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Abstract

Background: Environmental factors such as temperature, rainfall, and vegetation cover play a critical role in malaria
transmission. However, quantifying the relationships between environmental factors and measures of disease
burden relevant for public health can be complex as effects are often non-linear and subject to temporal lags
between when changes in environmental factors lead to changes in malaria incidence. The study investigated the
effect of environmental covariates on malaria incidence in high transmission settings of Uganda.

Methods: This study leveraged data from seven malaria reference centres (MRCs) located in high transmission
settings of Uganda over a 24-month period. Estimates of monthly malaria incidence (MI) were derived from MRCs’
catchment areas. Environmental data including monthly temperature, rainfall, and normalized difference vegetation
index (NDVI) were obtained from remote sensing sources. A distributed lag nonlinear model was used to
investigate the effect of environmental covariates on malaria incidence.

Results: Overall, the median (range) monthly temperature was 30 °C (26–47), rainfall 133.0 mm (3.0–247), NDVI 0.66
(0.24–0.80) and MI was 790 per 1000 person-years (73–3973). Temperature of 35 °C was significantly associated with
malaria incidence compared to the median observed temperature (30 °C) at month lag 2 (IRR: 2.00, 95% CI: 1.42–
2.83) and the increased cumulative IRR of malaria at month lags 1–4, with the highest cumulative IRR of 8.16 (95%
CI: 3.41–20.26) at lag-month 4. Rainfall of 200 mm significantly increased IRR of malaria compared to the median
observed rainfall (133 mm) at lag-month 0 (IRR: 1.24, 95% CI: 1.01–1.52) and the increased cumulative IRR of malaria
at month lags 1–4, with the highest cumulative IRR of 1.99(95% CI: 1.22–2.27) at lag-month 4. Average NVDI of 0.72
significantly increased the cumulative IRR of malaria compared to the median observed NDVI (0.66) at month lags
2–4, with the highest cumulative IRR of 1.57(95% CI: 1.09–2.25) at lag-month 4.
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Conclusions: In high-malaria transmission settings, high values of environmental covariates were associated with
increased cumulative IRR of malaria, with IRR peaks at variable lag times. The complex associations identified are
valuable for designing strategies for early warning, prevention, and control of seasonal malaria surges and
epidemics.
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Background
Environmental covariates such as temperature, vegeta-
tion, and rainfall play a major role in malaria transmis-
sion [1–3], by changing the vector populations which
often lead to changes in malaria burden and yet the
quantitative relationships between changes in these co-
variates and malaria incidence are not well characterized
in many settings especially in sub Saharan Africa. Several
factors complicate the characterization of these relation-
ships. Firstly, the effect of environmental covariates on
mosquito and parasite populations may not be linear.
For instance, moderate increase in rainfall leads to in-
creased humidity which prolongs adult longevity of the
mosquitoes and a surge in their population while heavy
rainfall reduces the populations by washing away the
mosquito larvae [4]. Similarly, temperature is a crucial
factor in the vector life-cycle. For instance, a rise in
temperature may also increase the blood meals taken
and eggs laid by the mosquito, increasing mosquito-
population density affecting transmission. Lower tem-
peratures, especially below 20 °C, and too high tempera-
tures may hamper the completion of mosquito growth
cycle [5, 6]. Vegetation may provide an outdoor resting
habitant or shelter for mosquitoes from extreme condi-
tions unfavourable for mosquito-population growth.
Many studies have reported associations between
changes in malaria burden and patterns of environmen-
tal factors [7–13]. However, the associations reported
vary between settings. For example, a study from South
Africa found that an increase in temperature signifi-
cantly raised malaria infections [12], while another in
Ethiopia showed a negative correlation [13].
Environmental covariates may also show effects that

are delayed in time, requiring examination of the tem-
poral dimension of the exposure–lag-response relation-
ship. Most studies on the relationships between these
covariates and the malaria burden have relied on specific
time lag, ignoring the cumulative effect of the environ-
mental covariates which may last for a period longer
than the current time [7, 14, 15]. From the biological
perspective, different periods including time for mos-
quito to develop, period of parasites within the mos-
quito, and incubation period of the parasites within
human body makes the assumption of a specific time lag
unrealistic, as the observed effect of the environmental
covariates in a given lag may be a cumulative effect from

the preceding lags. Additionally, the occurrence of ex-
treme environmental conditions in the recent past such
as prolonged rainfall seasons may have an impact on
malaria burden which is not yet clear.
Climate change has had great impacts on infectious

diseases, with shifts in malaria transmission areas re-
ported [16, 17], as may be reflected in changes of malaria
burden provided through surveillance data. Routine mal-
aria surveillance focuses on measures of disease (rather
than entomological measures) and measures of disease
are of greatest relevance from a public health perspec-
tive. Recently Uganda has experienced extreme environ-
mental conditions amidst a setting where malaria is
already endemic in almost 95% of the country [18], and
yet there is limited data on the quantitative relationship
between these covariates and malaria. Uganda Malaria
Surveillance Project (UMSP) in collaboration with Na-
tional Malaria Control Division (NMCD) have estab-
lished an enhanced health facility-based malaria
surveillance system at 70 public health facilities across
the country referred to as the Malaria Reference Centers
(MRCs) [19]. At these MRCs, individual patient level
data are collected and resources provided to maximize
laboratory testing of all patients with suspected malaria.
Data on village of residence of the patients is captured
and catchment areas around the MRCs identified, allow-
ing for the generation of estimates of malaria incidence
(Program for resistance, immunology, surveillance, and
modelling of malaria (prism) : Implementation Project
Pilot Study, Unpublished). In this study, the effect of en-
vironmental variability in rainfall, temperature and vege-
tation on malaria incidence in Uganda is quantified by
investigating exposure-lag-response effects. Quantifying
these relationships is a key step in producing useful sys-
tems to predict malaria incidence in the region and plan
for effective preventive strategies and sustainable long-
term malaria programming in the control of malaria
burden.

Methods
Study setting
This study leveraged data from UMSP derived from sen-
tinel surveillance in level III and IV public outpatient fa-
cilities that generally see between 1000 and 3000
outpatients per month and have functioning laborator-
ies. These facilities provide care free of charge, including
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diagnostic testing and medications. Full description of
the MRCs and the data captured has been published else
where [20]. This study included data from seven of the
70 MRCs. MRCs were included if they met the following
criteria: 1) location in a high malaria burden area where
indoor residual spraying of insecticide (IRS) was not be-
ing implemented, 2) had malaria incidence estimate data
for the period between January 2019 to December 2020
available. MRCs included in the analysis were Aduku
health centre IV in Kwania District, Lobule health centre
III in Koboko District, Awach health centre IV in Gulu
District, Lalogi health centre IV in Omoro District,
Patongo health centre IV in Agago District, Padibe
health centre IV in Lamwo District, Namokora health
centre IV in Kitgum District. The location of these
MRCs in Uganda is shown in supplementary file Fig. S1.

Environmental variables
Average monthly environmental data for the period of
January 2019–December 2020 were processed from re-
mote sensing sources. Data processed by remote sensing
included temperature (defined as day time land surface
temperature measured in degrees Celsius), Normalized
Difference Vegetation Index (NDVI) defined as a dimen-
sionless index used to measure neighborhood greenness
[21], and rainfall. Rainfall data was collected from cli-
mate hazards group infrared precipitation with station
data (CHIRPS) database and was measured in millime-
ters. CHIRPS incorporate 0.05° resolution satellite im-
agery with in-situ station data to create gridded rainfall
time series for trend analysis and seasonal drought mon-
itoring [22]. Temperature and NDVI data was obtained
from moderate resolution imaging spectro-radiometer
(MODIS) aboard the National Aeronautics and Space
Administration (NASA) satellites [23]. Global MODIS
data are provided every month at 1-km spatial resolution
as a gridded level-3 product in the sinusoidal projection
and were gap-filled to correct for cloud cover using a
random forest model with interpolated values, elevation,
and time [24]. Satellite environmental covariates were
preferred over nationally available estimates since they
had been shown to have an even spatial distribution
[25], and were available at a low administrative level
such as a village, enabling derivation of health facility
catchment area-specific estimates. The downloaded
raster files were transferred into quantum geographical
Information system (QGIS) software and village corre-
sponding environmental covariates’ centroid values were
extracted using Point Sampling tool. To give MRC spe-
cific estimates of environmental covariate in a given
month, the centroid values corresponding to the villages
that form the catchment area were averaged. Low values
of each covariate (temperature, rainfall, and vegetation
cover) included any value below the observed median

while high values were those greater than the median for
each respective environmental covariate.

Outcome
The outcome was monthly malaria incidence defined as
total cases of malaria within a given health facility catch-
ment area divided by the population of the catchment
area. Catchment areas were defined as villages where the
MRC was located and adjacent villages with similar mal-
aria incidence to the village where the MRC is located.
Details of how the catchment areas were estimated are
published else where [20]. A given catchment area in-
cluded 1–5 villages. The village level population esti-
mates for each catchment area were obtained from the
AfriPop database and included a fixed population
growth function of 0.0029 per unit time [26].

Statistical analysis
Cumulative data for the characteristics of the study pop-
ulations over the 24-month observation period (January
2019 – December 2020) were summarized and pre-
sented as monthly medians with corresponding ranges.
A cross-correlation analysis was performed to ascertain
the magnitude and direction of time-lagged relationships
between environmental covariates and malaria incidence,
and estimate the optimal lags. Optimal lags were defined
as the month corresponding to the highest significant
correlation coefficient. The Granger causality Wald test
was performed to determine the likely effect of lagged
environmental factors on the variability of malaria inci-
dence. The distributed lag nonlinear model (DLNM) was
used to investigate non-linear and lagged (specific and
cumulative) effects of environmental covariates on the
malaria incidence.
The DLNM is a modeling framework used to investi-

gate associations with potentially non-linear and delayed
effects on time-series data [27]. This methodology is
based on the definition of a cross-basis, which is a func-
tion expressed by the combination of two sets of basic
functions that specify the relationships in the dimension
of predictor and time lags, respectively. Second order
natural cubic spline for environmental factors that gen-
erated a basis matrix of polynomials was used for non-
linear effect and lag effect. The more flexible lag effects
at shorter delays were obtained by placing spline knots
at equal intervals in the range of environmental variables
and in the lag scale. Seasonality of malaria transmission
was controlled by including four degrees of freedom per
year in the model, representing the bimodal malaria
peak seasons in Uganda [28]. A health facility-specific
random variable was added to the model to control for
unmeasured differences between the facilities. The
model was selected on the basis of the Quasi-Akaike In-
formation Criterion (QAIC). The median value for each
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variable was defined as the baseline reference for calcu-
lating the IRR of the separate effect (in a specific lag-
month) and cumulative effect (in all months preceding a
specific lag-month) on the malaria incidence. All the
analyses were performed using R software version 3.6.0
with “dlnm” and “lme4” packages. Statistical significance
was determined using confidence intervals that do not
include the RR of the null hypothesis of 1.0.
A thousand simulations were run to rule out the possi-

bility of the effects being solely an influence of multi-
collinearity between temperature, rainfall, and vegetation
cover using the methodology proposed by Jose Barrera-
G’omez and Xavier Basagana in the “Collin” package in
R [29]. The results are presented in the supplementary
file Fig. S2 and the findings suggest the possibility of
other explanations for this result than multi-collinearity.

Results
Summary data on longitudinal measures of malaria
incidence and environmental covariates in high
transmission settings of Uganda
Over the 24-month study period, the overall median
monthly malaria incidence was 790 (range 73–3973)
cases per 1000 person years (PY), with the catchment
area around Patongo health centre having the highest
incidence at 1272 (176–3973) cases per 1000 PY, and
area around Namokora health centre having the low-
est incidence at 337.5 (73–1238) cases per 1000 PY.
The overall median temperature was 30.0 °C with
Padibe and Namokora health centre recording the
highest temperatures (30.5 °C) and Lobule health
centre recording the lowest at 28.0 °C. The median
monthly rainfall was 133.0 mm with highest estimates
around Lalogi health centre (148.5 mm, 8-214 mm)
and lowest around Padibe health centre (111.5 mm, 6-
227 mm). NDVI was highest at Lobule health centre
(0.74) and lowest at Patongo health centre (0.61) with
the median across all-sites estimated at 0.66. Table 1
provides the details of the longitudinal measures of

environmental variables at the study sites between
January 2019 and December 2020.

Temporal trend and seasonality of malaria incidence and
environmental covariates
Malaria incidence across all-sites was highest in June
2019 (1344.5 cases per 1000 PY, 713–2922) and lowest
in April 2019 (239.5 cases per 1000 PY, 103–1128) with
seasonal peak in incidence observed from April to Sep-
tember 2019 and accounting for 28.9% of the observed
malaria incidence. Temporal changes in monthly malaria
incidence over the 24-month observation period by
MRC are presented in the supplementary file Fig. S3.
Correlation analysis revealed a positive relationship be-
tween temperature and malaria incidence at month lag 4
(0.452), and a negative correlation for both rainfall (−
0.160) and NDVI (− 0.454) with malaria incidence at
month lag 4. Across MRCs, the correlation coefficients
for temperature with malaria incidence were negative at
month lag 1 and positive at month lag 4. This pattern
was reversed for both rainfall and NDVI at month lags 1
and 4. In addition, the optimal lags for the correlations
between environmental covariates and malaria incidence
varied by site (Table 2). The results of the Granger caus-
ality tests indicated that the temporal distribution of
malaria incidence was strongly affected by temperature,
rainfall, and NDVI among all-sites combined (Table 3).

Non-linear and lagged effects of environmental covariates
on malaria incidence
Temperature
With all sites combined; the incidence rate ratio (IRR) of
malaria increased at month lags 0–1 for temperature ap-
proximately 45–47 °C compared to the median observed
temperature (30.0 °C). Complete summary of the non-
linear relationship between monthly temperature and
malaria incidence over a four-month period is revealed
in part a of Fig. 1. The separate effects of different tem-
peratures and 2 month lags (0 and 4months) on the IRR

Table 1 Summary data on longitudinal measures of Environmental variables in high transmission settings of Uganda 2019–2020

Site Monthly median (range)

Temperature (degrees Celsius) Rain fall (mm) NDVI (index)

Aduku HC 29.00 (27.00–40.00) 142.00 (8.00–247.00) 0.68 (0.35–0.75)

Awach HC 29.00 (27.00–42.00) 138.50 (7.00–232.00) 0.68 (0.41–0.74)

Lalogi HC 28.50 (26.00–40.00) 148.50 (8.00–214.00) 0.72 (0.39–0.77)

Patongo HC 30.00 (28.00–47.00) 129.50 (3.00–223.00) 0.61 (0.25–0.69)

Padibe HC 30.50 (27.00–44.00) 111.50 (6.00–227.00) 0.62 (0.28–0.72)

Namokora HC 30.50 (27.00–47.00) 112.00 (4.00–226.00) 0.62 (0.24–0.75)

Lobule HC 28.00 (26.00–41.00) 122.00 (15.00–231.00) 0.73 (0.33–0.80)

All-sites combined 30.00 (26.00–47.00) 133.00 (3.00–247.00) 0.66 (0.24–0.80)

NDVI Normalized difference vegetation index

Okiring et al. BMC Public Health         (2021) 21:1962 Page 4 of 11



together with the 95% confidence intervals are provided in
part b of Fig. 1. Temperature increased the IRR steadily at
month lag 0 and increased the IRR to a peak at month lag
4. At low temperature, the IRR increased to 1.22 (95% CI,
0.68–2.16) at approximately 26.0 °C in month lag 4 as
compared to the median observed temperature (30.0 °C).
At temperature of approximately 35 °C, the IRR increased
significantly to 2.00 (95% CI, 1.42–2.83) in month lag 2
compared to the median observed temperature (30.0 °C)
(Table 4). The effect of temperature on the cumulative
IRR of malaria is shown in part c of Fig. 1. Temperature of
approximately 35 °C increased the cumulative IRR signifi-
cantly at month lags 1–4 compared to the median ob-
served temperature (30.0 °C) and the IRR of 8.16 (95% CI,
3.41–20.26) was the highest at month lag 4 (Table 4).

Rainfall
A summary of the non-linear relationship between
monthly rainfall and malaria incidence over a four-

month period is revealed in part a of Fig. 2. The IRR of
malaria incidence increased at low rainfall in lag-month
4 and for rainfall approximately above 200 mm in month
lags 1–4 compared to the median observed rainfall (133
mm). The separate effects of different rainfall values and
two-month lags (0 and 4months) on the IRR together
with the 95% confidence intervals are provided in part b
of Fig. 2. Increase in rainfall increased the IRR steadily
to a peak at approximately 200 mm. While at month lag
4, increase in rainfall reduced the IRR drastically for
values below 50 mm and flattened at IRR of 1.0 for
values approximately 50-200 m. Overall at low rainfall,
the IRR increased significantly to 4.05 (95% CI, 1.40–
11.54) at approximately 3 mm in month lag 4 compared
to the median observed rainfall (133 mm). At high rain-
fall, the IRR increased significantly to 1.24 (95% CI,
1.01–1.52) as compared to the median observed rainfall
(133 mm) at approximately 200 mm in month lag 0
(Table 4). The effect of rainfall on the cumulative IRR of
malaria is shown in part c of Fig. 2. Rainfall of

Table 2 Cross correlation coefficients between environment factors and the malaria incidence among high transmission settings of
Uganda 2019–2020

Site Environmental variables

Temperature Rain fall NDVI

Optimal Lag 1 Lag 4 optimal Lag 1 Lag 4 optimal Lag 1 Lag 4

Aduku HC −0.417 (−1)* − 0.417 0.366 0.511 (− 1)* 0.511 − 0.113 0.620 (− 1)* 0.620 − 0.299

Awach HC 0.496 (−4)* − 0.301 0.496 0.416 (−1)* 0.416 −0.335 0.471 (−1)* 0.471 −0.617

Lalogi HC 0.613 (−4)* −0.274 0.613 0.458 (−1)* 0.458 −0.510 −0.717 (−4)* 0.243 − 0.717

Patongo HC 0.481 (−4)* −0.424 0.481 0.485 (−1)* 0.485 −0.205 0.453 (−1)* 0.453 −0.559

Padibe HC −0.566 (−1)* − 0.566 0.477 0.731 (−1)* 0.731 −0.120 0.426 (−1)* 0.426 −0.555

Namokora HC −0.668 (−1)* − 0.668 0.411 0.651 (−1)* 0.617 −0.009 0.609 (−1)* 0.609 −0.460

Lobule HC −0.466 (−1)* − 0.466 0.334 0.526 (−1)* 0.551 −0.195 0.534 (−1)* 0.525 −0.336

All-sites combined 0.452 (−4)* −0.302 0.452 0.403 (−1)* 0.403 −0.160 −0.454 (−4)* 0.275 − 0.454

NDVI Normalized difference vegetation index

Table 3 Granger casuality tests for environmental factors (variables) and monthly malaria incidence in high transmission settings of
Uganda 2019–2020

Site Environmental variables

Temperature
F-statistics (p value)

Rain fall
F-statistics (p value)

NDVI
F-statistics (p value)

Aduku HC 0.0004 (0.9839) 4.3100 (0.051) 1.2388 (0.2789)

Awach HC 0.8251 (0.536) 3.2346 (0.0872) 3.8258 (0.0646)

Lalogi HC 1.2804 (0.3356) 1.8236 (0.1920) 4.9558 (0.0157)

Patongo HC 1.1143 (0.3982) 3.6732 (0.0697) 0.8423 (0.3697)

Padibe HC 0.0732 (0.7895) 8.8014 (0.0076) 0.7569 (0.3946)

Namokora HC 1.8881 (0.1846) 2.0669 (0.1660) 0.6985 (0.4131)

Lobule HC 3.2905 (0.0847) 6.0919 (0.0227) 5.3309 (0.0318)

All-sites combined 7.9999 (< 0.0001)a 8.9646 (0.0032)a 8.4206 (< 0.0001)a

aTemporal distribution of malaria incidence is strongly affected by the respective enviromental factors
NDVI Normalized difference vegetation index
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approximately 200 mm increased the cumulative IRR
from month lags 1–4 compared to the median observed
rainfall (133 mm) and the RR of 1.99 (95% CI, 1.22–2.27)
was the highest at month lag 4 (Table 4).

Normalized difference vegetation index
Part a of Fig. 3 presents a summary of the non-linear re-
lationship between monthly NDVI and malaria incidence
over a four-month period. The IRR of malaria incidence

increased at high NDVI values in month lags 2–4 at ap-
proximately 0.72–0.80 compared to the median observed
NDVI (0.66). The separate effects of different NDVI
values and 2 month lags (0 and 4months) on the IRR to-
gether with the 95% confidence intervals are provided in
part b of Fig. 3. Increase in NDVI increased the IRR
drastically for values below approximately 0.5 to a peak
at month lag 0. While at month lag 4, increase in NDVI
reduced the IRR drastically for values below 0.3 and then
increased at approximately above 0.70. Overall at low
NDVI, the IRR increased to 1.80 (95% CI, 0.35–9.43) at
approximately 0.24 in month lag 2 compared to the me-
dian observed NDVI (0.66). At high NDVI, the IRR in-
creased significantly to 1.31 (95% CI, 1.04–1.65)
compared to the median observed NDVI (0.66) at ap-
proximately 0.72 in month lag 2 (Table 4). The effect of
NDVI on the cumulative IRR of malaria is shown in part
c of Fig. 3. High NDVI increased the cumulative IRR of
malaria significantly within month lags 2–4 compared to
the median observed NDVI (0.66) and the IRR of 1.57
(95% CI, 1.09–2.25) was the highest at approximately
0.72 in month lag 4 (Table 4).

Discussion
The relationship between environmental covariates and
malaria burden is complex, as the effect is not only de-
termined in the current period but may also be influ-
enced by preceding time points. This study investigated
the quantitative effect of environmental covariates on
malaria incidence in high malaria transmission areas in
Uganda. In these settings, temperature, rainfall and
NDVI significantly affected the temporal distribution of
malaria incidence. High (greater than the observed me-
dian) temperature values increased the IRR of malaria
significantly in month lag 4 and the cumulative IRR at
month lags 1–4 compared to the median observed
temperature. Similarly, high rainfall increased the IRR of
malaria significantly at the month lag 0 and the cumula-
tive IRR at month lags 1–4 compared to the median ob-
served rainfall. High values of NDVI increased the
cumulative IRR of malaria significantly at month lags 2–
4 compared to the median observed NDVI.
Malaria control remains a priority in the national

health agenda, requiring planning and efficient allocation
of the limited resources available [30]. Efficient alloca-
tions of resources rely not only on current measures of
malaria burden but also predicting future malaria bur-
den. Surveillance data has been used to monitor trends
in malaria burden and visualization of prior seasonal
peaks in different transmission settings. The addition of
place of residence as part of routine surveillance data
collection tool has enabled estimation of health facility
catchment areas and generation of malaria incidence es-
timates to derive a direct measure of disease burden.

Fig. 1 a Contour plots of the combined effect of time lags and
Temperature on the incidence risk ratio of malaria. b Effect of
specific Temperature and time lags on the incidence risk ratio of
malaria. The blue lines are the mean relative risks, and the gray lines
are 95% CI. c Effects of specific Temperature and time lags on the
cumulative incidence risk ratio of malaria. The red lines are the mean
incidence risk ratio, and the gray areas are 95% CI
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Combining health facility surveillance data with environ-
mental covariates such as rainfall, temperature and vege-
tation coverage available through remote-sensing
sources may benefit malaria control efforts, as environ-
mental covariates are reported to facilitate malaria trans-
mission [31].
The relationship between environmental covariates

and malaria incidence may form a strong basis for mal-
aria early warning systems, as such prediction tools may
guide planning and control of malaria outbreaks. For in-
stance rainfall and sea surface temperature have been
used for monitoring malaria early warnings in Botswana
with the success of the malaria control program in redu-
cing malaria incidence attributed to the early warnings
[25]. Similarly in South Africa, prediction of malaria
based on the seasonal climate forecasts showed that
short-term predictions coincided closely with the ob-
served malaria cases, which may also benefit the malaria

early warning system [32]. In this study, high
temperature increased the IRR of malaria at month lag
4. Knowing temperature as a key parameter in mosquito
development, biting and survival with warmer tempera-
tures increasing the infection rates as the vector repro-
duces faster, the likelihood of infection after a mosquito
bite is amplified [33]. Even if the specific effect of
temperature on the IRR of malaria increased in month
lag 2, the cumulative IRR increased significantly at
month lags 1–4. The increased cumulative IRR could
possibly be explained by the increased multiplication
rate presented by global warming increasing the length
of mosquito breeding season [33]. The month lagged ef-
fects of temperature would avail time long enough to de-
sign interventions to interrupt malaria transmission,
despite temperature values used in the current study be-
ing high as compared to the optimal temperature for
malaria transmission of 29 °C [34]. However, this finding

Table 4 DLNM model results for separate and cumulative effects of environmental variables on the RR of malaria burden in high
transmission settings of Uganda

Effect type Specification Statistic Variable

Temperature Rainfall NDVI

Separate effect Low Variable value 26 3 0.24

Peak month 4 4 2

IRR at peak month 1.22 (0.68–2.16) 4.05 (1.40–11.54)a 1.80 (0.35–9.43)

High Variable value 35 200 0.72

Peak month 2 0 2

IRR at peak month 2.00 (1.42–2.83)a 1.24 (1.01–1.52)a 1.31 (1.04–1.65)a

Cumulative effect Month lag 1 Variable value 26 3 0.24

IRR 0.69 (0.31–1.62) 2.52 (0.72–8.56) 0.44 (0.08–2.36)

Variable value 35 200 0.72

IRR 2.19 (1.21–3.89)a 1.50 (1.12–2.00)a 1.09 (0.87–1.38)

Month lag 2 Variable value 26 3 0.24

IRR 0.43 (0.14–1.42) 3.16 (0.57–17.41) 0.79 (0.13–4.78)

Variable value 35 200 0.72

IRR 4.39 (2.09–9.21)a 1.87 (1.31–2.69)a 1.42 (1.06–1.89)a

Month lag 3 Variable value 26 3 0.24

IRR 0.36 (0.10–1.55) 6.73 (0.64–68.29) 0.54 (0.06–4.68)

Variable value 35 200 0.72

IRR 8.08 (3.41–20.26)a 1.95 (1.28–2.97)a 1.42 (1.04–1.95)a

Month lag 4 Variable value 26 3 0.24

IRR 0.44 (0.10–2.19) 26.70 (1.82–397.00)a 0.83 (0.09–7.18)

Variable value 35 200 0.72

IRR 8.16 (3.41–20.26)a 1.99 (1.22–2.27)a 1.57 (1.09–2.25)a

Peak month is the month corresponding to the highest IRR of malaria
astatistically significant
IRR Incidence risk ratio
NDVI Normalized difference vegetation index
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was consistent with previous studies which have demon-
strated how temporal disease risk shifts in response to
temperature changes and increase in maximum
temperature increases the incidence rate of malaria sig-
nificantly of the current month and later [35–37].
The current study also found high values of rainfall to

significantly increase the IRR of malaria at month lag 0
in these settings. Comparable to the specific rainfall ef-
fect, the cumulative IRR of malaria was increased signifi-
cantly at month lag 1–4 at approximately 200mm.

Rainfall provides avenues that facilitate mosquito breed-
ing suggesting that these areas retain water after rains
presenting suitable places for mosquito fertilization and
increasing the risk of malaria infections and transmis-
sion. Although not all mosquitoes need stagnant water,
they require at least some form of water to hatch eggs
increasing the risk in preceding time points. The preced-
ing time points’ malaria IRR is increased by the trans-
cended adult mosquitoes. This finding was consistent
with earlier studies. For instance a study conducted in

Fig. 2 a Contour plots of the combined effect of time lags and
rainfall amounts on the incidence risk ratio of malaria. b Effect of
specific rainfall amounts and time lags on the incidence risk ratio of
malaria. The blue lines are the mean incidence risk ratio, and the
gray lines are 95% CI. c Effects of specific rainfall amounts and time
lags on the cumulative incidence risk ratio of malaria. The red lines
are the mean incidence risk ratio, and the gray areas are 95% CI

Fig. 3 a Contour plots of the combined effect of time lags and
normalized vegetation index (NDVI) on the incidence risk ratio of
malaria. b Effect of specific NDVI and time lags on the incidence risk
ratio of malaria. The blue lines are the mean incidence risk ratio, and
the gray lines are 95% CI. c Effects of specific NDVI and time lags on
the cumulative incidence risk ratio of malaria. The red lines are the
mean incidence risk ratio, and the gray areas are 95% CI
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Kenya showed positive associations between rainfall and
malaria burden at lags of 2 to 4months at rainfall ap-
proximately 100–200 mm in both lowland and highland
[38].
This study also found a significant increased cumulative

IRR of malaria at month lags 2–4 for high values of NDVI
approximately 0.72 indicating dense vegetation. Vegeta-
tion around household residences may serve as refuge for
outdoor resting of mosquitoes [39]. Conversely, sparse
vegetation may limit the biting rates reducing the likeli-
hood of malaria transmission. Deforestation which is an
indicator of low vegetation cover has been shown to re-
duce malaria transmission significantly [40]. This study
was implemented in Amazon basin which is well known
to be drained by the Amazon River and its tributaries. The
possible explanation is that in the current month, defor-
estation reduces the outdoor resting places for mosquitoes
driving the mosquitoes away reducing the risk of malaria
burden. Contrary with a study conducted in Kenya that
have demonstrated the associations between NDVI values
of 0.35 and malaria burden, the current study used 0.24
which are all in the same range of 0.2–0.5 and did
not realize any specific effect significant association at
any month lags [41, 42]. The possible explanation
could be the difference in the transmission intensities
between the current study and the former study in
Kenya. The current study only considered high trans-
mission settings while the former study compared
lowlands and highlands. Ofnote highlands are prone
to low mosquito population as the conditions are not
friendly resulting to low infection rates.
In the present study, despite the increasing cumulative

IRR for high values of environmental covariates in
month lags 0–4, the rate of increase in the cumulative
IRR was more in month lags 1–2 as compared to 3–4.
For instance the cumulative IRR more than doubled in
month lags 1–3 as compared to month lags 3–4 at
temperature approximately 35 °C, more than doubled in
month lags 0–2 as compared to 2–4 at rainfall approxi-
mately 200mm, and more than doubled in month lags
0–2 as compared to 2–4 at NDVI of approximately 0.72.
This may be well explained by the saturation effect, as
when environmental conditions are sufficient for mos-
quito cycle completion, any additional value of the co-
variates may have little impact on the development of
mosquito or parasite. This seems to suggest that inter-
ventions may be more effective if implemented in the
earliest time as much as possible in order to interrupt
the mosquito cycle supporting the current World Health
Organization recommendations on early accurate diag-
nosis and treatment of malaria [43]. The current study
had practical implications as the advance warnings of
approaching situations advantageous to malaria epi-
demics will afford national malaria control programmes

the freedom needed to stock commodities required to
deal with impending surges or epidemics.
This study has several limitations. First, as this study

was a population level study which involved environ-
mental covariates and malaria, it is possible that some
confounders may not have been considered which may
have influenced the results such as socio-economic and
community practices [44, 45]. Second, the data available
was limited to a 24-month period, as data from previous
years was only health facility cases of malaria rather than
incidence as catchment areas were not available. This
limited the ability to control for long-term trends. Such
long-term trends in rainfall have been shown to influ-
ence malaria burden [46]. Third, this study was unable
to encompass the entirety of environmental covariates,
for instance because altitude did not vary over time, it
was not considered as a covariate in this analysis. How-
ever, adding a health facility random variable in the
model catered for the variability that was site-specific.
Fourth, the study was conducted around health facilities
whose data is prone to missingness may have influenced
the result. Health facilities with less than 5% missing
data on the village of residence for each month were in-
cluded. Finally, the current study explored the associa-
tions between environmental covariates with malaria
incidence in high transmission settings and the identified
month-lag time points may only be applicable and
generalizable to these settings. Therefore, the data
should be interpreted with caution. For instance a study
conducted in China showed that minimum temperature
had a longer lag ranges and larger correlation coeffi-
cients for hot weather counties compared to cold wea-
ther counties. While maximum temperature was only
associated with malaria cases at early lags [47].

Conclusion
In the present study, high temperature increased the cu-
mulative IRR of malaria significantly at month lags 1–4
compared to observed median of 30 °C. High rainfall in-
creased the IRR of malaria significantly at month lag 0
and cummulative IRR at month lags 1–4 compared to
the observed median of 133 mm. High NDVI increased
the cumulative IRR significantly at month lags 2–4 com-
pared to the observed median of 0.66. The results high-
light the relevance of incorporating the effects of
environmental covariates in predicting malaria when de-
veloping early warning systems. These identified com-
plex associations are useful for designing accurate
strategies for early warning, prevention, and control of
seasonal malaria epidemics.
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are connected with gray lines. The red thick line represents the IRRs
observed in the real dataset. Results are presented for temperatures 26 °C,
35 °C, 45 °C, taking 30 °C as a reference. The results were obtained when
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at temperature 35 °C: IRR = 1.28 for lags 0, IRR = 1.45 for lags 1, IRR = 1.24
for lags 2, IRR = 1.70 at lag 3, IRR = 1.24 at lag 4; at temperature 45 °C: IRR
=1.29 at lag 0, IRR = 1 for lags 1 and lag 4, IRR = 1.07 at lag 2, IRR =1.48 at
lag 3. b. Estimated IRR for malaria as a function of rainfall obtained from
distributed lag models, over 1000 simulations. Estimates from the same
simulation run are connected with gray lines. The red thick line
represents the RRs observed in the real dataset. Results are presented for
rainfall 3 mm, 200 mm, and 247 mm, taking 133 mm as a reference. The
results were obtained when simulating data with the following IRRs: At
rainfall 3 mm: IRR = 1 at lags 0,2 and 3, IRR = 1.15 at lag 1, and IRR = 1.60
at lag 4; at rainfall 200 mm: IRR = 1.12 for lags 0, IRR = 1 at lags 1,3 and 4,
IRR = 1.03 at lag 2; at rainfall 247 mm: IRR =1 at lag 0, IRR = 2.13 at lag 1,
IRR = 1.46 at lag 2, IRR = 1.95 at lag 3, IRR = 2.20 at lag 4. c. Estimated IRR
for malaria as a function of NDVI obtained from distributed lag models,
over 1000 simulations. Estimates from the same simulation run are
connected with gray lines. The red thick line represents the RRs observed
in the real dataset. Results are presented for NDVI values of 0.24, 0,50,0.72,
taking 0.66 as a reference. The results were obtained when simulating
data with the following IRRs: At NDVI 0.24: IRR = 1 at lags 0 and 1, IRR =
1.04 at lag 2,IRR = 1.98 at alg3, and IRR = 1.37 at lag 4; at NDVI 0.50: IRR =
1.13 for lags 0, IRR = 1.01 at lag 1, IRR = 1 at lag 2,IRR = 1.22 at lag 3, and
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