Research Fellow at the Australian Centre
for Robotic Vision and the University of Adelaide. From 2018 to 2020, he was a Lec-
turer at the University of Liverpool. His research interests include computer vision
and machine learning.

https://doi.org/10.1109/PDP52278.2021.00044
https://doi.org/10.1145/1541880.1541882
http://www.chartjs.org/
https://leafletjs.com/
https://doi.org/10.1145/3381027
https://doi.org/10.1145/3127479.3127492

	Big data directed acyclic graph model for real-time COVID-19 twitter stream detection
	1 Introduction
	2 Related works
	3 Methods
	3.1 Methodology framework
	3.1.1 Theory
	3.1.2 Implementation

	3.2 Big data problem background
	3.3 Directed acyclic graph topology model
	3.4 Grouping type
	3.5 Event stream
	3.6 System environment
	3.7 Data collection
	3.8 Pre-processing phase
	3.9 TF-IDF phase
	3.10 Clustering phase
	3.10.1 Word embedding (Word2Vec)
	3.10.2 KMeans clustering
	3.10.3 Principal component analysis

	3.11 Anomaly detection phase
	3.11.1 Collective anomaly detection
	3.11.2 Poisson distribution
	3.11.3 Poisson event stream collective anomaly detection (PESCAD) algorithm

	4 Testing
	4.1 Sensitivity analysis of parameters
	4.2 Anomaly detection calculation
	4.3 Anomaly detection chart
	4.4 Anomaly detection map

	5 Results
	6 Conclusion
	Declaration of Competing Interest
	Acknowledgements
	References

