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A B S T R A C T

Providing information is important for managing epidemics, but issues with data accuracy may hinder its
effectiveness. Focusing on Covid-19 in Mexico, we ask whether delays in death reports affect individuals’
beliefs and behavior. Exploiting administrative data and an online survey, we provide evidence that behavior,
and consequently the evolution of the pandemic, are considerably different when death counts are presented by
date reported rather than by date occurred, due to non-negligible reporting delays. We then use an equilibrium
model incorporating an endogenous behavioral response to illustrate how reporting delays lead to slower
individual responses, and consequently, worse epidemic outcomes.
1. Introduction

The swift emergence of the Covid-19 global epidemic forced gov-
ernments to adopt new policies and communication strategies (WHO,
2013, 2020). A particularly important novelty of this epidemic, rel-
ative to past outbreaks, was the dissemination of vast amounts of
high-frequency (oftentimes daily) information about the prevalence of
Covid-19 cases and deaths. Although the implicit assumption is that
more informed agents are more likely to take actions to mitigate the
spread of the virus, little empirical and theoretical work has focused on
understanding the importance of the accuracy of this information.1 In
particular, governments across the world have made efforts to collect
and communicate information to their citizens. If these government

✩ The authors acknowledge support from the Asociación Mexicana de Cultura and the ITAM-COVID center. We are very grateful to the editor and anonymous
referees for providing comments that greatly improved this paper. We thank Jose Maria Barrero, Andrew Foster, Miguel Messmacher, Charles Wyplosz, and
participants at the ITAM Brown Bag seminar for their helpful feedback. Gerardo Sánchez-Izquierdo provided outstanding research assistance. This project received
approval from the ITAM Institutional Review Board. None of the authors have any interests to declare. All errors are our own.
∗ Corresponding author.
E-mail addresses: emilio.gutierrez@itam.mx (E. Gutierrez), adrian.rubli@itam.mx (A. Rubli), tiago.gomes@itam.mx (T. Tavares).

1 In the context of Covid-19, it has been shown that information-focused public policies have been important for managing behavior (Gupta et al., 2020;
Briscese et al., 2020).

2 For other contexts, the evidence is mixed. For instance, for HIV in Africa, studies have found large effects of information on behavior (Dupas, 2011; Dupas
et al., 2018), while for vaccination in the US, it has been shown to be mostly ineffective (Nyhan and Reifler, 2015; Sadaf et al., 2013). Additional factors seem
to mediate individuals’ responses to information. For example, Oster (2012) shows non-HIV mortality matters for adopting protective behaviors.

3 We abstract from instances where individuals may make simple adjustments in an attempt to account for data inaccuracies.

reports indeed matter for behavioral responses,2 then reliable real-time
surveillance systems are paramount not just for tracking the epidemic,
but also for managing it. This may be particularly challenging in low-
and middle-income countries, where diminished state capacity may
impede the collection of accurate instantaneous information.3

In this paper, we shed light on the issues of government-provided
information and its quality by asking whether the delays with which
deaths are reported affect the evolution of the epidemic through their
potential impact on behavior. We focus on the Covid-19 outbreak in
Mexico, where reporting delays – that is, the time difference between
when a death occurs and when it is publicly reported – are measurable
and large. Hence, in this setting, daily death reports are not an accurate
representation of the state of the epidemic.
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Mexico is ideal for studying these issues for at least three reasons.
First, the delays in Covid-19 death reports are not only measurable and
large, but vary greatly across states.4 Gutierrez et al. (2020) documents
that these delays are correlated with local measures of the capacity
of the public healthcare system. The top panel in Fig. 1 depicts these
delays at the national level by showing cumulative deaths as reported
versus as occurred as well as the distribution of reporting delays
in days. Second, Mexican officials routinely present information on
confirmed Covid-19 deaths over time, giving salience to the number
of reported deaths.5 Lastly, the Mexican government chose a relatively
enient strategy that consisted of mostly optional lockdowns and stay-
t-home recommendations, as well as restricting testing to symptomatic
ndividuals seeking medical care. Hence, deaths have been particularly
alient as a more reliable measure of the state of the epidemic and
ehavioral responses have been crucial for its containment.6

Exploiting detailed daily data that allow us to separately count
reported versus occurred cases and deaths, we begin by showing de-
scriptive correlations. We document that the number of reported deaths
is a better predictor of the growth in the number of Covid-19 cases
than the number of occurred deaths. This suggests that individuals may
incorrectly make inferences about the risk of contagion by assuming
that deaths reported are a good approximation of deaths occurred.

We complement these empirical results by fielding an online survey,
where we randomized information about the epidemic. We compare
respondents’ beliefs regarding the severity of the epidemic and their
reported intentions of complying with stay-at-home recommendations
between groups that were shown the evolution of Covid-19 deaths by
date reported versus the date on which they actually occurred. We find
evidence consistent with individuals not fully accounting for reporting
delays when adapting their behavior to the perceived risk prevalence.

Lastly, informed by these findings, we develop a simple equilibrium
model that allows us to illustrate the impact that reporting delays have
on the evolution of the pandemic through their impact on individuals’
behavior. In the model, agents split their time at or away from home
but risk getting infected when outside the home. Thus, the higher the
prevalence of the virus, the higher the incentive to stay home. Agents
rely on death reports provided by the government – which they take
to be accurate – to form expectations about the current and future
prevalence of the disease, updating expectations with each new report.

We calibrate this model to our setting and compare outcomes in a
scenario where deaths are reported as occurred relative to a situation
where reporting delays follow the empirical distribution we observe
in Mexico. Inaccurate information due to reporting delays leads to
individuals being slower to adopt protective behaviors and to more
severe epidemic outcomes in terms of cases and deaths, with a peak of
daily deaths 25% larger (266 additional deaths) than in the model with-
out delays, which implies that eliminating delays in the model would
decrease total deaths by 13,289 by day 120 of the epidemic. Moreover,
the faster speed of the epidemic induced by slower reactions will tend
to generate excessive responses later on, which may exacerbate the
associated negative economic impacts.

Overall, our analysis suggests that improving the capacity to convey
accurate information matters for how agents respond. Communicating
more accurate information can change the full dynamics of the epi-
demic itself with lower total deaths, smaller activity fluctuations, and
less intense outbreaks, which may also imply a better management of

4 Delays in reporting deaths have been documented across many
ettings (AbouZahr et al., 2015; Bird, 2015).

5 See, for instance, this government website: https://coronavirus.gob.mx/
atos/.

6 See, for example, https://globalhealthsciences.ucsf.edu/sites/
lobalhealthsciences.ucsf.edu/files/la_respuesta_de_mexico_al_covid_esp.pdf
or details on how information on cases and deaths in Mexico has been
2

nterpreted. B
hospital capacity.7 These results seem particularly relevant for settings
with weak state capacity, where the reliability of the data has often
come into question.8 In a broader sense, our findings suggest that the
ccuracy of information – of any kind and at any moment – influences
ehavior that may lead to substantially different epidemic outcomes.

We contribute to three strands of the growing literature on the eco-
omics of Covid-19. First, our paper relates to those that have explored
ow messages and information affect various outcomes.9 Akesson et al.
2020) provides different information about Covid-19 infectiousness,
inding that individuals who received the larger estimate of contagion
isk were actually less likely to report complying with mitigating be-
aviors. Falco and Zaccagni (2020) shows that reminders matter for
tay-at-home compliance, while Breza et al. (2021) finds that messages
rom healthcare workers reduced mobility. Binder (2020) and Coibion
t al. (2020) randomize information on government policies in the
S to measure its impact on consumer beliefs and spending. While

hese studies focus on the effect of receiving information, our paper
mphasizes the role of its accuracy.10 In a similar spirit, Bursztyn et al.
2021) analyzes the role of veracity of messages in the US, but centers
n opinion programs in the media.

Second, our paper relates to studies incorporating changes in be-
avior into dynamic epidemiological models (Fernández-Villaverde and
ones, 2020; Brotherhood et al., 2020). While we favor a simple and
arsimonious approach, the novelty in the model we propose consists
n explicitly incorporating frictions in behavior that may emerge from
isinformed agents.

Lastly, we add to the set of papers focusing on identifying the
dditional restrictions and challenges that low- and middle-income
ountries face during Covid-19, including the capacity of the healthcare
ystem, poverty, inequality, and corruption (Gallego et al., 2020; Got-
lieb et al., 2020; Loayza, 2020; Monroy-Gómez-Franco, 2020; Ribeiro
nd Leist, 2020; Walker et al., 2020). We contribute to this line of work
y focusing on the potential consequences of issues in conveying reli-
ble real-time information. Given the relationship between reporting
elays and state capacity (Gutierrez et al., 2020), this is likely to be an
ssue for many other low- and middle-income countries.

. Motivating correlations

.1. Data

The Mexican government provides detailed patient-level informa-
ion for all recorded Covid-19 cases, with daily updates. We observe the
atients’ state of residence, when they first sought medical attention for
ovid-19 symptoms, the self-reported date for the onset of symptoms
all reports are symptomatic), the result of a Covid-19 laboratory test,
nd, if applicable, the date of death. With each daily update, patients
ay transition from unconfirmed to confirmed Covid-19, and from

live to dead.

7 For example, Gutierrez and Rubli (2020) shows a strong relationship
etween hospital capacity and increases in in-hospital mortality during the
009 H1N1 epidemic in Mexico.

8 See, for example, undercounting in India (https://www.
ytimes.com/2021/04/24/world/asia/india-coronavirus-deaths.html?
earchResultPosition=1) and Ecuador (https://www.nytimes.com/2020/04/
3/world/americas/ecuador-deaths-coronavirus.html?searchResultPosition=
), last accessed May 13, 2021.

9 Other mediating factors that the literature has analyzed include sociode-
ographic characteristics (Papageorge et al., 2020; Knittel and Ozaltun, 2020),
olitical beliefs (Allcott et al., 2020; Baccini and Brodeur, 2020; Barrios and
ochberg, 2020), social capital (Bargain and Aminjonov, 2020; Brodeur et al.,
020; Ding et al., 2020; Durante et al., 2020), and the media (Simonov et al.,
020).
10 Studies have also analyzed the link between risk perceptions and prosocial
ehavior during Covid-19 (Campos-Mercade et al., 2021; Abel et al., 2021;
rañas-Garza et al., 2020).

https://coronavirus.gob.mx/datos/
https://coronavirus.gob.mx/datos/
https://globalhealthsciences.ucsf.edu/sites/globalhealthsciences.ucsf.edu/files/la_respuesta_de_mexico_al_covid_esp.pdf
https://globalhealthsciences.ucsf.edu/sites/globalhealthsciences.ucsf.edu/files/la_respuesta_de_mexico_al_covid_esp.pdf
https://www.nytimes.com/2021/04/24/world/asia/india-coronavirus-deaths.html?searchResultPosition=1
https://www.nytimes.com/2021/04/24/world/asia/india-coronavirus-deaths.html?searchResultPosition=1
https://www.nytimes.com/2021/04/24/world/asia/india-coronavirus-deaths.html?searchResultPosition=1
https://www.nytimes.com/2020/04/23/world/americas/ecuador-deaths-coronavirus.html?searchResultPosition=3
https://www.nytimes.com/2020/04/23/world/americas/ecuador-deaths-coronavirus.html?searchResultPosition=3
https://www.nytimes.com/2020/04/23/world/americas/ecuador-deaths-coronavirus.html?searchResultPosition=3
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Fig. 1. Delays in death reports in Mexico and the information treatments in the survey. Notes: These plots depict reporting delays in Mexico and the information treatments in
the survey. Focusing on the top panel, the plot on the left shows total deaths in Mexico up to September 30, 2020. The solid line corresponds to cumulative death counts based
on the date of occurrence, while the dotted line uses the date on which deaths were reported. The plot on the right shows the distribution of delays in death reports measured in
days (difference between when a death occurred and when it was reported). These graphs use information provided up to February 11, 2021. In the bottom panel, we show the
information treatments. The plot on the left shows cumulative deaths in Mexico based on the date they were reported. The plot on the right shows them by when they actually
occurred. Each plot shows data from March 22 to May 15, using information reported up to May 27, 2020. We include the cumulative number of deaths by date reported in
Sweden as a reference.
The testing rate for Covid-19 in Mexico has been, by design, one of
the lowest.11 Only symptomatic individuals seeking medical attention
are tested. Hence, deaths are arguably more precisely measured than
cases. Furthermore, this feature has made deaths more salient in this
context.

From the dataset published on February 11, 2021, we compute the
number of Covid-19 cases and deaths per state-week according to the
date on which they occurred. We restrict to cases from March 14 to
September 30, 2020, allowing up to four months for all occurred cases
and deaths during this period to be reported. We then recover the
number of weekly reported cases and deaths in each state from the
changes in the updated database from one week to the next, allowing
us to track the number of reported and occurred cases and deaths over
time.

2.2. Empirical correlations

In a standard model with exogenous behavior, the growth rate of
cases is fast at first, but then slows down as more individuals stop
being susceptible. Since deaths increase over time, one would expect a
negative correlation between the growth rate of cases and the number
of deaths, particularly before the epidemic peaks. If agents’ behavior

11 See, for example, https://ourworldindata.org/coronavirus-testing.
3

responds to the epidemic – with individuals reducing their exposure
when prevalence is high – an increase in deaths could then predict a
decrease in epidemic growth.

We consider two measures of deaths in our data: the true count
(occurred) and a noisy signal (reported). We then estimate correlations
conditional on state and time fixed effects (FE), controlling for other
features of the epidemic curve, and ask whether the growth rate is
more responsive to reported or occurred deaths. In an epidemic model
without endogenous behavior and assuming we cannot fully control for
the shape of the curve, then one might expect the correlation between
growth in cases and occurred deaths to be stronger statistically, due to
noise in reported deaths. Likewise, in a model with endogenous behav-
ior, perfectly informed agents should respond to actual deaths and not
to reported deaths. However, if agents are not perfectly informed, the
growth rate of cases may have a stronger correlation with this imprecise
measure instead.

We compute two similar measures of the growth rate of Covid-19
cases for each state-week in our data. We take the percentage change in
the number of patients that self-reported having first shown symptoms
from week 𝑡 to 𝑡+ 1 and the change from week 𝑡 to 𝑡+ 2, and estimate:

𝑦𝑠,𝑡 = 𝛽1 × ln(Occurred Deaths)𝑠,𝑡−1 + 𝛽2 × ln(Reported Deaths)𝑠,𝑡−1
+ 𝜆𝑠 + 𝛾𝑡 +𝛱𝐗𝑠,𝑡 + 𝜀𝑠,𝑡 (1)

https://ourworldindata.org/coronavirus-testing
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Table 1
Correlates of the growth in Covid-19 cases.

Growth in cases from 𝑡 to 𝑡 + 1 Growth in cases from 𝑡 to 𝑡 + 2

(1) (2) (3) (4) (5) (6)

ln(Reported Deaths)𝑠,𝑡−1 −0.0852*** −0.0821*** −0.0841** −0.144** −0.149** −0.172**
(0.0244) (0.0248) (0.0337) (0.0571) (0.0565) (0.0817)

ln(Occurred Deaths)𝑠,𝑡−1 0.0103 0.0133 0.0179 −0.0254 −0.0300 0.0384
(0.0303) (0.0296) (0.0331) (0.0713) (0.0723) (0.0875)

Controls:
Cases in period 𝑡 Yes Yes Yes Yes Yes Yes
Growth in cases 𝑡 − 1 No Yes Yes No Yes Yes
Growth in deaths 𝑡 − 1 No No Yes No No Yes

Observations 734 734 700 734 734 700
R-squared 0.495 0.497 0.470 0.548 0.549 0.565
𝐻0 ∶ 𝛽1 = 𝛽2 0.063 0.065 0.123 0.324 0.328 0.211

Notes: This table shows how reported and occurred deaths correlate with the growth in Covid-19 cases as reported in the
data. Observations are at the state-week level and we show estimates of Eq. (1). Columns 1–3 show the growth rate from
week 𝑡 to 𝑡 + 1, while columns 4–6 consider the rate from 𝑡 to 𝑡 + 2. All regressions include state and week fixed effects.
Different columns include different additional controls as indicated. Robust standard errors are in parentheses.
*** p < 0.01, ** p < 0.05, * p < 0.1.
here 𝑦𝑠,𝑡 is the growth rate of Covid-19, 𝜆𝑠 are state FE, 𝛾𝑡 are week
E, 𝐗𝑠,𝑡 is a vector of epidemic characteristics (such as the number of
ases in time 𝑡), and 𝜀𝑠,𝑡 is the error term.

Table 1 shows the estimates. The dependent variable in the first
hree columns is the percentage change in the number of self-declared
ymptoms from week 𝑡 to 𝑡 + 1, while the last three columns consider
he change from 𝑡 to 𝑡+ 2. Columns 1 and 4 include state and week FE
nd log Covid-19 cases in week 𝑡 as controls. Columns 2 and 5 add the
ercent change in new cases between week 𝑡 − 2 and 𝑡 − 1. Columns

3 and 6 also control for the percent change in occurred and reported
deaths between week 𝑡 − 2 and week 𝑡 − 1.

Across specifications, the coefficient associated with the number of
reported deaths is negative and significantly different from zero at a
high confidence level. Column 1 indicates that when reported deaths
double, there is an associated decline of 0.085 points in the growth
rate of cases. In contrast, the coefficient associated with the number of
occurred deaths is smaller in magnitude and statistically insignificant.

We interpret these correlations as motivating evidence that the
growth rate in Covid-19 cases is more responsive to the noisy measure
of deaths rather than the actual number of deaths, even after we control
for overall time trends and features of the epidemic. We conjecture
that this relationship may be driven by individuals incorrectly inferring
Covid-19 prevalence from the number of reported, instead of occurred,
total deaths. These empirical correlations motivate the question of
whether reporting delays could impact individuals’ perceptions and
actions.

3. Online survey

3.1. Survey description and respondents’ characteristics

To shed further light on whether delays matter, we conducted an
online survey with a randomized informational treatment presenting
the evolution of total deaths either by date reported or by actual date
of death. The survey ran from May 28 to June 8, 2020, with participants
recruited mainly from an ITAM mailing list of faculty, administrative
staff, and students (𝑁 = 1, 022).12

After the initial questions on socioeconomic characteristics and
pre-intervention perceptions, respondents were taken to a new screen
showing (randomly) one of the two graphs depicted in the bottom panel
of Fig. 1. Half (𝑁 = 508) were shown the plot on the left, which plots
cumulative deaths in Mexico by date reported. The rest were instead
shown the plot on the right with cumulative deaths by actual date of

12 For the full survey questions, see the online repository https://github.
om/tgstavares/covidinfo.
4

occurrence. Both figures show counts from March 22 to May 15, using
data up to May 27. As a reference, we also included the cumulative
number of deaths by date reported in Sweden.13 Both plots contain
truthful information, although the plot on the left understates total
deaths as occurred by 41% on average, with a difference of up to 2055
deaths on May 11.

Afterwards, participants answered questions on whether they be-
lieved the epidemic in Mexico was evolving faster than Sweden, the
expected number of total Covid-19 cases and deaths over the whole
epidemic outbreak, and how often they expected to leave their home
in the following weeks.

Due to the composition of our mailing list, our participant char-
acteristics suggest they belong to a relatively young, educated, and
high-income group. Hence, we cannot infer the distribution of beliefs
and behavior in the general population. Lastly, although observable
differences between our treatment groups are small (Table S2 in the
supplementary materials), we control for those characteristics below.

3.2. Empirical strategy

We estimate the following equation:

𝑦𝑖 = 𝛼0 + 𝛼1 × [Info By Date Occurred]𝑖 + 𝛹𝐗𝑖 + 𝜈𝑖 (2)

where 𝑦𝑖 is an outcome for respondent 𝑖, 𝛼0 is a constant,
[Info By Date Occurred]𝑖 is an indicator for receiving the informational
treatment that displayed cumulative deaths by actual date of death, 𝐗𝑖
is a vector of observable characteristics (see Table S2), and 𝜈𝑖 is the
error term. The coefficient 𝛼1 measures the average difference in the
outcome for respondents that were shown the cumulative death toll by
date of occurrence relative to those with information by date reported.

We explore three outcomes. First, for simplicity, we construct two
binary measures for whether the epidemic is evolving faster in Mex-
ico than in Sweden, depending on whether respondents considered
the epidemic evolving ‘‘faster’’ or ‘‘much faster’’ than in Sweden, or
strictly considering it ‘‘much faster’’. Second, regarding beliefs about
the epidemic’s toll, we assign the total number of expected cases
and deaths to be equal to the mid-value of the interval chosen by

13 These data were obtained from https://ourworldindata.org/coronavirus.
Sweden followed a similar strategy of relatively light restrictions (Juranek and
Zoutman, 2020). The epidemic in Mexico had been compared to Sweden’s
by government authorities. See, for example, https://twitter.com/HLGatell/
status/1257694745322819586?s=20 and https://www.milenio.com/politica/

ya-aplanamos-la-curva-lopez-gatell, last accessed June 29, 2020.

https://github.com/tgstavares/covidinfo
https://github.com/tgstavares/covidinfo
https://ourworldindata.org/coronavirus
https://twitter.com/HLGatell/status/1257694745322819586?s=20
https://twitter.com/HLGatell/status/1257694745322819586?s=20
https://www.milenio.com/politica/ya-aplanamos-la-curva-lopez-gatell
https://www.milenio.com/politica/ya-aplanamos-la-curva-lopez-gatell
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respondents.14 Lastly, for social distancing, we use both the number
f days respondents expect to leave their homes in four weeks, and an
ndicator for expecting to leave their house three or more times.15

.3. Results

Table 2 shows the results. Each panel corresponds to a different
air of outcomes. Columns 1 and 4 consider the full sample. We
hen decompose results by respondents’ priors based on self-reported
nowledge about the total number of cases pre-intervention.16 Columns

2 and 5 restrict to respondents that reported fewer cases than the truth
(low prior) and columns 3 and 6 show those with a larger number (high
prior).

Presenting cumulative deaths by actual date of occurrence shifts
beliefs towards a perception of a faster spreading epidemic: the fraction
of respondents considering that the epidemic was progressing much
faster than in Sweden increased by 26 percentage points relative to
those shown the plot by date reported. We take this as a first stage
result showing that our informational intervention had the expected
effect.

Respondents also predict a higher toll of the epidemic when shown
deaths by date of occurrence. Individuals who saw the evolution of
occurred deaths announced an expected total with, on average, 14%
more cases and 11% more deaths. This effect is larger in the low
prior subsample. For the self-reported intentions of staying home –
which may differ from actual behavior – the results are consistent
with information presented by actual date of death having a positive
impact. Showing the graph by date of occurrence is associated with a
decrease in the number of times people expect to leave their homes
(four percentage points or 10% lower probability of leaving three or
more times), particularly for the low prior subsample (11 percentage
points or 32%).17

Notwithstanding the limited statistical power due to our small
sample and the relatively small differences in the information provided,
we interpret these results as evidence that the delays with which deaths
are reported are very likely to affect perceptions about the state of
the epidemic and, consequently, compliance with social distancing.
These findings also suggest that individuals do not fully incorporate
reporting delays when forming beliefs about the epidemic, even in our
highly educated sample. We proceed incorporating these insights into
an equilibrium model.

4. Model of equilibrium behavior

We present an equilibrium model to illustrate the impact of report-
ing delays on epidemic dynamics through the endogenous behavioral
response of agents. We follow Greenwood et al. (2019) and Brother-
hood et al. (2020), with Covid-19-specific compartments as in

14 We assigned a value of 3,000,000 for ‘‘more than 2,000,000 cases’’, and
00,000 for ‘‘more than 200,000 deaths’’.
15 We assign a value of 3.5 for the ‘‘3-4 times’’ category, and 5 times for

‘5+’’. We show results in Figure S3 using indicators for each of the possible
esponse categories for all our outcomes.
16 The low prior subsample are those who reported a case load lower than
0,000 (47.7%), while the high prior group are those that reported over 50,000
ases (Figure S4). The true number was 56,594 (see https://twitter.com/
LGatell/status/1263264663283908609?s=20, last accessed June 29, 2020).
17 We obtain positive coefficients for the high prior subsample, although not
recisely estimated. This may be consistent with a fatalistic response (Akesson
t al., 2020). As modeled by Kerwin (2020) for HIV in Africa, perceptions
f a higher risk of contagion may lead to low marginal costs of risk-taking
ehavior, leading individuals to take on more risks in a ‘‘rationally fatalistic’’
esponse. While we cannot definitely confirm it, our results for the high prior
ubsample in panel C of Table 2 are consistent with this response and warrant
urther exploration in the future.
5

Fernández-Villaverde and Jones (2020). The structure is purposely
simple and allows for standard extensions.18 The main difference is how
agents update expectations about Covid-19 prevalence . Given a prior,
agents form plans about consumption and leisure over their life-cycle.
The government informs about deaths, which agents take as accurate.19

Agents then update their prior in order to rationalize the number of
deaths as reported by the government. This also changes their planning
over economic decisions in the remainder of their life-cycle, thus
affecting the dynamics of the epidemic.

States. Each period represents one day in discrete time. There is a
continuum of ex-ante identical agents that can spend time at and away
from home. Let 𝑗 be an agent’s health status. The initial state 𝑗 =
𝑠 (susceptible) is never infected. Being outside may lead to 𝑗 = 𝑖
(infected). Infected agents can contaminate susceptible ones (with a
uniform mixing contact rate). With probability 𝛾 contagiousness ceases
and a 𝑗 = 𝑐 (recovering) process follows. Agents exit this state with
probability 𝜃, and a share 1 − 𝛿 become 𝑗 = 𝑟 (recovered), and a
share 𝛿 become 𝑗 = 𝑑 (dead). We assume that recovered agents are
permanently immune. The future is discounted at rate 𝛽.

Utility and hours. Each agent is endowed with a single unit of labor
every period, divided into work/leisure hours 𝑛 outside and hours at
home ℎ = 1− 𝑛. Flow utility is derived from hours outside and at home
according to 𝑢 (𝑛, ℎ) = log 𝑛 + 𝜆ℎ logℎ + 𝑏, where 𝑏 captures the benefit
of remaining alive over being dead, which delivers a normalized utility
of zero. Hence:

𝑢 (𝑛) = log 𝑛 + 𝜆ℎ log (1 − 𝑛) + 𝑏.

Infections. Susceptible agents are at risk of infection when spending
hours outside the home. The probability of getting infected 𝜋 is as-
sumed to be proportional to the time spent outside the home 𝑛 and
a belief about the aggregate transmission risk �̃�𝑡 that is allowed to be
different from the real transmission risk 𝛱𝑡:

𝜋
(

𝑛, �̃�𝑡
)

= 𝑛�̃�𝑡. (3)

Value functions. We assume that hours outside are constrained to �̄� < 1
for infected and recovering individuals. Value functions are then given
by:

𝑉 (𝑠, 𝑡) = max
𝑛∈(0,1)

{

𝑢 (𝑛) + 𝛽
([

1 − 𝜋
(

𝑛, �̃�𝑡

)]

𝑉 (𝑠, 𝑡 + 1) + 𝜋
(

𝑛, �̃�𝑡

)

𝑉 (𝑖)
)}

(value susceptible)

𝑉 (𝑖) = max
𝑛∈(0,�̄�)

{𝑢 (𝑛) + 𝛽 [𝛾𝑉 (𝑐) + (1 − 𝛾)𝑉 (𝑖)]} (value infected)

𝑉 (𝑐) = max
𝑛∈(0,�̄�)

{𝑢 (𝑛) + 𝛽 ((1 − 𝜃)𝑉 (𝑐) + 𝜃 [(1 − 𝛿)𝑉 (𝑟) + 𝛿𝑉 (𝑑)])}

(value recovering)

𝑉 (𝑟) = max
𝑛∈(0,1)

{𝑢 (𝑛) + 𝛽𝑉 (𝑟)} (value recovered)

𝑉 (𝑑) = 0 (value dead)

aws of motion. Letting 𝑛 (𝑗, 𝑡) be the optimal hours outside for states
= 𝑠, 𝑖, 𝑐, 𝑟, the laws of motion are given by:

𝑀𝑡+1 (𝑠) = 𝑀𝑡 (𝑠) − 𝜋
(

𝑛 (ℎ, 𝑡) ,𝛱𝑡
)

𝑀𝑡 (𝑠) (mass susceptible)

18 Extensions include macroeconomic implications, savings, non-pharmacy
initiatives, testing, vaccines, optimal lockdowns, and age and asset heterogene-
ity (Eichenbaum et al., 2020a,b; Acemoglu et al., 2020; Alvarez et al., 2020;
Kaplan et al., 2020).

19 Information could also focus on cases instead of deaths, and the results
would follow through. We assume that agents do not perfectly anticipate
the frictions associated with how the government provides information. With
perfect knowledge, beliefs about prevalence would be accurate even with
delays. This is unlikely given the content of the government’s press conferences

and due to the degree of sophistication required of individuals.

https://twitter.com/HLGatell/status/1263264663283908609?s=20
https://twitter.com/HLGatell/status/1263264663283908609?s=20
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Table 2
Estimates of informational treatments on perceptions and behavior.

(1) (2) (3) (4) (5) (6)
Full sample Low prior High prior Full sample Low prior High prior

Panel A: Pandemic’s evolution Compared to Sweden

Faster or much faster Much faster

Information by date occurred 0.195*** 0.169*** 0.198*** 0.258*** 0.220*** 0.266***
(0.024) (0.035) (0.034) (0.030) (0.044) (0.041)

Observations 1022 488 534 1022 488 534
R-squared 0.077 0.100 0.097 0.082 0.105 0.101
Mean dependent variable 0.81 0.82 0.80 0.37 0.39 0.35

Panel B: Expected toll Beliefs on full impact of epidemic outbreak

Log expected total cases Log expected total deaths

Information by date occurred 0.144*** 0.203** 0.108 0.108** 0.173** 0.0414
(0.055) (0.085) (0.072) (0.055) (0.082) (0.074)

Observations 1022 488 534 1022 488 534
R-squared 0.020 0.044 0.028 0.014 0.035 0.022
Mean dependent variable 12.97 12.88 13.05 10.81 10.76 10.85

Panel C: Social distancing Number of times expected to leave the house in 4 weeks

Number of times Three or more times

Information by date occurred −0.0442 −0.286** 0.154 −0.0368 −0.105** 0.0161
(0.093) (0.136) (0.130) (0.029) (0.042) (0.041)

Observations 1022 488 534 1022 488 534
R-squared 0.119 0.120 0.150 0.089 0.096 0.115
Mean dependent variable 2.20 2.14 2.25 0.35 0.33 0.37

Notes: This table presents the results from estimating Eq. (2). Each panel corresponds to two different outcome variables
constructed from survey responses (see text for details). Columns 1 and 4 show results for the full sample. Columns 2, 5, 3
and 6 stratify the sample by respondents’ prior on their knowledge of the number of Covid-19 cases in Mexico up to May
20 into low and high reported cases, respectively. The estimates are the average difference between the responses in the
treatment group that received information based on the actual date of death relative to information based on date of reports.
Regressions include control variables as listed in Table S2. Robust standard errors are reported in parentheses.
*** p < 0.01, ** p < 0.05, * p < 0.1.
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𝑛

𝑀𝑡+1 (𝑖) = 𝑀𝑡 (𝑖) − 𝛾𝑀𝑡 (𝑖) + 𝜋
(

𝑛 (ℎ, 𝑡) ,𝛱𝑡
)

𝑀𝑡 (𝑠) (mass infected)

𝑀𝑡+1 (𝑐) = 𝑀𝑡 (𝑐) − 𝜃𝑀𝑡 (𝑐) + 𝛾𝑀𝑡 (𝑖) (mass recovering)

𝑀𝑡+1 (𝑟) = 𝑀𝑡 (𝑟) + (1 − 𝛿) 𝜃𝑀𝑡 (𝑐) (mass recovered)

𝑀𝑡+1 (𝑑) = 𝑀𝑡 (𝑑) + 𝛿𝜃𝑀𝑡 (𝑐) . (mass dead)

Total population is normalized to 1, so that:

1 = 𝑀𝑡 (𝑠) +𝑀𝑡 (𝑖) +𝑀𝑡 (𝑐) +𝑀𝑡 (𝑟) +𝑀𝑡 (𝑑) , ∀𝑡.

Aggregate probability of infection. The (instantaneous) Poisson rate of
infection is given by:

�̂�𝑡 = 𝛬𝑛 (𝑖, 𝑡)𝑀𝑡 (𝑖) , (4)

where 𝛬 is the biological transmissibility of the disease. Hence:20

𝛱𝑡 = 1 − exp
(

−�̂�𝑡
)

= 1 − exp
[

−𝛬𝑛 (𝑖, 𝑡)𝑀𝑡 (𝑖)
]

. (5)

Information and priors. Agents accurately know all the parameters of
the model, but are unaware of the initial mass of infectious individuals
𝑀0 (𝑖), forming a prior �̃�0 (𝑖), which may be different from the truth.
In this case, forecasts of the epidemic dynamics made by agents will be
biased. In particular, given a history of labor supply {𝑛 (𝑠, 𝑡) , 𝑛 (𝑖, 𝑡)}𝑡

′

𝑡=0 ≡
{

𝑛 (𝑠)𝑡
′
, 𝑛 (𝑖)𝑡

′
}

for any 𝑡′ ≥ 0, the following probabilities emerge as

potentially different:

𝛱𝑡′ = 1 − exp
[

−𝛬𝑛
(

𝑖, 𝑡′
)

𝑀𝑡′
(

𝑖; 𝑛 (𝑠)𝑡
′
, 𝑛 (𝑖)𝑡

′
)]

(6)

�̃�𝑡′ = 1 − exp
[

−𝛬𝑛
(

𝑖, 𝑡′
)

�̃�𝑡′
(

𝑖; 𝑛 (𝑠)𝑡
′
, 𝑛 (𝑖)𝑡

′
)]

, (7)

20 Given an instantaneous Poisson rate of infection �̂� , the probability of in-
fection within 𝑡 time is given by an exponential distribution with 𝑃𝑟𝑜𝑏

(

𝑡 < 𝑡
)

=
− exp

(

−�̂�𝑡
)

. For a single period, 𝑡 = 1, we then have that 𝑃𝑟𝑜𝑏 (𝑡 < 1) =
− exp

(

−�̂�
)

.

6

where 𝑀𝑡′ and �̃�𝑡′ are obtained from substituting
{

𝑛 (𝑠)𝑡
′
, 𝑛 (𝑖)𝑡

′
}

in

he laws of motion (mass susceptible) and (mass infected) using,
espectively, 𝑀0 and �̃�0, from 𝑡 = 0..., 𝑡′.

.1. Definition of an equilibrium

A belief-biased equilibrium in this economy with a mass of agents
t time 𝑡′ ≥ 0 of 𝑀𝑡′ (𝑗) , 𝑗 = 𝑠, 𝑖, 𝑐, 𝑟, 𝑑 consists in a sequence of
nfection probabilities

{

𝛱𝑡
}∞
𝑡=𝑡′ and

{

�̃�𝑡
}∞
𝑡=𝑡′ , initial beliefs �̃�𝑡′ (𝑗), and

our allocations {𝑛 (𝑗, 𝑡)}∞𝑡=𝑡′ for each 𝑗 ∈ {𝑠, 𝑖, 𝑐, 𝑟}, such that:

1. given �̃�𝑡′ (𝑗) and
{

�̃�𝑡
}∞
𝑡=𝑡′ , 𝑛 (𝑗, 𝑡) solves the values in (value

susceptible)–(value recovered);
2. given {𝑛 (𝑗, 𝑡)}∞𝑡=𝑡′ , the resulting laws of motion from (mass sus-

ceptible)–(mass dead) using 𝑀𝑡′ (𝑗) are consistent with
{

𝛱𝑡
}∞
𝑡=𝑡′ ;

3. given {𝑛 (𝑗, 𝑡)}∞𝑡=𝑡′ , the resulting laws of motion from (mass sus-
ceptible)–(mass dead) using �̃�𝑡′ (𝑗) are consistent with

{

�̃�𝑡
}∞
𝑡=𝑡′ .

.2. Model analysis

The static solution for hours outside is given by:

∗ = arg max
𝑛∈(0,1)

{𝑢 (𝑛)} = 1
1 + 𝜆ℎ

.

This also corresponds to hours outside for fully recovered individuals,
𝑛 (𝑟, 𝑡) = 𝑛∗. Assuming that the maximum hours outside for infected and
recovering individuals is capped by the static optimal, these individuals
will supply: 𝑛 (𝑖, 𝑡) = 𝑛 (𝑐, 𝑡) = �̄� < 𝑛∗.

This then yields closed-form solutions:

𝑉 (𝑟) =
𝑢 (𝑛∗)
1 − 𝛽

𝑉 (𝑐) =
𝑢 (�̄�) + 𝛽𝜃 (1 − 𝛿)𝑉 (𝑟)
1 − 𝛽 (1 − 𝜃)
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𝑉 (𝑖) =
𝑢 (�̄�) + 𝛽𝛾𝑉 (𝑐)
1 − 𝛽 (1 − 𝛾)

.

As for susceptible agents, first order conditions imply:

𝜕𝑢 (𝑛)
𝜕𝑛

= 𝛽
𝜕𝜋

(

𝑛, �̃�𝑡

)

𝜕𝑛
(𝑉 (𝑠, 𝑡 + 1) − 𝑉 (𝑖))

⇒
1
𝑛
−

𝜆ℎ
1 − 𝑛

= 𝛽�̃�𝑡 (𝑉 (𝑠, 𝑡 + 1) − 𝑉 (𝑖)) ,

hat is, the marginal benefit of spending hours outside is equated with
he discounted expected marginal cost of being infected in utility units.
t is also easy to see that in this environment, 𝑉 (𝑠, 𝑡 + 1) > 𝑉 (𝑖) for
ny 𝜋

(

𝑛, �̃�𝑡
)

> 0. This implies that hours supplied by susceptible
ndividuals are 𝑛 (𝑠, 𝑡) < 𝑛∗ for any �̃�𝑡 > 0, and moreover, the larger
s the perceived risk of transmissibility �̃�𝑡, the lower is the supply of
ours outside the home.

.3. Update of beliefs based on deaths reported by the government

If agents do not receive information during the course of the epi-
emic, the equilibrium outcome from the definition in Section 4.1
ollows and the epidemic runs its course based on agents’ behavior
nd potentially misspecified beliefs. But if the government provides
nformation on current deaths 𝐷𝑡 ≠ �̃�𝑝𝑟𝑖𝑜𝑟

𝑡 (𝑑), then agents update
heir information about prevalence in order to match their forecast
ith what the government is announcing. Agents will then get an
pdated set of beliefs for the masses at 𝑡 given by �̃�𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟

𝑡 (𝑗) for each
𝑗 = 𝑠, 𝑖, 𝑐, 𝑟, 𝑑, where now 𝐷𝑡 = �̃�𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟

𝑡 (𝑑). This new information
consists in an unexpected (‘‘MIT’’) shock to update beliefs that will
change behavior plans until the end of the epidemic according to the
definition of the equilibrium.

4.4. Delays in collection of deaths

Due to physical constraints in data collection, the government may
actually provide biased information about the current level of deaths
𝐷𝑡 ≠ 𝑀𝑡 (𝑑), such that:

𝐷𝑡 = 𝐷𝑡−1 + 𝑓
(

𝛥𝑀𝑡 (𝑑) , 𝛥𝑀𝑡−2 (𝑑) ,… , 𝛥𝑀1 (𝑑)
)

< 𝑀𝑡 (𝑑)

where the function 𝑓 captures that the government identifies the pre-
vious periods’ new deaths with delays. Under these conditions, agents
update their prior into a wrong posterior, that is, 𝐷𝑡 = �̃�𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟

𝑡 (𝑑) ⇒
�̃�𝑡 (𝑗) ≠ 𝑀𝑡 (𝑗) for 𝑗 = 𝑠, 𝑖, 𝑐, 𝑟, 𝑑.

4.5. Simulation of an epidemic with delays in deaths reported

Given a parametrization and specification of delays, we numeri-
cally simulate the model following the definition of the equilibrium in
Section 4.1 using value function iteration.

Calibration. The discount factor 𝛽 = 0.981∕365 is set to capture a 2% an-
nual interest rate. Parameters associated with infectiousness, resolving,
and death rates are calibrated in order to target standard findings from
the medical literature (Bar-On et al., 2020). The remaining parameters
are targeted to closely follow features of the Mexican economy. We
assume that the initial population is 120 million and the time zero
number of infected are 120 individuals (0.0001% of the total popula-
tion). We use Mexican time use surveys to calibrate the parameter 𝜆ℎ by
targeting an expenditure of 36% of available hours in activities outside
the home before the outbreak. The parameter 𝑏 captures a drop in total
hours outside the home during the epidemic of 50% as suggested by
Google Mobility data. Lastly, the baseline contagion rate parameter 𝛬
is set to generate a basic reproduction number of two (Marioli et al.,
7

2020). Table S3 summarizes these parameters.
Reporting delays. We capture the distribution of the difference in days
between deaths as reported and deaths as occurred as given in the data
for the whole country. Specifically, we use the following formula:

𝐷𝑡 = 𝐷𝑡−1 + 𝑝𝑡𝛥𝑀𝑡 (𝑑) +⋯ + 𝑝𝑡−60𝛥𝑀𝑡−60 (𝑑)

here the coefficients
{

𝑝𝑡,… , 𝑝𝑡−60
}

capture the same density as what
e observe in a histogram of the data. This effectively allows for a delay
f up to two months between when a death occurred and when it was
eported. The distribution of delays shows an average of 8.6 days and
standard deviation of 11.5 days (see Fig. 1).

nd of the epidemic. We allow for the introduction of a vaccine, which
is expected ex-ante. After becoming available at time 𝑡𝑣𝑎𝑐𝑐 = 350 days,
ransmissibility immediately becomes zero.

.6. Results

Fig. 2 compares the epidemic dynamics in a model without delays
solid line) relative to one with delays as described above (dashed
ine). Delays lead to a faster progression of the epidemic, implying
5% higher daily deaths at the peak (266 additional deaths) and 3,706
dditional total deaths by the end of the outbreak (Table S4). This
mplies that eliminating delays would decrease total deaths by 13,289
t day 120 of the epidemic. Furthermore, the slow adjustment of hours
t the onset contributes to a higher prevalence at the peak, jumping
rom 0.67% to 0.90% of the population. Once the government informs
bout deaths, agents realize that the spread of the disease is serious and
hus adjust their behavior more abruptly. This causes a larger collapse
f hours spent outside than in the case without delays. Relative to pre-
andemic levels, hours away from home dip up to 46% without delays,
ut 50% with delays.

The bottom row in Fig. 2 plots how deaths are reported and how
hey occurred, as well as the difference between the true prevalence
f infected individuals and the corresponding biased belief. The first
raph shows how beliefs about the mass of the infected population are
onsistently different from the truth. In particular, when the epidemic
tarts, this leads to an underestimation of the severity of the disease,
nd therefore a lower behavioral response from agents.21

xtreme cases of delays. Aggregate delays mask large variations at finer
eographical levels (Gutierrez et al., 2020). Taking the extreme cases
mong the 32 states in Mexico, delays in the state of Tamaulipas
re on average four times larger than in Querétaro (Figure S6). To
ighlight our effects, we simulate the model under the same parameters
s before, but using a delay distribution modeled after each of these
tates. We, again, allow for delays of up to 60 days.22

Fig. 3 shows the results. The epidemic progresses much faster when
elays are larger, as in Tamaulipas. Agents are slower to react to the
rogression of the disease, which contributes to a larger peak, with a
hare of 1.06% of the population infected relative to 0.73% if delays
ccur as in Querétaro (Table S5). Due to the acceleration in contagion,
eak deaths increase to 1522 in the case of large delays, which is 38%
ore than in the case of small delays. By the end of the epidemic,

he additional deaths relative to the case without delays are more
han three times greater with large delays than with shorter delays

21 Our results are consistent with the predictions generated by standard
epidemiological models. For example, an SIR model based on Capistran et al.
(2021) would predict 70,000 deaths by day 120 of the epidemic as opposed to
67,000 in our baseline model. However, using data as reported to estimate the
model would generate only 51,000 deaths by day 120 (Gutierrez et al., 2020).
Furthermore, since SIR models fix behavior exogenously, analysis on how the
epidemic may change due to frictions in data reports cannot be investigated.

22 If delays are larger than that in Tamaulipas, then we may be undercount-
ing deaths. However, this is unlikely given the delay distribution. Furthermore,
the model only uses the distribution of delays (which should be the same when

undercounting deaths) and not the actual death count.
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Fig. 2. Simulation results of behavioral model with and without delays in death reports. Notes: These graphs show the simulation results from the model by computing the
quilibrium as defined in Section 4.1. The top row shows results for a situation without reporting delays (solid line) and with delays calibrated to the Mexican data (dashed line).
he plots in the top panel show the mass of susceptible individuals, total deaths, daily number of deaths, and hours supplied outside the home. Focusing on the bottom row, the
lot on the furthest left shows the beliefs agents have about the mass of infected individuals over time from the onset of the epidemic. We then show the evolution of delays,
nd both total and daily deaths as occurred and as reported in the scenario with reporting delays.
Fig. 3. Simulation results of behavioral model with and without delays in death reports: Small vs. large delays. Notes: These graphs show the simulation results from the model
y computing the equilibrium as defined in Section 4.1. The top panel and the leftmost plot in the bottom panel show results for a situation without reporting delays (solid line),
ith short delays as in Querétaro (short-dashed line), and large delays as in Tamaulipas (long-dashed line). We show the mass of susceptible individuals, total deaths, daily number
f deaths, and hours supplied outside the home. The last two plots in the bottom row compute the forecast error of the mass of infected individuals for the short and long delays
cenarios as well as the reporting delays in each case.
5,440 vs. 1600), or in absolute terms, reducing delays in Tamaulipas
o the level observed in Querétaro lowers the toll of total deaths
y the 120th day by 15,644, or by 20,802 if delays are completely
liminated.

The last two plots in Fig. 3 help explain the difference in epidemic
ynamics between both extreme cases. The next-to-last panel shows
8

how delays evolve, with Querétaro stabilizing at around three days
while Tamaulipas stabilizes at 14 days. In the last panel, we show
that at the beginning of the epidemic, agents would underestimate the
prevalence of the infected population by almost a full log point (−63%)
in the presence of large delays relative to a 0.4 log point (−33%) in the
case of shorter delays.
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These extreme examples further suggest that tackling the issue of de-
lays may require more localized efforts. For instance, improving death
registry in Querétaro may be easier than in Tamaulipas, where delays
are so much larger, which could suggest that a more cost-effective
intervention in this state would require using statistical prediction
methods to adjust the data for delays.

5. Conclusion

The Covid-19 pandemic has been a large experiment on the use
of high-frequency and detailed data as a policy lever during a public
health shock. The extent to which disseminating information may help
mitigate the effects of an epidemic depends largely on its accuracy and
reliability, and how individuals may update their priors and respond.
In settings with low state capacity, collecting accurate real-time infor-
mation may be particularly challenging. In this paper, we showed that
delays in death reports during Covid-19 are sizeable in Mexico and
affect individual beliefs and behavior, leading to more severe epidemic
outcomes.

From a policy perspective, our results highlight the importance
of accurate real-time information, or at least being clear about the
shortcomings of the available data. Increasing collection efforts may
be very costly, and while government resources during a pandemic
may be better spent on other palliative measures, our findings suggest
that simple, low-cost interventions – such as using statistical prediction
techniques to correct for delays – may improve outcomes.23 Overall, our
empirical and simulation results underscore the role of accuracy when
using information as a public health tool for mitigating an epidemic.
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