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Abstract
Microorganisms striving in extreme environments and exhibiting optimal growth and reproduction at low temperatures, 
otherwise known as psychrophilic microorganisms, are potential sources of cold-active enzymes. Owing to higher stability 
and cold activity, these enzymes are gaining enormous attention in numerous industrial bioprocesses. Applications of sev-
eral cold-active enzymes have been established in the food industry, e.g., β-galactosidase, pectinase, proteases, amylases, 
xylanases, pullulanases, lipases, and β-mannanases. The enzyme engineering approaches and the accumulating knowledge 
of protein structure and function have made it possible to improve the catalytic properties of interest and express the candi-
date enzyme in a heterologous host for a higher level of enzyme production. This review compiles the relevant and recent 
information on the potential uses of different cold-active enzymes in the food industry.
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Introduction

The term “psychrophiles” is a Greek word coming from 
psukhros meaning ‘cold’ and philein, ‘loving’. Psychro-
philes are defined as microorganisms that can grow and 
sustain in cold environments, such as deep sea, high eleva-
tions and Polar Regions of the planet Earth, and can toler-
ate the temperature range 0–20 °C; however, the optimal 
temperature for their growth is 5 °C (Cavicchioli 2016; Sal-
wan and Sharma 2020). The first known and taxonomically 
described species of psychrophiles are Vibrio marinus and 
V. psychroerythrus (Morita and Moyer 2001). Nonetheless, 
several species of bacteria (Bacillus, Bacteroides, Arthro-
bacter, Clostridium, Pseudomonas, and Methanogenium) 
and fungi (Pseudogymnoascus, and Geomyces) have also 

been described to be psychrophilic (Morita and Moyer 2001; 
Meteyer and Verant 2019). Psychrophiles are well adapted 
to extreme environments and possess complex metabolic 
adaptations, such as altered nutrient transport mechanisms, 
intracellular ice formation and cold denaturation of proteins 
(Feller and Gerday 2003). Besides, these microorganisms are 
potentially rich enzymes that can maintain high activity even 
at low temperatures by reducing the temperature dependence 
of the reaction (Yayanos 2009; Cavicchioli et al. 2011; Irwin 
2020; Rai and Rakshak 2015).

These cold-active or psychrophilic enzymes are advanta-
geous for many industrial applications as they are (i) cost-
effective, (ii) able to catalyze reaction without any additional 
heat aid and (iii) can be inactivated selectively by gentle heat 
input. Cold-active enzymes are also used in several biotech-
nology applications to prevent many undesirable reactions 
and restrict the loss of volatile components (Gerday 2013; 
Kuddus 2018). Due to these inevitable applications, the role 
of cold-active enzymes in the coming years is expected to 
witness generous market growth (Santiago et al. 2016; Al-
Ghanayem and Joseph 2020). Numerous possible prospects 
of these cold-active enzymes have also become evident in 
food processing applications as the low temperature reduces 
many adverse reactions and microbial contamination (Kud-
dus and Ramteke 2012; Javed and Qazi 2016). Production 
of fruit juices, alcoholic beverages, chocolates, sweeteners, 
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cheese, bakery products and milk products are typical appli-
cations of cold-active enzymes.

Despite the tremendous importance of cold-active 
enzymes, finding novel enzymes for their commercial appli-
cations in the food industry is a growing challenge (Kuddus 
2018). On the other hand, less availability and low stability 
of these enzymes are significant signs. Furthermore, bio-
technologists are more concerned about the specific cata-
lytic activity of these cold-active enzymes, which need to be 
explored at the industrial level (Kuddus 2018; Hamid and 
Mohiddin 2018). Therefore, the development and invention 
of new technologies are needed to boost the quality and pro-
duction of cold-active enzymes. Moreover, with the advent 
of approaches, such as protein engineering, rDNA technol-
ogy and metagenomics, these enzymes can be devised to 
be used competently for diverse food applications (Thakur 
et al. 2021a). This review provides insights into applying 
cold-active enzymes in food processing, emphasizing the 
recombinant clones and their industrial significance (Fig. 1).

Psychrophilic microbes as producers 
of cold‑active enzymes

Psychrophiles represent an extensive range of microbial taxa 
such as bacteria, archaea, algae and yeasts that can thrive in 
permanently cold habitats, including glaciers, high moun-
tains, ocean depths, shallow subterranean and polar regions. 
They experience severe physicochemical constraints, includ-
ing decreased biochemical reaction rates, reduced membrane 
fluidity, altered transport systems and cold denaturation of 
proteins (D’Amico et al. 2006; Siddiqui and Cavicchioli 
2006). Adaptive features to overcome these constraints have 
frequently been detected in the genomes of several psychro-
philes sequenced so far (Saunders et al. 2003; Riley et al. 
2008; Ayala-Del-Rio et al. 2010). Moreover, the produc-
tion of cold-active enzymes that drive metabolism and the 
cell cycle in these microorganisms has been considered a 
characteristic adaptation. The enzymes offer high specific 
activity even at low temperatures, compensating for the 
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Fig. 1  Schematic representation showing application of cold active enzymes produced by psychrophilic microorganisms in food processing 
industry
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rapid decrease in chemical reaction rates. This adaptive fea-
ture is thought to be genetically encoded in the amino acid 
sequence and reportedly resulted from a long term selection 
process (Feller and Gerday 2003; Feller 2013).

Psychrophilic microorganisms contain many critical 
proteins and other metabolites as determinative factors in 
their adaptation to cold environments. They evolve mecha-
nisms to maintain maximal translation and protein folding 
under cold conditions (Siddiqui and Cavicchioli 2006; Feller 
2013). The protein components liable for the maintenance 
of RNA for carrying out the translation process, specifically 
the ribosomal proteins and RNA helicases, appeared to be 
overexpressed in many cold-adapted microorganisms (Lim 
et al. 2000; Jung et al. 2010). Furthermore, diminution in the 
number and strength of non-covalent interactions outside the 
catalytic cavity offers motional and dynamic strength to the 
active site amino acids upholding catalytic efficiency of the 
enzymes in cold temperatures (Feller 2013). More impor-
tantly, the chaperones including DnaK, GroEL, ribosome-
bound trigger factor (TF) and RNA chaperones, such as 
cold-shock protein A, which have reportedly played a crucial 
role in the folding of newly synthesized polypeptides, con-
tribute significantly to the adaptive feature of psychrophilic 
microorganisms and conformational flexibility of the cold-
active enzymes (Strocchi et al. 2006; Sung et al. 2011; Piette 
et al. 2011). Numerous microorganisms, including bacteria 
(species of Arthrobacter, Pseudolteromonas, Paracoccus, 
Pseudomonas, etc.) and fungi (species of Geomyces, Can-
dida, Penicillium, Cladosporium, etc.) residing in the Ant-
arctic and Arctic habitats, and high elevation regions have 
been investigated for the production of cold-active enzymes, 
which demonstrate the remarkable potential to be used in 
various industries (Santiago et al. 2016; Hamid and Mohid-
din 2018; Bruno et al. 2019).

Cold‑active enzymes in the food industry

Cold-active enzymes inherit flexible structures that presum-
ably recompense for the low kinetic energy present in the 
cold habitats. Because of this reason, these enzymes often 
demonstrate a reduction in the activation enthalpy (ΔH) 
while showing more negative activation entropy (ΔS) as 
compared to their thermophilic and mesophilic counterparts. 
That is why the reaction rate of cold-active enzymes tends 
to decrease very slowly concerning a decrease in tempera-
ture around the surrounding. This balancing act of activa-
tion parameters is transformed to the high catalytic activity 
of these enzymes at low temperatures (Siddiqui and Cavic-
chioli 2006; Cavicchioli et al. 2011). Therefore, the biotech-
nological potential of cold-active enzymes reflects several 
factors, including their high activity in low to moderate tem-
peratures, increasing thermolability at high temperatures, 

and the ability of these enzymes to carry out the reaction 
in organic solvents (Marx et al. 2007; Margesin and Feller 
2010). Cold-active enzymes could also be able to catalyze 
reactions at temperatures that play down many undesirable 
and competitive chemical reactions. These low-temperature 
active enzymes are of particular interest for transforming 
heat-sensitive substrates (Jeon et al. 2009). Because of these 
unique features, cold-active enzymes are considered as most 
germane to the food and feed industry. Importance is being 
given to evade spoilage, change in flavour and nutritional 
parameters of the native thermolabile substrates and prod-
ucts. Cold-active enzymes are widely used in food applica-
tions, such as meat tenderization, baking, brewing, flavour-
ing, cheese production, and animal feed processing (Tables 1 
and 2).

According to the International Union of Biochemistry 
and Molecular Biology (IUBMB), enzymes are classified 
into six major categories based on the type of reactions 
they catalyze: oxidoreductases, transferases, hydrolases, 
lyases, isomerases, and ligases. Though these enzymatic 
reactions are vital in food production, food biotechnologists 
are mainly concerned with oxidoreductases and hydrolases 
(Chourasia et al. 2020; Raveendran et al. 2018; Bruno et al. 
2019). Hydrolases are given preference, considering their 
significant roles in cheese production, malting and brewing, 
conversion of starch to glucose and fructose, and human 
metabolism (Fernandes 2010; Adrio and Demain 2014; 
Sarmiento et al. 2015). The anticipated food applications of 
cold-active hydrolytic enzymes are discussed in the subse-
quence sections.

Hydrolases

Hydrolases constitute a very composite collection of 
enzymes that catalyze bond cleavages upon reaction with 
water. The innate role of most hydrolases is digestion that is 
breaking down nutrients into smaller units suitable for diges-
tion, and because of this, they usually have a broad range of 
substrate specificity. Examples include proteases (hydrolyze 
proteins to oligopeptides and amino acids), lipases (hydro-
lyze triglycerides to glycerol and fatty acids), phosphatases, 
pectinases, etc.

β‑Galactosidases

β-Galactosidases offer an obvious example of glycosidases, 
with the advantage of being active at low temperatures 
and cost-effective (Bruno et al. 2019). β-Galactosidases 
are used to remove lactose from milk and dairy products, 
where the enzyme hydrolyzes lactose into glucose and 
galactose. With more than half of the world's population 
suffering from lactose intolerance and also because of 
the difficulties in crystallizing lactose, β-galactosidases 
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have drawn the growing attention of food biotechnologists 
(Dalmaso et al. 2015). Cold-active β-galactosidases (act-
ing at acidic pH) can improve the technical effectiveness 
of whey by producing syrups rich in glucose and galactose 
that can be utilized in a variety of food products (Gerday 
et al. 2000). These enzymes also possess transglycosyla-
tion activities to catalyze the hydrolysis of lactose with the 
instantaneous transfer of the monosaccharides to higher 
oligosaccharides forming tri and tetrasaccharides (Kar-
asova-Lipovova et al. 2003; Benesova et al. 2005). Such 
galacto-oligosaccharides have potential uses as prebiotic 
additives that enhance the growth of Bifidobacteria in the 
large intestine. Several studies have reported the isolation 

of cold-active β-galactosidases from psychrophilic bacteria, 
and many are from the Antarctic and Arctic regions. Karan 
et al. (2013) and Laye et al. (2017) described the cold-active 
β-galactosidases from Halorubrum lacusprofundi, a bacte-
rial psychrophile isolated from the hypersaline Deep Lake 
of Antarctica. Several β-galactosidases, isolated from spe-
cies of Paracoccus, Arthrobacter and Pseudoalteromonas 
(P. haloplanktis TAE 79 and LMGP-19143) of the Antarctic 
region, are functional at low temperatures and have potential 
application in the milk and dairy industry (Trimbur et al. 
1994; Hoyoux et al. 2001; Turkiewicz et al. 2003; Cieslinski 
et al. 2005; Makowski et al. 2007; Hildebrandt et al. 2009). 
Cold-active β-galactosidases showing considerable lactose 

Table 1  Cold-active enzymes produced by psychrophilic microorganisms and their potential applications in food industry

NS not specified

Cold-active enzymes Sample source Microorganisms Potential/recommended 
application

References

Xylanase Soil sample (Antarctica) Pseudoalteromonas halo-
planktis

Xylo-oligosaccharides 
production

Collins et al. (2002)

β-Galactosidase Sea sediment (Antarctica) Guehomyces pullulans 17–1 Dairy industry for pro-
duction of lactose free 
products

Song et al. (2010)

Soil (Antarctica) Rahnellainusitata -Do- Núñez-Montero et al. (2021)
Chitinase Soil, seal and penguin feces, 

and marine sediment 
(Antarctica)

Pseudomonas sp. Biocontrol of microbial 
spoilage of cold-stored 
foods and against vegetable 
spoilage pathogenic fungi

Liu et al. (2019)

Protease Deep sea sediment (China) Pseudoaltermonas sp. 
SM9913

Taste enhancement of cold-
stored meat

He et al. (2004)

Sausage Penicillium nalgiovense 
PNA9

Meat ripening Papagianni and Sergelidis 
(2014)

NS Arsukibacteriumikkense Production of bioactive 
dairy products and other 
functional foods

De Gobba et al. (2014)

East Rathong Glacier, Sik-
kim

Chryseobacterium polytri-
chastri

Production of antioxidant 
peptides

Mukhia et al. (2021)

Sea ice (Antarctica) Pseudoalteromonas sp. 
NJ276

As additives in baking indus-
try, food processing and 
preservation industries

Wang et al. (2008)

Refrigerator of a meat fac-
tory (China)

Serratia sp. WJ39 Food processing industry Ji et al. (2014)

Phytase Deep sea sediment (Antarc-
tica)

Rhodotorula mucilaginosa 
JMUY14

Feed industry especially 
aquaculture feed process-
ing

Yu et al. (2015)

Antarctic sample Cryptococcus laurentii 
AL27

Feed industry Pavlova et al. (2008)

Pectinase Marine sponge (Antarctica) Geomyces sp. F09-T3-2 Production of white wine Poveda et al. (2018)
Fruit orchard soil and 

spoiled refrigerated fruits 
and vegetables (Himalaya)

Saccharomyces sp. Fruit juice clarification Naga Padma et al. (2011)

Grapes (Argentina) Bacillus sp. CH15 Red wine making Martín and Morata de 
Ambrosini (2013)

Grape wine and wineries 
(Argentina)

Aureobasidium pullulans 
strains

Cold-wine making Merín and de Ambrosini 
(2015)
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hydrolyzing efficiency were isolated from Enterobacter 
ludwigii and Alkalilactibacillus ikkense inhabiting the Arc-
tic region (Schmidt and Stougaard 2010; Alikkunju et al. 
2016). Besides, filamentous psychrophilic fungi colonizing 
the Antarctic environments hold the similar potential of pro-
ducing β-galactosidases as those of bacterial psychrophiles. 
For instance, β-galactosidases isolated from Tausonia pul-
lulans and Cryptococcus albidus colonizing Antarctic sea 
sediments reportedly hydrolyze lactose (Koleva et al. 2006; 
Song et al. 2010; Zhang et al. 2012).

Xylanases

Xylanases that catalyze the endohydrolysis of 1,4-β-d-
xylosidic linkages in xylan grasp the enormous potential 
for extensive use in biomass processing and the food indus-
try (Joshi et al. 2020; Phukon et al. 2020a). They have an 
essential role in bread-making, since they transform insolu-
ble hemicellulose in the dough to soluble sugars, giving in 
elastic and soft bread. Few cold-active enzymes, purified 
from psychrophilic bacteria inhabiting Antarctic habitats, 
such as Pseudoalteromonas haloplanktis and Flavobacte-
rium sp., have been observed to improve the dough proper-
ties along with the bread volume (Collins et al. 2002; Dornez 
et al. 2011). Few shreds of evidence of filamentous fungi 
(e.g., Geomyces pannorum and Cladosporium sp.), colo-
nizing extreme habitats such as Polar Regions, producing 
xylanases have also been described (Del-Cid et al. 2014). 
The xylanolytic activity of the fungi was reportedly intact at 
low temperatures with very low stability; however, detailed 
characterization of xylanases and their physicochemical 
properties from fungi are truly limited. Therefore, further 
studies on the psychrophilic xylanases from microorganisms 
of diverse cold habitats should be driven forward, and efforts 
must be assumed to facilitate them as model candidates for 
different food processing applications.

Amylases

Amylases are another kind of glycoside hydrolases that 
catalyze starch hydrolysis by acting upon α-1,4-glycosidic 
bonds, a covalent bond joining two α-d-glucose together. 
They hydrolyze starch to form malotriose, maltose, glu-
cose monomers, and limit dextrins. Amylases are further 
classified based on the specificity of the reactions cata-
lyzed by them, and are exoamylases (e.g., β-amylases, 
glucoamylases and α-glucosidases), endoamylases (e.g., 
α-amylases), debranching amylases (e.g., pullulanases, 
isoamylases, and dextrinases), and transferases (e.g., 
4-α-glucanotransferases, and cyclodextrin glycosyltrans-
ferases) (van der Maarel et al. 2002). Amylases have tre-
mendous potential for use in food applications, including 
wine and beer fermentation and bread and fruit juices. Ta
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Several cold-active amylases have been purified from psy-
chrophilic microorganisms (Srimathi et al. 2007; Roohi 
et al. 2013; Ramli et al. 2013; Qin et al. 2014; Rajaei 
et al. 2015). The most studied cold-active amylases are 
α-amylases, but only a few have been proposed for pos-
sible application in the food industry, including a novel 
α-amylase isolated from a psychrophilic fungus, Geomy-
ces panorum, that is reported to have latent application for 
the baking industry (He et al. 2017).

Chitinases

Chitinases can break down chitin by hydrolyzing N-acetyl-
β-d-glucosaminide (1→4)-β-linkages randomly into 
oligo- and monomeric components. Chitinases have been 
influential in various biotechnological sectors because of 
their role in the bioconversion of chitinous biomass into 
several value-added products. Although poorly studied, 
cold-active chitinases and their high activity at fairly low 
temperatures can be used in the production of chitoo-
ligosaccharides (COS), the oligomers of N-acetyl-d-glu-
cosamine (GlcNAc) and d-glucosamine (GlcN) linked by 
β-1,4-O-glycoside bond released as a result of chitin deg-
radation (Le and Yang 2019; Rajabi 2019). COS are low 
weight water-soluble substances having interesting bioac-
tivities and can easily be absorbed by the small intestine. 
COS can find application in the food industry as a food 
additive and packaging materials as its antimicrobial and 
antioxidant properties enable protection from deterioration 
(Liu et al. 2019; Rajabi 2019). Cold-active chitinases can 
be used to produce single-cell proteins for use as cheaper 
and alternative protein dietary supplements to soymeal and 
fish meal (Patil and Jadhav 2014; Wadhwa and Bakshi 
2016). In addition, cold-active chitinases offer antifungal 
activity, which could be helpful in bio-control of post-
harvest fungal pathogens and, therefore, demonstrating 
the considerable potential for the food industry in safe 
storage of vegetables and fruits (Castillo et al. 2016; Le 
and Yang 2019). Reports on cold-active chitinase from 
psychrophilic microorganisms are not many except a cell-
bound cold-active chitobiase, exochitinase isolated from 
psychrophilic Arthrobacter sp. TAD20 (Lohienne et al. 
2001). Despite the tremendous significance, the use of 
cold-active chitinases has not witnessed any considerable 
progress in food industries, which could be because of 
their less availability and specificity. We must prioritize 
their isolation and exploration from varied sources, includ-
ing the psychrophilic microorganisms. Furthermore, they 
can be tailored and expressed in selected hosts to improve 
their stability and yield towards enhanced applicability in 
food biotechnology.

Other hydrolases

Pullulanases are critical glycosidase enzymes in starch pro-
cessing and are primarily used in making maltose and glu-
cose syrups (Thakur et al. 2021a). Pullulanases catalyze the 
hydrolysis of α-1,6-and α-1,4-linkages in starch, pullulan, 
amylopectin and other related oligosaccharides (Hii et al. 
2012). Many cold-active pullulanases have been identified 
and characterized and shown their efficiency for other bio-
technology applications, such as starch degradation for bio-
ethanol production and transformation of biomass-derived 
starch into resistant starch (Elleuche et al. 2014; Thakur 
et al. 2021a, b).

Other glycosidases that represent a prospective candi-
date for the food industry are cellulases. They catalyze total 
hydrolysis of cellulose into sugars and are used in coffee pro-
cessing and making wine (Kumar et al. 2018; Jayasekara and 
Ratnayake 2019). Cellulases, pectinases, and hemicellulase 
are also used to extract fruit juices and minimize food spoil-
age (Kuhad et al. 2011). Three cellulolytic activities have 
been cited from cellulases of natural origin: endoglucanase, 
β-glucosidase, and β-1,4-cellobiohydrolase. Over the dec-
ades, several cold-active cellulases sourced from psychro-
philic microorganisms have been purified and characterized 
(Benesova et al. 2005; Shipkowski and Brenchley 2005; 
Zeng et al. 2006; Fu et al. 2010); however, their potential 
applicability in the food industry is scarcely known. Con-
versely, bioprospecting novel enzymes of these kinds from 
diverse cold-adapted microbial resources could address the 
present limitations of cost and energy associated with the 
use of thermophilic and mesophilic enzymes in various 
industrial processes.

Proteases

Proteases or peptidases are an interesting class of hydrolyz-
ing enzymes that catalyze the hydrolysis of large proteins 
into minor peptides. Basing upon their ability to hydrolyze 
N- or C-terminal peptide bonds and internal peptide bonds, 
proteases are classified, respectively, into exopeptidases 
and endopeptidases (Chourasia et al. 2021). Exopeptidases 
cleaving N-terminal peptide bonds are called aminopepti-
dases, whereas those hydrolyze C terminal peptide linkage 
are called carboxypeptidases. Cold-active proteases hold 
enormous potential due to their several unique features, 
including optimal activity at low temperature, enabling an 
easy transformation of thermolabile products (Kuddus and 
Ramteke 2012; Kuddus 2018). In addition, they have spe-
cific applications in processes, such as the fermentation of 
fish and soya sauce, contributing nil change in nutritional 
value and flavour. They can also be considered alternatives 
to rennet, speeding up the ripening process of slow ripening 
cheeses when used with lipase. Cold-active proteases can 
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also be profitable in taste development and softening of fro-
zen meat products (Joshi and Satyanarayana 2013). Several 
proteases have been recovered from psychrophilic microor-
ganisms, including bacteria, fungi and algae (Peterson et al. 
2013; Vaca et al. 2013; Joshi and Satyanarayana 2013). A 
cold-active protease isolated from psychrophilic Pseudoalte-
romonas sp. has been reported to secrete essential amino 
acids that selectively enhance the taste of frozen meat (He 
et al. 2004). The psychrophilic serine protease belonging to 
Chryseobacterium sp. has been proposed for its applicability 
in improving meat quality because of its tolerance to salt and 
optimal activity at low temperature (Mageswari et al. 2017).

Cold-active protease obtained from Pseudoalteromonas 
sp. produced free amino acids from milk protein at 4 °C, 
implicating its significance in low-temperature food process-
ing (Wang et al. 2008). A metalloprotease isolated from psy-
chrophilic Enterococcus faecalis displayed no side effects 
while administered orally and can be used in functional 
foods, increasing their stability and solubility (Yuan et al. 
2009). Similarly, cold-adapted proteases from Arsukibacte-
rium ikkense, releasing bioactive peptides from milk caseins, 
have been accounted for indicating the practical suitability 
of these enzymes in dairy industry (De Gobba et al. 2014). 
Besides psychrophilic bacteria, fungi colonizing the extreme 
habitats have been known to produce proteases active at low 
to moderate temperatures (Duarte et al. 2018; Lario et al. 
2015). One such protease (aspartic protease) purified from 
psychrotrophic yeast Sporobolomyces roseus was proposed 
as a potent biocatalyst in the production of soy-sauce and 
cheese, meat tenderization, and also as bread additive 
(Bialkowska et al. 2018). In a recent study, cold-active pro-
tease from Chryseobacterium polytrichastri isolated from 
East Rathong Glacier has been reported to produce soybean 
derived bioactive peptides (Mukhia et al. 2021).

In the present biotechnological era, cold-active proteases 
can be applied in exciting food bioprocess industries if they 
can be economically produced at a large scale. There is a 
need of exploring novel cold-active proteases that can find 
applications in cheese ripening, recovering heat-sensitive 
nutrients, such as lipids rich in polyunsaturated fatty acids 
(Rai et al. 2012, 2017; Hathwar et al. 2011). Cold-active pro-
teases can be applied in the recovery of protein hydrolysates 
from food processing byproducts that are rich in heat-sensi-
tive lipids and antioxidants (Rai et al. 2013). Furthermore, 
they can be explored for softening of meat products and 
winemaking against haze-producing proteins. Due to their 
tremendous potential in the food industry, novel cold-active 
enzymes producing isolates from unexplored niches and 
genomic resources need to be studied. Extensive research 
is needed on factors affecting the enhanced the production 
of these cold-active proteases and molecular mechanisms 
for improvement of the activity to meet their demand at the 
industrial level.

Esterases and lipases

Esterases, also referred to as carboxyl ester hydrolases, are 
drawing vast attention for biotechnological applications. 
They catalyze synthesis and hydrolysis of ester bonds and 
are classified into lipases (act on lipids) and non-lipolytic 
esterases (act on water-soluble ester substrates) (Thierry 
et al. 2017). The curiosity on cold-active lipases is associ-
ated with their inherent physiological and structural adaptive 
mechanisms (Phukon et al. 2020b). Cold-active lipases are 
becoming a fundamental part of the modern food industry, 
where they can be used in protein polymerization and gelling 
in fish, clearing of drains clogged by lipids in food process-
ing, upgrading food texture and modifying flavor, and also 
in the production of fatty acids and interesterification of fats 
(Joseph et al. 2008). A cold-active lipase from psychrophilic 
Pseudomonas fluorescence has been used for the synthesis of 
flavoring compound butyl caprylate (Tan et al. 1996). Simi-
larly, cold-active lipases from fungal psychrophiles, such 
as Candida antarctica, C. cylindracea, Hansinuela lanug-
inose, and Geotrichum candidum, have been applied for the 
esterification of functionalized phenols giving inlipophilic 
antioxidants for use in sunflower oil (Buisman et al. 1998; 
Pandey et al. 1999). Esterases that catalyze simple esters 
with short-chain fatty acids (e.g., triglycerides) are attract-
ing candidates for use in the cheese ripening process. Sev-
eral enzymes with cold-adapted esterase activity have been 
identified from psychrophilic bacteria, such as Pseudoalte-
romonas spp., and Thalassospira sp., Oleispira sp. (D’Auria 
et al. 2009; Al-Khudary et al. 2010; Lemak et al. 2012). As a 
whole, cold-active lipases and esterases offer various advan-
tages as an alternate to the usual biochemical processes in 
the food industry. However, several challenges have to be 
surmounted in prioritizing their enhanced utility in diverse 
biotechnology applications, including the food biotechnol-
ogy sector, which is discussed further in this review.

Phytases

Phytases are gaining importance in the food and feed indus-
tries as they catalyse phosphate removal from phytate, which 
is considered antinutrient as they bind to divalent minerals 
(Pable et al. 2019). For decades, they have increasingly been 
used to enrich absorbable phosphate groups in animal foods, 
particularly for non-ruminant livestock and fish (Kumar 
et al. 2012). Numerous studies have reported the isolation 
and identification of cold-active phytases of psychrophilic 
microbial origin (Yu et al. 2015; Park and Cho 2011), which 
can be used in the food manufacturing and processing indus-
try as they mediate phytate degradation increasing the bio-
availability of minerals. Because of this property, phytases 
may also find an application in functional food production 
(Hamid et al. 2014). Nevertheless, little is known regarding 
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cold-active phytases real-time application within the food 
industry.

Pectinases

Pectinases or pectinolytic enzymes are an assorted group 
of enzymes that collectively break down pectin, a signifi-
cant polysaccharide present in the plant cell wall (Patidar 
et al. 2018). Pectinolytic enzymes are classified based on 
the cleavage site (polygalacturonases, lyase/trans-eliminases 
including pectinlyase, pectate lyase, and pectin esterases). 
On the pH range, they may be categorized into alkaline and 
acid active enzymes. They are an integral part of the food 
industry and contribute more than 40% of the total share of 
food enzymes (Adapa et al. 2014). Most pectinases used 
in the food industry are originated from thermophilic or 
mesophilic microorganisms. Recently, efforts have been 
growing to modify the thermophilic enzymes for devel-
oping cold-active counterparts because of certain unique 
features, including their high catalytic activity at cold tem-
perature (˂ 25 °C) and easy inactivation upon mild heat 
treatment (Truong et al. 2001; Pulicherla et al. 2011). Cold 
catalysis offers less energy input in the enzymatic reaction. 
Cold-active pectinases can be used in efficient fruit juice 
extraction, settling the suspended particles in the fermented 
mash, winemaking, secreting polymeric colour pigments, 
releasing terphenols for aroma and purification of coffee 
and tea (Blanco et al. 2009; Jayani et al. 2005; Margesin 
et al. 2007). Few cold-active pectinases have been identi-
fied from the psychrophilic microorganisms (Brigisson et al. 
2003); however, experimental evidence supporting the use of 
native pectinases within the food industry is scarce, except 
some heterologously expressed pectinolytic enzymes that 
have excellent potential for juice making and winemaking 
industries (Pan et al. 2014). Cold-active pectinases can be 
applied in juice clarification at a lower temperature, useful in 
the prevention of heat-sensitive phytonutrients. Cold-active 
pectinases have excellent potential in the food industry, and 
microorganisms from cold regions should be screened for 
secretion of pectinases, functional at cold temperature and 
acidic pH.

Other enzymes

Besides the major class of cold-active enzymes increasingly 
gaining the attention of the food industry, few other enzymes 
have little been explored; however, they could hold remark-
able potential for use in the food industry. Cold-active tan-
nases have been identified in many psychrophilic bacteria 
and yeasts. They can be used in several ways as their thermo-
philic counterparts, including the manufacturing of instant 
tea, fruit juices, beer, and wines (Kasieczka-Burnecka et al. 
2007; Yao et al. 2014). β-Mannanases, possessing optimal 

activity at low temperature, have been reported from some 
microbial psychrophiles and can be applied to produce 
manno-oligosaccharides (Nguyen et al. 2019; Dawood and 
Ma 2020). β-Mannanases can find application as food and 
feed additives due to their health improving properties. 
Psychrophilic microbes are also reported as producers of 
invertases, an important enzyme used in sucrose hydrolysis 
that yields an equimolar mixture of glucose and fructose. 
Cold-active invertases can be used for making confectionery, 
syrup, infant milk, condensed milk, and beverages (Turk-
iewicz et al. 2005; Madhusudhan and Raghavarao 2011). 
There are opportunities for exploring cold-active enzymes 
from new niches for application in the food processing 
industries.

Cloning, expression and protein engineering 
of cold‑active enzymes

The elegant specificity of enzymes to catalyze varied sets of 
reactions makes them essential for biochemical transforma-
tion beneficial to humanity. In the beginning, most of the 
commercial enzymes having industrial applications were 
produced using native microorganisms. This has restricted 
the application of enzymes from the native cultivable micro-
organisms, which are generally produced in low yield (Sarm-
iento et al. 2015; Santiago et al. 2016). Moreover, the natural 
enzymes display several complexities at the structural and 
functional level, limiting their prospective in many biotech-
nological applications (Huston 2008). Therefore, recombi-
nant expression of these enzymes in heterologous hosts has 
been preferred as a conventional approach to obtain a high 
yield for desired enzymes. This has also improved the cata-
lytic efficiency, stereo-selectivity and enzyme stability (San-
tiago et al. 2016; Duarte et al. 2018). Mesophilic hosts are 
generally favoured for such recombinant strategies; however, 
the folding temperature of cold-active enzymes required for 
their structural and functional integrity may not be compat-
ible with the expressed host (Bjerga et al. 2016; Longwell 
et al. 2017). To overcome this challenge, incubation tem-
perature is lowered after induction of the desired gene in the 
host (Feller et al. 1998; Santiago et al. 2016). Besides, the 
expression of such enzymes from eukaryotic microorgan-
isms such as fungi in bacterial hosts can be cumbersome and 
substandard, which may be because they lack the ability to 
secrete extracellular proteins (Duarte et al. 2018). In addi-
tion, the post-translational modification mechanism is dif-
ferent from those of prokaryotes, and therefore, eukaryotic 
microbial hosts must be chosen for heterologous expression 
of eukaryotic cold-active enzymes (Duarte et al. 2018).

Numerous cold-active enzymes identified from psy-
chrophiles have been successfully expressed in heterolo-
gous hosts and hold enormous potential for use in the food 
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industry (Wierzbicka-Wos et al. 2011; Pan et al. 2014). 
Escherichia coli represents an ideal host for the cold-active 
enzymes sourced from prokaryotes (Krishna 2002). Quite 
a few β-galactosidases from cold adaptive bacteria such 
as Arthrobacter sp. and Paracoccus sp. were cloned and 
expressed in E. coli, making them exceptional candidates 
for industrial removal of lactose (Białkowska et al. 2009; 
Wierzbicka-Wos et al. 2011; Pawlak-Szukalska et al. 2014). 
Similarly, the gene coding for a cold-active and acidic pectin 
methyl esterase, isolated from an Antarctic fungus Penicil-
lium chrysogenum PE8F46, was expressed in Pichia pas-
toris. This enzyme was found to improve the firmness of 
the pineapple dices, representing its significance in the fruit 
and vegetable industry (Pan et al. 2014). The DNA segment 
encoding a novel α‐amylase, identified from the Antarctic 
psychrotolerant fungi Geomyces pannorum, was overex-
pressed in P. pastoris (Gao et al. 2016). It resulted in high 
glucose yielding ability, which can be a potential application 
in the syrup industry. In the same way, a cold-active aspartic 
protease from G. pannorum was cloned and expressed in 
Aspergillus oryzae displaying itself a promising biocatalyst 
for cheese making (Gao et al. 2018).

Signs of progress in recombinant technology have further 
revolutionized the calibration, development and cost-effec-
tive production of customized enzymes that possess some 
industrial relevance. Cold-active enzymes isolated from 
psychrophilic hosts can be tailored to convene the process 
specifications by introducing mutations in the protein in a 
controlled manner (Bornscheuer et al. 2012). Enzyme engi-
neering can be achieved either by site-directed mutagenesis 
or by directed evolution strategy. Site-directed mutagenesis 
is one of the earliest and widely used enzyme engineering 
techniques based on known structural features of the desired 
characteristic, such as protein sequence or crystal structures 
(Coker and Brenchley 2006; Wang et al. 2014a, b). A com-
bined directed and random mutagenesis approach to alter 
the cold-active β-galactosidase, identified from an Antarctic 
Arthrobacter sp., has provided interesting mutations lead-
ing to increased lactose hydrolysis at low temperature, sug-
gesting its potential use in the dairy industry (Coker and 
Brenchley 2006). A cold-active endo-1,5-α-L-arabinanase 
(pectinase) from Paenibacillus polymyxa was engineered 
using site-directed mutagenesis, which shifted its optimal 
activity pH towards acidic conditions, making it a promising 
candidate for pectin extraction from vegetables and fruits, 
and juice clarification (Wang et al. 2014a, b).

The most successful strategy in engineering novel 
cold-active enzymes is the directed evolution method that 
involves random mutagenesis of a gene translating the 
enzyme of interest. This is chiefly carried out using pol-
ymerase chain reaction (PCR) based methods, followed 
by screening or selection of the protein variants show-
ing desired features from the resulting library of mutants. 

Saturation mutagenesis, cassette mutagenesis, error-prone 
PCR, random-priming recombination, DNA shuffling, and 
staggered extension process (StEP recombination) are some 
of the random mutagenesis techniques that have been used 
so far (Arnold 2001). Alteration in the enzyme properties 
mainly requires multiple amino acid substitutions simulta-
neously, producing several protein variants for screening. In 
addition, present-day high throughput screening methods, 
including fluorescence-activated cell sorting (Bernath et al. 
2004; Becker et al. 2008; Fernandez-Alvaro et al. 2011), 
permit high-throughput screening and selection of a large 
number of variants within a short time. Besides, various 
statistical approaches and bioinformatic methods (e.g., pro-
tein structure–activity relationship algorithms) are being 
used for creating multiple mutations, and at the same time, 
identifying whether a particular mutation is beneficial or 
not (Fox et al. 2007). Many cold-active enzymes have been 
engineered using directed evolution methods, making them 
relevant for numerous industrial applications (Zhang et al. 
2003; Gatti-Lafranconi et al. 2008). Hopefully, these rel-
evant cold-active enzyme variants in the coming days are 
going to witness a steady growth leading to the manufactur-
ing of value-added nutraceuticals of food and pharmaceuti-
cal significance.

Commercial cold‑active enzymes used 
in the food industry

There is a growing demand for processed food products 
and beverages across the globe, with respect to nutritional 
excellence as well as favorable taste. This might be because 
of consumer fondness that shifted their preferences towards 
healthy food products of high nutritional quality, ultimately 
promoting the demand for food enzymes. The global market 
size for food enzymes was estimated at $1944.8 million in 
the year 2018 and is predicted to achieve $3056.9 million 
by 2025, with an anticipated compound annual growth rate 
(CAGR) of ~ 5.5% within the period 2019–2029 (https:// 
www. persi stenc emark etres earch. com/ market- resea rch/ 
food- enzym es- market. asp). North American countries such 
as United States of America, Canada and Mexico are leading 
consumers of food enzymes. Moreover, Asia–Pacific region 
is perched to grow with a substantial market share in the 
food enzyme market globally (https:// www. allie dmark etres 
earch. com/ food- enzyme- market). Commercial biocatalysts 
have several applications in the food industry as they are 
applied in cheese production, in bread making, maintaining 
color and clarity of the wine, and reducing its sulfur con-
tent (Aehle 2007; Dewan 2014; Sarmiento et al. 2015). The 
application of enzymes during food processing increases the 
nutritional quality, flavour, appearance, and taste (Fernandes 
and Carvalho 2016; Raveendran et al. 2018). Some enzymes 

https://www.persistencemarketresearch.com/market-research/food-enzymes-market.asp
https://www.persistencemarketresearch.com/market-research/food-enzymes-market.asp
https://www.persistencemarketresearch.com/market-research/food-enzymes-market.asp
https://www.alliedmarketresearch.com/food-enzyme-market
https://www.alliedmarketresearch.com/food-enzyme-market
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(e.g., lactases, α-amylases, proteases, and lipases) are used 
as processing aids that act on food components without 
affecting the nutritional and organoleptic properties of the 
food. Nevertheless, narrow temperature ranges, pH instabil-
ity, and side effects, such as allergies associated with a few 
enzymes, limit food enzymes' market growth.

Cold-active enzymes in food industries are in their 
infancy and are yet to witness significant growth. The 
introduction of psychrophilic enzymes in the food pro-
cesses can be considered as a significant driver that will 
escalate the growth reconnoitre of food enzymes as they 
possess unique economic and environmental benefits (Puli-
cherla et al. 2011; Sarmiento et al. 2015). Therefore, food 
enzymes are expected to evidence significant adoptions in 
the coming years, straddling a wide range of materiality 
and high production efficiency. Nonetheless, very few cold-
active enzymes have been developed and commercialized 
for use in the food market (Table 3). The cold-active xyla-
nase produced by P. haloplanktis, which was reported to be 
efficient in bread making, is now sold by Puratos (Grand-
Bigard, Belgium) (Collins et al. 2002). Selected pectinases 
that are not considered psychrophilic but display activity at 
low temperatures are also being used within the food and 
beverages industries. These enzymes include Novoshape®, 
Novozymes (pectin methyl esterase from recombinant A. 
oryzae) (Kitamoto et al. 1999), Pectinase 62L, Biocatalysts 
(mix of polygalactorunase and pectin lyase from Aspergillus 
sp.) (Combo et al. 2012) and Lallzyme®, Lallemand (mix 
of polygalactorunase, pectin esterase and pectin lyase from 
A. niger) (Zavala-Páramo et al. 2021). Research on potential 
cold-active enzymes can lead to several commercial bio-
catalysts in future, having applications in food processing 
industries.

Challenges and opportunities

Cold-active enzymes are prospective substitutes to their 
conventional mesophilic and thermophilic matching parts in 
many ways. They possess high activity at low and moderate 

temperatures and carry out processes without any apparent 
loss in their catalytic efficiency, which consequences savings 
of consumption energy. On the contrary, at low tempera-
tures, sometimes enzyme activity is compromised due to 
low substrate solubility and decreased substrate specificity 
(Collins and Margesin 2019; Mangiagalli and Lotti 2021). 
There are certain challenges associated with their instabil-
ity at higher temperatures and at alkaline pH, which might 
impede the potential use of such cold adaptive enzymes. 
Furthermore, the low diversity of the psychrophilic micro-
organisms paired with non-specific isolation techniques to 
study such microbes is a major limiting factor in discovering 
novel cold-active enzymes and unfolding their biotechnolog-
ical potential. Nonetheless, with the growing discovery and 
invention of up-to-the-minute techniques and instrumenta-
tion facilities, it is highly doable that the challenges could be 
conquered. Engineering the active site or the whole enzyme 
by introducing changes in the amino acid type and its posi-
tioning could be considered a potential strategy in enhancing 
structural and functional stability at ambient temperatures. 
Similar strategies could also be applied to increase the enzy-
matic function in the alkaline or acidic pH.

The metagenomic approaches that have been instrumental 
in identifying novel genes encoding proteins of high stability 
and activity in wide ranges of temperature and pH would be 
a valuable loom to clone and characterize the cold adaptive 
enzymes even from the uncultivable microbial community. 
Furthermore, undertaking genetic changes at the cellu-
lar level in the microorganisms producing the cold-active 
enzymes would be more hopeful in revitalizing the quality 
and quantity of the cold-active enzymes to meet the com-
mercial food market’s expectations.

Conclusion and future directions

Cold-active enzymes reported so far are distinguished by 
low stability at high temperatures and demonstrated high 
catalytic efficiency at low temperatures. Besides their easy 
inactivation, few additional features, including saving energy 

Table 3  Selected commercial cold active enzymes used in food industry

Enzyme name Brand name Source microorganism Enzyme properties Manufacturing company

Xylanase Premix X-618 Pseudoalteromonashalo-
planktis

Active at temperature range 
5–25 °C

Puratos NV, Grand-Bigard, 
Belgium

Pectin methyl esterase Novoshape® Aspergillus oryzae Active at temperature range 
10–60 °C

Novozymes Biopharma, United 
States

Mixture of polygalactorunase 
and pectin lyase

Pectinase 62L Aspergillus sp. Active at temperature range 
10–60 °C

Biocatalysts Ltd, Wales, United 
Kingdom

Mixture of polygalactorunase, 
pectin esterase and pectin 
lyase

Lallzyme® A. niger Active at temperature range 
5–15 °C

Lallemand, Canada
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and reaction time, and stabilizing thermolabile compounds 
in the reaction mixture, can be considered exceptional alter-
nates to their thermophilic counterparts for use in many 
industrial applications. However, a minimal number of cold-
active enzymes have been used in real food applications. 
Their low structural stability and cost constraints associ-
ated with isolating and purifying these enzymes have been 
remaining as a significant holdup. Modern molecular and 
enzyme engineering techniques have drastically predisposed 
the quality and productivity of enzymes, though enough 
efforts have to be undertaken in identifying novel cold-active 
genes that can be further improved to meet the industrial 
need. Therefore, extensive investigations are on-demand to 
explore diverse sources of psychrophilic microorganisms to 
discover unique and novel cold-active enzymes for diverse 
applications within the biotechnology industries and poten-
tial service to humanity.
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