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Abstract 

Background:  The relationship between human milk oligosaccharides (HMO) and child growth has been investigated 
only insufficiently with ambiguous results. Therefore, this study examines potential influencing factors of HMO con-
centrations and how HMO are associated with child growth parameters.

Methods:  Milk samples from the German LIFE Child cohort of healthy children were analyzed for 9 HMO. Putative 
associations with maternal and child cofactors and child height, head circumference and BMI between 3 months 
and 7 years of age were examined. Secretor status, defined as the presence of 2′-fucosyllactose, was investigated for 
associations with infant outcomes.

Results:  Our population consisted of 21 (14.7%) non-secretor and 122 (85.3%) secretor mothers. Maternal age was 
significantly associated with higher 3′SL concentrations; gestational age was associated with LNT, 6′SL and LNFP-I. 
Pre-pregnancy BMI was negatively associated with LNnT only in non-secretors. The growth velocity of non-secretors’ 
children was inversely associated with LNnT at 3 months to 1 year (R = 0.95 [0.90, 0.99], p = 0.014), 1 to 2 years (R = 0.80 
[0.72, 0.88], p < 0.001) and 5 to 6 years (R = 0.71 [0.57, 0.87], p = 0.002). 2’FL was negatively associated with BMI consist-
ently, reaching statistical significance at 3 months and 4 and 5 years. Children of non-secretors showed higher BMI at 
3 months, 6 months, and 3, 6, and 7 years of age.

Conclusion:  We found that some associations between HMO and infant growth may extend beyond the infancy and 
breastfeeding periods. They highlight the importance of both maternal and infant parameters in the understanding of 
the underlying associations.

Trial registration:  The study is registered with ClinicalTrial.gov: NCT02​550236.
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Introduction
Human milk is being explored intensively to understand 
its composition and physiological role for the breast-
fed infant. Lipids [1, 2] have been identified as the most 
significant source of energy in mature milk. Additional 

important compounds of human milk are proteins, 
including enzymes and bioactive proteins like antibod-
ies, nitrogenous compounds, and especially nucleotides, 
which influence the enzyme activity and the functional-
ity of the immune system, hormones, vitamins, water and 
carbohydrates, including lactose and oligosaccharides. 
Together with lipids, lactose is an important source of 
energy, especially for the developing human brain [3]. 
Human milk oligosaccharides (HMO) form the third 
largest solid fraction in human milk; they represent 
about 20% of the total carbohydrates, with an estimated 
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amount of up to 20 g/L in colostrum [4, 5]. HMO are 
composed of 5 different monosaccharides (Glc, Glu-
cose; GlcNAc, N-Acetylglucosamine; Gal, Galactose; Fuc, 
Fucose; Neu5Ac, N-Acetylneuraminic acid), which are 
linked together via glycosidic bonds [6] to produce a wide 
variety of different structures [7].

HMO have been investigated for their potential role 
in the early growth of neonates; however, their effects 
in early and later metabolic health are unclear [8–15]. 
To date, only 1 study has investigated the association 
between HMO and growth beyond infancy [12]. The 
possible underlying biochemical or physiological pro-
cesses linking HMO and infant growth are not under-
stood. HMO are indigestible but can be fermented at 
least partly by the infant’s microbiome [16–18]. Thus, 
they support the maturation of the gastrointestinal tract 
and the immune system and can protect against the 
colonization of pathogenic microorganisms by inhibit-
ing their anchoring to human epithelial cells [19–22]. 
In preclinical models, various studies have examined 
the effects of HMO (sometimes combined with micro-
biota) on gut epithelial maturation, differentiation and 
signaling processes [23–25], which can affect nutrient 
uptake and developmental programming, as exemplified 
by their effects on bone formation [26]. HMO concen-
trations are influenced by lactation stage and maternal 
genetic factors [27–30] and probably to a lesser extent 
by maternal weight and body mass index (BMI) before 
pregnancy [19, 27, 28].

Therefore, in this study, we aim to assess the associa-
tion between the oligosaccharide composition in breast 
milk at 3 months postpartum and a) maternal factors 
(maternal age, pre-pregnancy BMI), b) the child’s birth 
parameters (anthropometric measurements, gestational 
age (GA)) and c) the subsequent growth until the age 
of 7 years (height, growth velocity, head circumference 
(HC), BMI). According to the literature, we hypothesize 
only weak associations between HMO concentrations 
and the maternal factors. Further, we expect associations 
between HMO and the child’s anthropometric meas-
urements, with higher effects in the first year of life and 
lower effects for older ages.

Methods
Study design and participants
All data were collected within the LIFE Child study at 
the Research Centre for Civilization Diseases in Leipzig, 
Germany (www.​Clini​calTr​ial.​gov: NCT02550236). Chil-
dren and their parents have been recruited from the 24th 
week of gestation to 16 years of age to investigate envi-
ronmental, metabolic and genetic associations with chil-
dren’s development [31]. The study is described in detail 
elsewhere [31, 32].

Between 2011 and 2014, 155 milk samples were col-
lected from 153 mothers who nurse at the 3-month 
baseline visit (Fig.  1). The 3-month-visit took place 
after their 2nd full month and before the end of the 1st 
week of their 4th month of life. We excluded 1 sample 
because of a twin pregnancy and 9 samples because of 
preterm birth. Two mothers contributing 2 pregnancies 
were included. Finally, 145 sample-children combina-
tions were included. Further, 132 (91%) follow-up meas-
urements were documented at 6 months, 122 (84%) at 
1 year, 106 (73%) at 2 years, 104 (72%) at 3 years, 90 (62%) 
at 4 years, 87 (60%) at 5 years, 59 (41%) at 6 years, and 37 
(26%) at 7 years of age.

Informed written consent was provided by all parents 
for their children, participation in each procedure were 
voluntary. The study has been conducted per the Decla-
ration of Helsinki. The study protocol was approved by 
the Ethics Committee of the Medical Faculty of the Uni-
versity of Leipzig (Reg. No. 264-10-19042010).

Milk collection, storage and analysis
Under private conditions, about 20 mL of milk was col-
lected at the 3-month visit using a milk pump (Medela 
Symphony®). The samples were obtained during the 
morning before lunchtime (1 pm). The first 20 mL was 
used. The milk was within at most 20 min stored with-
out processing at − 80 °C at our biobank [31] until its 
transport to Nestlé Research, Lausanne, on dry ice. The 
concentrations of 9 HMO were determined by liquid 
chromatography with fluorescence detection following a 
previously described validated method [33]. The calibra-
tion standards of 2′-fucosyllactose (2’FL), 3-fucosyllac-
tose (3-FL), 3′-sialyllactose (3′SL), 6′-sialyllactose (6′SL), 
lacto-N-tetraose (LNT), lacto-N-neotetraose (LNnT), 
lacto-N-fucopentaose-I (LNFP-I), lacto-N-fucopentaose-
V (LNFP-V) and lacto-N-neofucopentaose (LNnFP) were 
purchased from Elicityl (Crolles, France), where the HMO 
content of the standard powders was determined by 
quantitative nuclear magnetic resonance spectrometry. 
For each HMO, 9 point calibration curves were prepared 
in the ranges 2’FL: 10–4900 mg/L, 3-FL: 10–2800 mg/L, 
3′SL: 2–900 mg/L, 6′SL: 2–900 mg/L, LNT: 4–1900 mg/L, 
LNnT: 2–1000 mg/L, LNFP-I: 4–2000 mg/L, LNFP-V: 
2–900 mg/L, LNnFP: 2–900 mg/L. With each batch of 
analysis (or every 25 samples if batches were larger) a 
reference pooled human milk sample (Lee Biosolutions, 
Maryland Heights, USA) was analyzed to ensure the 
method performance remained consistent between days 
and between batches of analyses.

Measurements
Maternal pre-pregnancy weight and height and the 
child’s birth parameters were taken from the maternity 
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log (“Mutterpass”) [34]. This booklet is updated by medi-
cal staff during pregnancy checkups.

Measurements were taken by trained research assis-
tants according to standard procedures. Height/length 
was measured using the Dr. Keller II infantometer until 
1 year of age and the Dr. Keller I stadiometer afterward. 
Weight was determined by using a scale (the seca 757 
or the seca 701). HC was measured using a non-dilata-
ble measuring tape. BMI was calculated. Height/length, 
weight, and BMI were transformed to standard devia-
tion scores (SDS) according to the guidelines from the 
German Working Group on Obesity in Childhood and 
Adolescence [35]. HC measurements were transformed 
to SDS using German standards from the KiGGS study 
[36]. As a measure of growth, growth velocity was calcu-
lated as the standardized difference between the 3-month 

height and the 1-year height of the child and afterward 
between 2 consecutive height measures.

Statistical analyses
All statistical analyses were carried out using R 4.0 
[37]. Descriptive statistics were given as median 
[Q1;Q3] for HMO and mean (standard deviation) for 
the other continuous variables (Table 1). For all HMO, 
values below the limit of quantification (LoQ) were set 
to the LoQ and marked as left censored. Correlations 
(r) between specific HMO were investigated using 
Pearson correlations on the log-transformed values. 
Secretor status was determined based on the 2’FL con-
centration, with values below the LoQ of ≤53 mg/L 
corresponding to mothers who are non-secretors 
(NSM) and > 53 mg/L corresponding to mothers who 

Fig. 1  Flow chart of the study design
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are secretors (SM) [30, 33]. For HMO, differences 
in medians between SM and NSM were tested using 
Kruskal-Wallis tests or censored regression mod-
els when data below the LoQ occurred. For the other 
continuous variables, differences in means were tested 
using t-tests. Chi-squared tests were applied to test 
differences in proportions. The associations between 
the HMO and the children’s and mothers’ parameters 
were examined using generalized additive models for 
location, shape, and scale [38, 39], with HMO as the 
outcome and the other variables as predictor variables. 
Modeling was done separately for each age group, 
assuming a log-linear relationship between predic-
tor and outcome. Due to the HMO values’ consider-
able skewness, these values were log-transformed. A 
Box-Cox Cole and Green distribution or its censored 
equivalent was chosen to describe the outcomes’ dis-
tributions. Investigating the models’ error structure 
revealed variances according to secretor status. There-
fore, variance was modeled dependent on secretor sta-
tus. Skewness was dependent on secretor status only 
for LNnT. With evidence of an interaction between 
the predictor and the secretor status, the respective 
interaction term was included in the model. The mod-
els’ appropriateness was checked using different plots 
(QQ-plot, variance against fitted, variance against 
covariates, influence vs. cooks distance; plots not 
shown). Effects are reported as ratios (R = exp(β)) or 

differences (β), including the 95% confidence interval. 
As NSM values of LNFP-I and 2’FL were below the 
LoQ (≤15 mg/L and 53 mg/L, respectively) [33], asso-
ciations involving LNFP-I and 2’FL were only modeled 
in the SM subgroup. P-values ≤0.05 were considered 
to be statistically significant. Because of the complex 
dependencies between the tested items, p-values were 
not adjusted for multiple testing. Essentially, we stress 
the fact that the results should be interpreted in terms 
of the occurring patterns instead of emphasizing single 
significant test results.

Results
Descriptive statistics and correlations between HMO
The cohort consists of 21 (14.7%) NSM and 122 (85.3%) 
SM. Two of the SM took part with 2 singleton preg-
nancies (Fig.  1). 2’FL, LNFP-I and LNnT concentra-
tions were significantly lower in NSM, while 3-FL, 3′SL, 
LNT and LNFP-V concentrations were higher. Further 
descriptive statistics are given in Table 1.

Correlation was highest between 2’FL and LNFP-I 
(r = 0.95, p < 0.001). Both were also positively correlated 
to LNnT (2’FL: r = 0.56, p < 0.001; LNFP-I: r = 0.61, 
p < 0.001) and negatively correlated to LNFP-V (2’FL: 
r = − 0.66, p < 0.001; LNFP-I: r = − 0.62, p < 0.001) and 
3-FL (2’FL: r = − 0.54, p < 0.001; LNFP-I: r = − 0.64, 
p < 0.001) (Fig. 2).

Table 1  Descriptive statistics of the cohort stratified by secretor status and overall given as median [Q1; Q3] for HMO and mean 
(standard deviation) for the other continuous variables. Group differences were tested using Kruskal-Wallis-tests (HMO) and t-tests 
(other variables)

BMI Body Mass Index, HMO Human Milk Oligosaccharide, 2’FL 2′-fucosyllactose, 3-FL 3-fucosyllactose, 3′SL 3′-sialyllactose, 6′SL 6′-sialyllactose, LNT lacto-N-tetraose, 
LNnT lacto-N-neotetraose, LNFP-I lacto-N-fucopentaose-I, LNFP-V lacto-N-fucopentaose-V, LNnFP lacto-N-neofucopentaose

Secretor (n = 124) Non-secretor (n = 21) p-value Total
n = 145

n (non-
missing)

Maternal age (years) 30.3 (4.12) 30.2 (4.95) 0.898 30.3 (4.24) 143

Pre-pregnancy BMI (kg/m2) 23.2 (3.78) 22.7 (3.83) 0.642 23.2 (3.78) 124

Gestational age (months) 40.0 (1.15) 40.2 (1.26) 0.494 40.0 (1.16) 145

Birth weight (g) 3467 (473) 3646 (486) 0.13 3493 (477) 145

Birth length (cm) 50.3 (2.37) 50.7 (2.28) 0.475 50.4 (2.36) 144

Birth head circumference (cm) 34.9 (1.51) 35.3 (1.33) 0.301 35.0 (1.48) 123

HMO (mg/L)

  2‘FL 2038 [1536;2722] 7.37 [6.66;10.0] < 0.001 1931 [1317;2414] 145

  3-FL 785 [531;1114] 2544 [2007;2889] < 0.001 916 [565;1227] 145

  3′SL 136 [119;162] 160 [134;173] 0.026 138 [120;166] 145

  6′SL 151 [104;201] 139 [111;265] 0.39 150 [104;207] 145

  LNT 547 [353;720] 699 [545;934] 0.01 567 [361;764] 145

  LNnT 149 [117;200] 66.9 [38.8;89.9] < 0.001 137 [90.8;185] 145

  LNFP-I 473 [292;839] 2.00 [2.00;2.00] < 0.001 416 [196;789] 145

  LNFP-V 44.6 [31.3;61.9] 197 [141;235] < 0.001 50.1 [33.7;83.5] 145

  LNnFP 16.6 [9.51;22.7] 17.6 [7.56;21.6] 0.848 16.7 [8.82;22.7] 145
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Maternal parameters, gestational age and birth 
parameters
The maternal age at birth was positively associated only 
with 3′SL (R = 1.06 [1.00,1.11] for every 5 years older, 
p = 0.03). Pre-pregnancy BMI was negatively associated 
with LNnT in NSM (R = 0.93 [0.90,0.97], p < 0.001); no 
association was found in SM. GA was positively asso-
ciated with LNT (R = 1.08 [1.01,1.15], p = 0.03), 6′SL 
(R = 1.09 [1.03,1.16], p = 0.005) and LNFP-I (R = 1.15 
[1.03,1.28], p = 0.012, only children from SM (SC)). 
LNFP-I (R = 1.2, [1.05,1.37], p = 0.008, only SC) and 3-FL 
(R = 0.92 [0.86,0.98], p = 0.011) were significantly associ-
ated with birth length (Supplementary Table S1).

Height‑SDS and growth velocity
The interaction between height-SDS and secretor sta-
tus was significant for LNT. The association of height-
SDS with LNT had a negative direction in children of 
NSM (NSC) (0.78 ≤ R ≤ 1.01) and a positive direction 
in SC (1.00 ≤ R ≤ 1.09; Supplementary Table S2; Fig.  3). 

However, the effects reached significance only for NSC 
at 2Y. LNFP-I was positively associated with height-SDS 
effects at 3 M, 6 M and 1Y (R ≈ 1.2, p ≤ 0.02); afterward, 
no further associations were found. Besides, there were 
consistently positive associations between height SDS 
and LNnT. However, statistical significance was only 
reached at 6Y. There was no evidence of associations 
between height-SDS and 2’FL, 3-FL, 3′SL, 6′SL, LNnFP, 
or LNFP-V.

The interaction between growth velocity and secretor 
status was significant for LNnT. In NSC, we found nega-
tive effects for 3 M–1Y (R = 0.95 [0.90,0.99], p = 0.01), 
1Y–2Y (R = 0.80 [0.72,0.88], p < 0.001) and for 5Y–6Y 
(R = 0.71 [0.57,0.87], p = 0.002).

LNT and LNFP-V were negatively associated 
with growth velocity from 3 M–1Y (LNT: R = 0.97 
[0.95,1.00], p = 0.02; LNFP-V: R = 0.97 [0.95,1.00], 
p = 0.04). LNFP-I and 3′SL were negatively associated 
with growth velocity from LNFP-I: 1Y–2Y (R = 0.90 
[0.83,0.97] p = 0.008) and 3′SL: 4Y–5Y (R = 0.95 

Fig. 2  Correlogram of the log-transformed HMO values. Correlations coefficents, respective confidence intervals, and p-values are shown. HMO, 
Human Milk Oligosaccharide; 2’FL, 2′-fucosyllactose; 3-FL, 3-fucosyllactose; 3′SL, 3′-sialyllactose; 6′SL, 6′-sialyllactose; LNT, lacto-N-tetraose; LNnT, 
lacto-N-neotetraose; LNFP-I, lacto-N-fucopentaose-I; LNFP-V, lacto-N-fucopentaose-V; LNnFP, lacto-N-neofucopentaose
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[0.90,1.00] p = 0.045). No significant associations were 
found for growth velocity and 2’FL, 3-FL, 6′SL and 
LNnFP (Supplementary Table S3).

BMI‑SDS
The interaction between BMI-SDS and secretor status 
was significant for 3′SL, 6′SL, LNT, LNFP-V and LNnFP. 
For NSC, we found consistently negative associations 
between BMI-SDS and 3′SL, 6′SL, LNT and LNFP-
V at all time points (Supplementary Table S4; Fig.  3). 
However, statistical significance was reached only for 
LNT and LNFP-V at 2Y. Besides, we found consistently 

positive associations between BMI-SDS and LNnFP from 
6 M onward. Statistical significance was reached at 02Y, 
05Y and 06Y. We did not find evidence of associations 
between BMI-SDS and the HMO in SC when the models 
included the interaction term.

2’FL showed consistently negative associations with 
BMI-SDS (0.92 ≤ R ≤ 1; Supplementary Table S4; Fig. 3); 
statistical significance was reached at 3 M, 4Y and 5Y. The 
3-FL was consistently positively associated with BMI-
SDS between 3 M and 6Y; however, the results did not 
reach statistical significance. For LNnT and LNFP-I, no 
consistent patterns were found.

Fig. 3  Associations between Human Milk Oligosaccharides at 3 months and BMI-, Height- and Head circumference SDS. They are presented for the 
different time points as ratio and 95% confidence interval. Ratios < 1 illustrate negative associations and ratios > 1 illustrate positive associations. 
If the effects differed between the secretor and the non-secretor group, both effects are given. Otherwise the overall effect is reported. BMI, 
Body Mass Index; SDS, Standard Deviation Score; 2’FL, 2′-fucosyllactose; 3-FL, 3-fucosyllactose; 3′SL, 3′-sialyllactose; 6′SL, 6′-sialyllactose; LNT, 
lacto-N-tetraose; LNnT, lacto-N-neotetraose; LNFP-I, lacto-N-fucopentaose-I; LNFP-V, lacto-N-fucopentaose-V; LNnFP, lacto-N-neofucopentaose; M, 
Months of Age; Y, Years of Age
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Head circumference
The interaction between HC and secretor status was 
significant for LNFP-V and LNnFP. LNFP-V showed 
consistent, significantly negative associations with HC 
between 3 M and 7Y, with effect sizes varying between 
0.63 and 0.92 in NSC (Supplementary Table S5; Fig.  3). 
SC had no notable pattern. LNnFP showed consistently 
positive effects on HC from 3 M–7Y, with effect sizes 
between 1.12 and 2.09 in NSC. In general, the effect sizes 
increased with age. Statistical significance was reached 
from 2Y–6Y. Again, we found no notable patterns in SC.

LNFP-I was consistently positively related to HC-SDS 
from 6 M–7Y with effect sizes between 1.02 and 1.20. 
However, most of the effects did not reach significance. 
There were no notable pattern or effects for 2’FL, 3-FL, 
3′SL, 6′SL or LNT (Supplementary Table S5; Fig. 3).

Comparisons in children of non‑secretors vs. secretors
NSC had a significantly higher BMI-SDS at 3 M (β = 0.8 
[0.4,1.2], p < 0.001) and 6 M (β = 0.8 [0.4,1.2], p < 0.001). 
At 1 year, the direction of the association remained the 
same but the difference was not significant (Fig. 4).

At 3 M and 6 M, NSC tended to show an approximately 
+ 0.5 higher height-SDS. However, there was no statisti-
cally significant effect. HC-SDS was astoundingly higher 
in NSC at 3 M (β =  1.3 [0.6,2.0], p < 0.001), 6 M (β = 1.0 
[0.4,1.6], p = 0.001), and 1Y (β = 0.7 [0.3,1.2], p = 0.002). 

Even afterwards, HC-SDS stayed higher in NSC with 
effect sizes between β = 0.4 and β = 1.0, reaching signifi-
cance at 3Y, 6Y, and 7Y (Fig. 4).

Discussion
Our study aimed to investigate how HMO are associ-
ated with infant anthropometry from 3 months to 7 years 
of age and to identify any consistent patterns that could 
signify an important role of HMO for early growth. We 
found a consistent inverse association of growth velocity 
with LNnT only in NSC group. In addition, NSC had con-
sistently higher BMI than SC. We also explored the influ-
ence of maternal and infant factors in HMO composition 
with maternal age, gestational age and pre-pregnancy 
BMI significantly associated with some of the HMO.

Recent studies proposed that HMO, besides their 
antimicrobial effects, may be involved in infant growth 
and development. HMO are indigestible but can be fer-
mented, at least partially, by the infant’s microbiome 
[16–18, 20, 40–42]. This promotes the growth and activ-
ity of commensal bacteria such as Bifidobacterium and 
Bacteroides spp. and supports the gastrointestinal tract’s 
maturation and the immune system [43]. HMO may also 
reduce the risk of infections by protecting against colo-
nization with pathogenic microorganisms. It is proposed 
that they can act as decoys, inhibiting the pathogen 
anchoring to the human epithelial cells [21, 22, 44, 45].

Fig. 4  Mean differences in BMI-SDS, HC-SDS, and Height-SDS between the secretor and non-secretor group and 95%-confidence intervals. Mean 
SDS-differences > 0 represent higher values in non-secretors compared to secretors. From 3 months to 7 years of age BMI-SDS and HC-SDS were 
higher in non-secretors, especially at 3 M, 6 M, 01Y, and 03Y. BMI, Body Mass Index; HC, Head Circumference; SDS, Standard Deviation Score
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It was recently suggested that sialylated oligosaccha-
rides may exert a microbiota-dependent promotion of 
anabolic function in animal models by increasing the 
nutrient’s efficiency, promoting better growth and phys-
ical development [46, 47]. Given the HMO-microbiome 
interaction and the microbiome’s proposed effect on 
nutrient efficiency, combined with maternal factors as 
pre-pregnancy BMI, the HMO composition of breast 
milk may also affect infant growth. Previous studies [9, 
10, 12–14] investigating associations between HMO 
and infant growth obtained conflicting results. Alderete 
et al. identified associations between LNFP-I and lower 
infantile weight, but not with pre-pregnancy BMI [10]. 
In contrast, more recent studies found 2’FL positively 
associated with both child growth and pre-pregnancy 
BMI [12, 13]. Other studies reported no associations 
between HMO composition or secretor status with 
child growth [9, 14].

Despite the variability in results, 2 recent studies 
indicated a role of sialylated HMO in infant growth 
considering maternal BMI [14, 48]. Binia et  al. found 
moderate associations between HMO and infant 
growth and body composition during the first 4 months 
of life in a cohort of predominantly healthy babies and 
mothers with normal BMI. They reported significant 
associations of higher growth rate during the 4 months 
of lactation with higher 3′SL, expressed as Area Under 
the Curve of HMO concentrations at all visits, a poten-
tially better measure of HMO exposure. Saben et  al. 
confirmed the positive association of several sialylated 
HMO, including 3′SL but also total acidic HMO with 
infant growth during the first 6 months of life, includ-
ing also mothers with obesity. The growth and body 
composition of the healthy infants were independent 
of maternal pre-pregnancy BMI. Interestingly, Saben 
et  al. used calculated milk and HMO intake and not 
only concentrations, an attempt again to better quan-
tify exposure to HMO. The study was limited to 1 single 
time-point of HMO quantification at 2 months. Both 
studies lacked the longer follow-up of infant growth, 
which could be a better indicator of future risk to obe-
sity. Finally, neither of these 2 studies confirmed the 
previous observations by Lagström et al. [12] and Lars-
son et  al. [13] on the positive association of 2’FL and 
the negative association of LNnT with infant growth. 
Another rare example of HMO intake being quantita-
tively measured looked at HMO intake at several time 
points up to 12 months. However, the total (not indi-
vidual) HMO intake was calculated. They found higher 
HMO concentrations associated with higher percent-
ages of the fat-free mass at 2, 5, 9, and 12 months of age, 
whereas fat mass was negatively related to higher HMO 
intake at 5, 9, and 12 months of age [49].

Despite measuring HMO only at 3 months postpar-
tum from only 20 mL of milk and no full breast expres-
sion, limiting insights on associations between growth 
and the changing HMO exposure over time, we could 
include growth data from birth until 7 years of age in a 
relatively strong sample size for this long follow-up com-
pared to other studies. Indeed, we found higher BMI and 
HC SDS in NSC than SC. Although significance was not 
achieved at all time points, the probability of only posi-
tive results is p < 0.002. Growth velocity but not BMI was 
inversely correlated with LNnT at 3 M–1Y and 1Y–2Y in 
NSC, supporting the findings from Lagström et al. [12]. 
Regarding the association between infant growth and sia-
lylated HMO 3′SL and 6′SL, we found a negative associa-
tion with BMI-SDS in NSC but not with growth velocity, 
as previously reported [14, 48]. Our study is an explora-
tory approach to identify associations between mater-
nal, infant parameters and HMO. Our findings could be 
affected by false positive results, however the associa-
tions of growth velocity with LNnT and BMI with 2’FL 
are consistent for multiple time-points. We did not have 
milk intake measurements available in our study; future 
studies need to include these parameters to estimate 
more accurately the exposure of the infant gastrointesti-
nal tract to HMO.

Included mothers had a mean BMI of 23.2 (3.78) kg/m2 
and a mean age of 30 years, similar to other study popu-
lations [14, 48]. In line with previous results, we found 
a negative association between pre-pregnancy BMI and 
LNnT in NSM [12]. However, other studies reported a 
positive or no association [27, 28, 48]. This highlights the 
variability of reported HMO associations, reflecting pos-
sible differences in methods or non-measured confound-
ers. Therefore, future studies examining the role of HMO 
in growth and metabolic health should consider maternal 
physiology and other human milk components, such as 
proteins and lipids.

One in  vivo intervention study with sialylated oli-
gosaccharides [47] did report growth recovery follow-
ing treatment with sialylated oligosaccharides in animal 
models of undernutrition. Recent randomized placebo 
controlled clinical trials testing infant formula containing 
specific individual HMO (2’FL or 2’FL and LNnT) effect 
on growth showed no differences in infant growth up to 
12 months of age [50, 51]. Their results may imply that 
the impact of single or a few HMO may not have a large 
effect in the growth of healthy infants. In addition, these 
trials were randomized, whereas observational studies 
are not and factors other than HMO may confound asso-
ciations. Ideally, future intervention studies with HMO 
mixes closer to those in human milk should be followed 
beyond the first year of life. Observational studies like 
the present could highlight the importance of maternal 
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and infant characteristics in the relationship between 
HMO and infant growth and development. The conflict-
ing reported results however from recent observational 
data call for hypothesis-driven studies with detailed 
meta-data collection to test the specific role of groups 
rather than single HMO in influencing early growth and 
composition.

Conclusion
Our results suggest that associations between HMO 
and infant growth may extend beyond the breastfeed-
ing period and interventional studies are needed to elu-
cidate their influence on infant weight, height and body 
composition. Our study also confirms the value of long-
term follow-up of breastfed infants and the inclusion of 
both maternal and infant factors to understand the role 
of HMO in growth and development [27, 29].
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