Skip to main content
. 2021 Oct 30;16:94. doi: 10.1186/s13012-021-01159-3

Table 2.

Types of adoption curves and associated technologies

Type Criterion Technologies (no.)
(I) Continuous increase

Inline graphic

∀  t ∈ [2006; 2017]

HCI, MR-PTC, S-ICD, IAHEI, SCO-MAGN, BS-PV, SE-DES, TAVI, BS-VSAV, DCB-SUAV, DCB-LAV, DCB-AV, SCB-ULV, DCB-LLV, DCB-ARTV (n = 15)
(II) Continuous decrease

Inline graphic

∀  t ∈ [2006; 2017]

SE-BMS (n = 1)
(III) Reaching a saturation

Inline graphic

Inline graphic

Inline graphic

f(2015) > f(t)  ∀   t < 2015

EL-P/ICD, MRD, DCB-CV (n = 3)
(IV) “Local maximum”: Continuous increase followed by continuous decrease

m(tI) > 0 ∧

m(tII) < 0

tI ∈ [ti; tj], tII ∈ [tj; tk]

ti, tj < tk

FE-AAA, ACT, ACCS, DEB-TACE, LVRC, BVS, BRA, IABC, MVR, FD-IV (n = 10)
(V) “Local minimum”: Continuous decrease followed by continuous increase

m(tI) < 0 ∧

m(tII) > 0

tI ∈ [ti; tj], tII ∈ [tj; tk]

ti, tj < tk

MVAC, FD-ULV (n = 2)
(VI) Complex NA
 (VI.a) According to hierarchical-agglomerative clustering method (see Additional file 2) PECLA/iLA, pVAD, EVCT, CBS, ACD, VEPTR, IAELC, UD-DJMS, DES-LLV, EABO, HCO, IAVC, SP-ENDOST, FDT, DES-SAA, MESI, EBV, NEURO, IABC-EL, DES-ULV, PVR, DCB-TV, DCB-OTHV (n = 23)
 (VI.b) According to hierarchical-agglomerative clustering method (see Additional file 2) IET-MICRO, F-TUR, DCB-IV, DCB-VV, ER-ABL (n = 5)