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Background The Global Registry of Acute Coronary Events (GRACE) score is an established clinical risk stratification tool for
patients with acute coronary syndromes (ACS). We developed and internally validated a model for 1-year all-cause
mortality prediction in ACS patients.

...................................................................................................................................................................................................
Methods Between 2009 and 2012, 2’168 ACS patients were enrolled into the Swiss SPUM-ACS Cohort. Biomarkers were

determined in 1’892 patients and follow-up was achieved in 95.8% of patients. 1-year all-cause mortality was 4.3%
(n = 80). In our analysis we consider all linear models using combinations of 8 out of 56 variables to predict 1-year
all-cause mortality and to derive a variable ranking.

...................................................................................................................................................................................................
Results 1.3% of 1’420’494’075 models outperformed the GRACE 2.0 Score. The SPUM-ACS Score includes age, plasma

glucose, NT-proBNP, left ventricular ejection fraction (LVEF), Killip class, history of peripheral artery disease
(PAD), malignancy, and cardio-pulmonary resuscitation. For predicting 1-year mortality after ACS, the SPUM-ACS
Score outperformed the GRACE 2.0 Score which achieves a 5-fold cross-validated AUC of 0.81 (95% CI 0.78–
0.84). Ranking individual features according to their importance across all multivariate models revealed age, trime-
thylamine N-oxide, creatinine, history of PAD or malignancy, LVEF, and haemoglobin as the most relevant variables
for predicting 1-year mortality.

...................................................................................................................................................................................................
Conclusions The variable ranking and the selection for the SPUM-ACS Score highlight the relevance of age, markers of heart

failure, and comorbidities for prediction of all-cause death. Before application, this score needs to be externally
validated and refined in larger cohorts.

...................................................................................................................................................................................................
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Introduction

Despite advances in the care of patients with acute coronary syn-
dromes (ACS), the incidence of major adverse cardiovascular events
(MACE) remains high after ACS.1 Improved risk prediction by a
multidimensional assessment of ACS patients upon admission
remains an unmet clinical need. Recent guidelines of the European
Society of Cardiology (ESC) recommend the Global Registry of
Acute Coronary Events (GRACE) Score which provides “the most ac-
curate stratification of risk both on admission and at discharge”.2 The
GRACE risk calculator provides estimates for risk of death in hos-
pital, at 6 months, 1 year and 3 years.3 Baseline variables in the
GRACE score include age, systolic blood pressure, heart rate, serum
creatinine, Killip class, cardiac arrest, elevated cardiac biomarkers,
and ST-deviation.

Improved pathophysiological insights into ACS and the discovery
of novel biomarkers reflecting its central pathways highlight the need
for updated prognostic risk scores. Natriuretic peptides (B-type
natriuretic peptide, N-terminal pro-B-type natriuretic peptide [NT-
proBNP] and mid-regional pro-A-type natriuretic peptide) are more
predictive of risk after ACS than cardiac troponin.4 The Finnish

Corogene and SPUM-ACS studies identified the prognostic value of
distinct plasma ceramide ratios.5 Plasma Trimethylamine-N-Oxide
(TMAO) levels enabled improved prediction of cardiovascular risk
after ACS.6 Combining high-sensitivity cardiac Troponin T (hsTnT),
NT-proBNP and high-sensitivity CRP (hsCRP) with the GRACE
score improved its predictive performance for short- and long-term
outcomes.7

The computational feasibility of a machine learning-based ap-
proach for adverse event prediction was recently demonstrated,
leading to the proposal of a novel risk assessment tool able to predict
clinical outcome after ACS with good accuracy.8 However, its clinical
application is impaired by the high number of clinical features needed
to run the algorithm.

We present a complementary approach. Combining modern
screening tools of the Special Program University Medicine
Acute Coronary Syndromes and Inflammation (SPUM-ACS)
Cohort and exhaustive Machine Learning (ML) analyses, we
aimed to develop 1) prototypical models for improved risk pre-
diction focusing on easily-available low-cost variables (herein
termed “practical”), and 2) a comprehensive ranking of tradition-
al and novel variables by their prognostic relevance, with an

Graphical Abstract

Summarizing scheme of GRACE 2.0 and ML-based risk score for 1-year mortality and putative impact. Analyses of baseline variables in ACS patients for
risk of mortality at 1 year. Easily available variables from clinical assessment build the basis for the GRACE score. The ML-derived multivariate SPUM-ACS
risk score improves risk prediction compared to the GRACE 2.0 score.
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analysis that distils information about the model space of all
multivariate linear risk models.

Methods

Detailed Methods in supplemental online

materials
Please refer to the supplemental material for details on how the candi-
date models are built and assessed (missing data, continuous variables,
normalized AUC), the robust variable ranking based on a Generalized
Mallows Model, the variable contribution analysis, and on the variable oc-
currence correlation analysis.

The SPUM-ACS Cohort

The SPUM-ACS Cohort is a prospective cohort study of 2’168 patients
consecutively enrolled between December 2009 and October 2012 at
four Swiss university hospitals (Bern, Geneva, Lausanne and Zurich).
Included were patients presenting within 5 days (preferably 72 hours)
after pain onset, with a clinical diagnosis of ST-segment elevation myocar-
dial infarction (STEMI), non-ST-segment elevation myocardial infarction
(NSTEMI), or unstable angina. Baseline demographics, anthropometry,
ECG, imaging parameters (TTE and angiography), and blood samples for
biomarker analyses were included. Blood samples were taken before the
coronary intervention at the time of arterial sheath insertion for coronary
angiography. Inclusion and exclusion criteria, clinical endpoints, and
blinded biomarker and predictor assessment are explicated in a previous
publication.7 The GRACE Score 2.0 for 1-year outcomes was calculated
using the calculator at https://www.outcomes-umassmed.org/grace/
Institutional review boards of all participating centres approved the study
protocol. All participants gave informed consent in compliance with the
Declaration of Helsinki. The study is listed at ClinicalTrials.gov
(NCT01000701).

Outcome and Clinical Endpoints

A 1-year clinical visit was scheduled for each patient. Events were adjudi-
cated by three independent experts using pre-specified event adjudica-
tion forms. All-cause mortality (cardiac, vascular, non-cardiovascular) at
1 year is the primary endpoint.7 The secondary endpoint was a composite
of all-cause mortality or non-fatal recurrent MI. Patients for whom clinical
outcomes could not be adjudicated or biomarker data could not be col-
lected were excluded from further analysis.

Statistical Analyses and Machine Learning Tools

Learning complex machine learning models requires larger amounts of
data than are usually available in a clinical setting. Linear models can cope
with less data and are more robust against overfitting. The interplay be-
tween model complexity and overfitting is known as the bias-variance
trade-off in statistical learning theory and suggests that too complex mod-
els may overfit to patterns unique to the training data and as a conse-
quence may not predict well on new cohorts.9 Linear models are well
interpretable and prevalent in clinical practice. To further improve their
robustness and generalization ability in the context of small data, we
leveraged machine learning principles for model selection in addition to
criteria related to clinical practicality.10 Our objective was not only to
build an 8-variable score that outperforms the GRACE score but also to
deduce robust information about which variables complement each
other and are highly predictive in a multitude of models when combined.
Step-wise feature selection procedures are driven by the performance of
only a few models along the search path. Thus, iterative model

development and the assessment of predictor importance within one
particular model may fail to incorporate and reflect the multiplicity of
models that perform equally well, a concept Breiman described as
“Rashomon”.11 Following this school of thought, our analysis aggregates
information about the entire set of competing models to arrive at a ro-
bust feature importance ranking and a model that is a prototypical choice
among all well-performing models.

We explored the full model space of all possible 8-variable linear mod-
els based on combinations of 56 baseline variables. Considering availabil-
ity early after hospital admission, reliability and expense of analyses,
predictors were categorized as practical or impractical (Supplemental
Table 1); assignment of the variables to these categories was performed
subjectively by the main authors in order to stratify them for routine clin-
ical use. Model performance in terms of the AUC (Area Under the
Receiver Operating Characteristics Curve or C-Statistic) was evaluated
and validated, using 80% of the data for model fitting, and predicting out-
comes on the remaining 20% that were blinded during model fitting. This
was repeated 5 times in a stratified cross-validation scheme so that each
20% fold was used once as validation data. We had to rely on cross-valid-
ation given the lack of an external validation cohort. Cross-validation is an
established internal validation procedure for model selection and assess-
ing model performance: mimicking the derivation of a model on some
training data and its application to separate new held-out data, it asymp-
totically consistently estimates the generalization error of a model and
asymptotically selects the optimal model for the true unknown data gen-
erating distribution under mild conditions.12

Results

SPUM-ACS Cohort

Medical history and baseline characteristics of the 2’168 patients
(Supplemental Table 1) were previously described (in reference 7:
Figure 1, Table 1, Table 2).7 Biomarkers were analysed in 1’892
patients. Of those, 52.4% had STEMI, 43.3% NSTEMI, and 4.3% un-
stable angina. Revascularisation by PCI was performed in 91.8%, and
by coronary bypass graft in 3.9% of patients. Clinical outcomes were
independently adjudicated at 1 year. Analysed were 1’813 patients,
those with available follow-up and complete biomarkers with at most
20% missing values. At 1 year, all-cause mortality was 4.3% (n = 80),
3.5% (n = 64) were of cardiac origin; 3.7% had a non-fatal MI (n = 67).

Performance of all Risk Prediction Models

The GRACE 2.0 Score achieved an AUC of 0.81 (95% CI 0.78–0.84)
for predicting all-cause mortality at 1 year (80 events, 1’813 patients).
The AUC of all 8-variable models (n = 1’420’494’075) is depicted in
Figure 1. 17’857’817 (1.3%) models outperformed the GRACE 2.0
Score with improvements up to 0.866± 0.03 AUC. The GRACE 1.0
Score (AUC 0.78 ± 0.02) was outperformed by 214’256’356 (15.1%)
models; using dichotomisation the GRACE performance falls
below 0.75 as previously reported.7 Similar results were obtained for
the combined endpoint of mortality or non-fatal MI (Supplemental
Figure 1).

A Practical Model with Robust Performance

Among all GRACE-outperforming models for 1-year all-cause mor-
tality prediction, the best achieved an AUC of 0.87 ± 0.03. However,
this model contained impractical variables and was thus ill-suited for
clinical application. Favouring the practicality of the proposed score
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Figure 1 AUCs of models predicting all-cause death at 1 year – numerous candidate risk scores improve risk prediction above GRACE 2.0. This
figure shows model performance in terms of the five-fold cross-validated AUC score. A total of 1’420’494’075 models were obtained by combining
the 56 baseline variables in all possible 8-variable models. The GRACE 2.0 Score performance is marked in black (AUC 0.815), the overall best and
the overall best practical models’ performances are highlighted in red (AUC 0.866) and green (AUC 0.865) respectively. 17’857’817 (1.3%) models
perform better than the GRACE 2.0 Score (blue curve segment on the left) (214’256’356 (15.1%) better than the GRACE 1.0 Score).
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..for facilitating its application in clinical routine, we focussed on varia-
bles that are reliably available, early after admission, and with low ex-
pense (Supplemental Table 1).

We aimed to identify a model that both outperforms the GRACE
score on our derivation cohort and can be expected to exhibit ro-
bust performance on new cohorts. Therefore, we first identified all
17 (out of 658’008) practical variable quintuplets that always outper-
form GRACE independent of which three variables they are com-
bined with. That is, any model outperforms GRACE whenever at
least one of these quintuplets is part of it. A model based on those
quintuplets can be considered a robust representation of all practical
GRACE-outperforming models. These variable quintuplets comprise
the following 10 variables: age, glucose, NT-proBNP, polymorphonuclear
neutrophils (PMN), Killip class, peripheral artery disease (PAD), malignancy,
left ventricular ejection fraction (LVEF), creatinine, and cardio-pulmonal
reanimation (CPR). Among all 8-variable models comprised of those

10 variables we choose the one with highest cross-validated AUC
score. This choice is robust and satisfies further selection criteria: it is
the model with the highest normalised AUC score, comprises the 8
variables that appear most often among the 17 GRACE-outperfor-
mingvariable quintuplets, and shares on average the most variables
with all 17 GRACE-outperforming variable quintuplets.

Specifications of the SPUM-ACS Risk Score

The SPUM-ACS Score achieves a cross-validated AUC of 0.86 ± 0.03
(95% CI [0.83, 0.89]) for 1-year all-cause mortality prediction and
comprises age, glucose, NT-proBNP, Killip class, PAD, malignancy, LVEF,
and CPR. It outperforms GRACE 2.0 on all cross-validation folds. We
termed this robust GRACE-outperforming practical model the
SPUM-ACS Score (Table 1). The formula for computing the score
(including logistic function clipping to the 0-100 range) is provided

....................................................................................................................................................................................................................

Table 1 The SPUM-ACS Score for predicting 1-year all-cause mortality after ACS

SPUM-ACS Score GRACE 1.0 Score GRACE 2.0 Score

Age Age Age

LVEF History of MI Cardiac arrest at admission

NT-proBNP Elevated Cardiac Enzymes Elevated Cardiac Enzymes

Plasma glucose Creatinine Creatinine

History of Malignancy Heart Rate Heart Rate

Killip Class Systolic Blood Pressure Systolic Blood Pressure

History of PAD ST-segment Depression ST-segment Deviation

Resuscitation History of congestive HF Killip Class

– No in-hospital PCI –

AUC 5 0.86 6 0.03 AUC 5 0.78 6 0.02 AUC 5 0.81 6 0.03

LVEF, left ventricular ejection fraction; NT-proBNP, N-terminal pro-brain natriuretic peptide; PAD, peripheral artery disease; HF, heart failure; MI, myocardial infarction.
Novel variables in the SPUM-ACS Score in bold.

....................................................................................................................................................................................................................

Table 2 Practical application of the SPUM-ACS Score

SPUM-ACS SCORE # 1: 79 yo NSTEMI # 2: 69 yo Critical STEMI # 3: 63 yo Benign STEMI

Risk 0.04938 * (age - 63.47) 0.7669 (79) 0.2731 (69) -0.02321 (63)

0.2569 * (gluc - 6.287) -0.0994 (5.9) 1.8273 (13.4) -0.1508 (5.7)

0.0002569 * (NT-proBNP - 389.3) 3.167 (11264) 0.7329 (2906) -0.01552 (336)

-0.044 * (LVEF - 50.87) -0.1817 (55) 0.6983 (35) -0.402 (60)

0.971 * (Killip - 1) 0 (1) 0 (1) 0 (1)

2.297 * h/o PAD 0 (no) 0 (no) 0 (no)

2.108 * h/o malignancy 0 (no) 0 (no) 0 (no)

1.354 * CPR 0 (no) 1.354 (yes) 0 (no)

Sum 3.653 4.886 -0.592

Final Score [0,100] 100/(1þexp(-sum þ 0.55)) 96 99 24

Calculation coefficients for each variable in the SPUM-ACS Score are displayed. A score calculator is freely available as supplement online material (Supplemental File

“SPUM-ACS Score.html”). For illustrative purposes, the SPUM-ACS Score was computed for three cohort patients, each representing a typical ACS scenario:
Example #1) Haemodynamically stable 79-year-old patient with NSTEMI and presenting on admission NT-proBNP level of 11264 ng/L, plasma glucose of 5.9 mmol/L;
Example #2) 69-year-old patient diagnosed with STEMI, presenting on admission elevated NT-proBNP level (2906 ng/L) and plasma glucose (13.4 mmol/L), with cardiac arrest;
Example #3) 63-year-old patient diagnosed with STEMI, presenting on admission slightly increased NT-proBNP level (336 ng/L) and plasma glucose of 5.7 mmol/L).
Final SPUM-ACS scores are displayed at the bottom.
In case of a missing variable, the corresponding row is to be excluded from the overall sum, i.e., a row holds a value 0 if the respective variable is missing.

Improving 1-year mortality prediction in ACS patients using machine learning 859
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(Table 2). A calculator is made available as supplement online mater-
ial (Figure 2, Supplemental File “SPUM-ACS Score.html”).

Cut-off values identify three equally-sized patient groups as fol-
lows: Low-risk patients with SPUM-ACS Score between 0 and 33 and
one-year all-cause mortality rate of 0.17%; the intermediate-risk group
with cut-off values of 34 point and 66 points and one-year all-cause
mortality rate of 1.8%; high-risk patients scoring above 66 points
and with one-year all-cause mortality rate of 11.2% (Supplemental
Table 2).

Our analyses focused on all-cause mortality at 1 year because of
the increased complexity associated with predicting composite out-
comes. We also analysed the combined outcome at 1 year
(Supplemental Figure 1).

Robust Variable Importance Ranking for multivariate

Prediction of 1-Year Mortality

Variables were ranked according to their importance across all multi-
variate 8-variable models for predicting 1-year all-cause mortality
(Figure 3) (for the combined endpoint see Supplemental Figure 2).
The probability for a variable to appear at a given rank is depicted by
the grayscale in the respective cell, ranging from white (probability =
1) to black (probability = 0). Age was found to be the dominant fac-
tor, covering all top positions with probability close to 1
(Supplemental Table 3). The order among the remaining variables
was more uncertain. TMAO, serum creatinine level, and PAD fol-
lowed age as top predictors when combined with 7 variables for pre-
dicting 1-year all-cause mortality.

Variable Contribution in the SPUM-ACS Score

The SPUM-ACS Score performance depends on all 8 variables
(Figure 4). The AUC-decrease analysis (see Supplemental Methods)
highlights h/o PAD as most important for this model (AUC decrease
� 0.014), followed by h/o malignancy (AUC-decrease � 0.012),
while Killip class was least important (AUC decrease < 0.001).

Pairwise Variable Occurrence Correlations Indicating

Good Variable Combinations

Certain variable pairs lead to more GRACE-outperforming models
than expected given both their ranks (Figure 5). The two strongest
correlations, CPR–NT-proBNP and h/o malignancy–NT-proBNP,
are realized in our SPUM-ACS Score. NT-proBNP has a mediocre
rank. Yet, it becomes valuable when complemented by h/o malig-
nancy. It is also connected to CPR, which is linked to age, the top-
ranked variable. Age combines well with many variables and defines a
cluster. CPR bridges this important variable cluster to the one con-
taining NT-proBNP.

Discussion

We propose a risk score for ACS patients having analysed more than
1.4 billion multivariate linear models (all 8-variable combinations of
56 baseline variables) for predicting 1-year all-cause mortality.
Among all GRACE Score-outperforming models, we selected a
prototypical choice of a top-performing 8-variable model comprising
practical variables only and expected to exhibit robust performance
on new cohorts. We propose this model as the SPUM-ACS Score

for improved risk stratification of patients after ACS. Our compre-
hensive analysis enabled a robust variable ranking displaying the rela-
tive importance of variables within multivariate risk stratification
models. Notably, due to multivariate interactions, lower-ranked vari-
ables may achieve high performance in some 8-variable models when
combined with certain 7 variables while performance is low when
combined with most other 7 variables.

The SPUM-ACS and the GRACE 2. 0 Score for Predicting

1-Year All-Cause Death

The SPUM-ACS Score comprises 8 variables: age, glucose, NT-
proBNP, LVEF, Killip class, history of PAD, malignancy, and CPR. All

Figure 2 SPUM-ACS Score calculator available as online supplemental file “SPUM-ACS Score.html”.
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are known outcome predictors in ACS. Yet, the combination of both
traditional (age, Killip class, history of PAD, and CPR) and more re-
cent risk markers (glucose, LVEF, NT-proBNP, and history of malig-
nancy) in our proposed risk model for prediction of 1-year all-cause
mortality after ACS is less common. Parameters describing ventricu-
lar performance such as Killip class (clinical pulmonary congestion),
LVEF, and NT-proBNP (right or left heart filling pressure) provide
complementary information. Moreover, the SPUM-ACS Score does
not differentiate between ST-elevated and non ST-elevated ACS, in
contrast to the TIMI Score.13 A recent monocentric study obtained
similar individual risk predictors, performing extensive phenotyping
and ML for predicting 6-month mortality in 9066 ACS patients in

Finland.14 Yet, we focussed on the prediction of 1-year all-cause mor-
tality, a hard clinical endpoint that is unaffected by trial design or clin-
ical interpretation. Recently D’Ascenzo and colleagues8 proposed
the Prospective Randomized Amlodipine Survival Evaluation
(PRAISE) score for the prediction of 1-year all-cause death after
ACS. Complementing their analysis, we tested a multivariate 8-vari-
able score comparable to GRACE 2.0, and included NT-proBNP,
LVEF, and novel biomarkers (e.g. Cyr61, TMAO, ceramide). Our ex-
haustive model space analysis focuses on extracting information
about predictor variables that are stable across a multitude of simple
models instead of relative feature importance within a selection of
more complex machine learning models. Moreover, even if externally

Figure 3 Ranking of features according to their importance across all multivariate models shows the role of age, atherosclerosis burden, heart
damage, inflammation, and novel biomarkers for 1-year all-cause mortality risk stratification. The variables on the left are ranked and each entry indi-
cates whether the variable on the left has a certain minimum rank (column) with a certain probability (colour coding), e.g. age appears on rank 4 or
better with probability close to 1, while OAC has only a minimum rank of 43 with probability 50%. The blue/orange/blue lines indicate the minimum
rank that a variable achieves with probability 25%/50%/75%.

Improving 1-year mortality prediction in ACS patients using machine learning 861



..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

validated, the PRAISE score was not challenged against the GRACE
scores, while reaching an AUC of 0.82 in the external validation co-
hort , comparable to the performance of the GRACE 2.0 Score in
our population. Finally, the PRAISE score including 25 clinical features
did not represent a valid simplification in the clinical decision making.
The SPUM-ACS score can be instead computed with only 8 variables
largely available in clinical routine.

The SPUM-ACS Score was cross-validated within our Swiss multi-
centric biomarker cohort. Compared to the state-of-the-art GRACE
2.0 Score, prediction of 1-year all-cause mortality improved. 17
quintuplets outperformed the GRACE Score independent of which
three variables they were combined with. Thus, using one of those
17 GRACE-outperforming quintuplets, competitive performance can
still be achieved using five variables only (for example, using the best-
performing quintuplet comprising the variables age, glucose, NT-
proBNP, malignancy, and PAD). Our exhaustive search over more
than 1.4 billion linear models also puts the solid baseline performance
of the traditional GRACE 1.0 score into context: it was outper-
formed by only 15.1% of models that, in contrast to the GRACE
score, were developed on the SPUM-cohort (the GRACE 2.0 Score
was outperformed by 1.3% of models).

Value of Age and Metabolic Risk Markers

Age is a well-established risk predictor. The top 10 ranked variables
include several non-traditional predictors: TMAO, creatinine plasma
level, PAD, malignancy, LVEF, haemoglobin, Type 2 diabetes mellitus
(T2DM), hsCRP, and history of MI. These parameters describe differ-
ent pathophysiological contexts, such as cardiovascular metabolism,
immune response, heart failure, or cardiomyocyte injury.

Our analyses also included ceramides, i.e. the Cer(d18:1/16:0)/
Cer(d18:1/24:0) ratio, a novel molecular lipid species whose

prognostic reclassification power was previously validated in the
Corogene, BECAC, and SPUM-ACS cohort.5 Interestingly, ceramides
were the highest ranked variable for 1-year combined events, over-
taking age and LDL-C.

TMAO is an intestinal metabolite of choline and phosphatidylcho-
line, produced by gut microbiota. Increased blood TMAO levels may
confer pro-atherogenic and pro-thrombotic properties.15 In our co-
hort, acute TMAO levels were a major prognostic determinant for
both outcomes.

Independently from a pre-existing metabolic dysregulation by dia-
betes mellitus, hyperglycaemia upon admission for ACS is associated
with worse outcomes.16 Whether hyperglycaemia is a marker of the
activation of the sympathetic nervous system at presentation or a
mediator of the disease process remains unclear.17

Predictive Role of Acute Myocardial Injury, Impaired LV

Function, and Inflammation

Cysteine-rich angiogenic inducer 61 (Cyr61) turned out non-inferior
to hs-cTnT for improving prediction of all-cause mortality after ACS
when added to the GRACE 1.0 score at 1 year.18,19 Here, Cyr61

Figure 4 Variable contribution to the performance of the SPUM-
ACS Score. The SPUM-ACS Score model achieves AUC 0.86 while
GRACE 2.0 achieves 0.81 (GRACE 1.0 achieves 0.78); the bars indi-
cate how much the performance drops if the respective variable is
being replaced by the next best practical variable, e.g. the model
where we replace the LVEF variable is 0.006 AUC worse than the
original model, while replacing Killip class in the SPUM-ACS model
incurs a lesser drop in model performance, hence LVEF plays a
more important role for this model. Figure 5 Pairwise correlations of variable occurrence in models

outperforming GRACE 2.0. This scheme illustrates the degree to
which variables complement each other in good models: Each node
in the network corresponds to one variable. Its colour indicates a
cluster membership. Clusters mark variables that are better combin-
able than expected based on both their ranks. Gray links mark good
combinations of variables in different clusters, while coloured links
highlight good inter-cluster combinations. The thicker a line, the
higher is the correlation to appear together in good models. We
only visualize the biggest 5% of positive correlations. Links that are
realized in our score are highlighted with black borders. The two
strongest correlations between CPR—NT-proBNP and h/o malig-
nancy—NT-proBNP are among them.
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scored high for the combined outcome at 1 year. NT-proBNP levels
upon admission are powerful prognostic markers in ACS patients.20

Combined with hs-cTnT and hsCRP, NT-proBNP can improve risk
prediction of the GRACE Score.7 Within the SPUM-ACS Score, NT-
proBNP contributes to the overall performance (AUC-drop �
0.005). Killip Class showed higher-order interactions with many vari-
ables and acts as easily available surrogate marker of cardiac perform-
ance in our score. Among the surrogate markers of acute
inflammation, counts of PMN were among the top-performing
quintuplets.

Cardiovascular Risk Related to History of Malignancy,

Renal Function, Anaemia, and Peripheral Artery Disease

Cancer survivors and patients with active cancer carry an increased
cardiovascular risk. This association of the two dominant causes of
death in Western countries is a clinical conundrum, where shared
risk factors (e. g. smoking, diabetes, obesity), common pathogenic
pathways (e. g. IL1b),21,22 and cardiovascular side effects of chemo-,
radio- or immunotherapies offer only partial explanations. The prog-
nostic impact of history of malignancy was significant after 1 year.

Renal function assessed by serum creatinine plasma level, is fea-
tured in the GRACE Score 1.0 and 2.0 and is known to predict car-
diovascular events.23 Creatinine measurement was a powerful risk
predictor for all-cause death at 1 year in our cohort. Renal function
does not feature in our ML-based ACS Score, likely due to its strong
pathogenic overlap with age and HF.

Anaemia may be trigger, consequence, or prognostic bystander of
heart failure and ACS.24 Our variable ranking confirmed the value of
baseline haemoglobin for 1-year mortality prediction.

PAD captures relevant patient history that provides complemen-
tary information to the history of MI reflecting plaque burden in a dif-
ferent arterial bed. Both were strong predictors of overall mortality
at 1 year and part of our ML-based ACS Score.

Robustness of the Model

Model performance evaluation by cross validation is less prone to
overfitting to specific characteristics of the SPUM Cohort and bias
than the commonly reported in-sample AUC.12 To increase robust-
ness of variable ranking and model selection, the AUCs were normal-
ized within each validation fold accounting for the variation in AUC
across training-test splits. By fitting a Generalized Mallows Model
(GMM) to the five count-based rankings a consensus ranking was
obtained. The SPUM-ACS Score combines the best GRACE-outper-
forming quintuplets and is a robust representative of all practical
GRACE-outperforming models.

Pairwise Clustering Implies Complex Inter-Variable

Correlations

Higher order correlations between variables may explain why some
of the top-ranked variables (e.g. creatinine level) are not present
in our score, whereas lower-ranked variables are. Clusters reflect
variables that combine well. Overlap in prognostic information of
variables in different clusters may explain why they are not suitable
to build a strong risk score. The SPUM-ACS Score utilizes the
two strongest variable combinations from the pairwise analyses,
i. e. CPR—NT-proBNP and h/o malignancy—NT-proBNP.

Furthermore, CPR combines well with age, and age combines well
with Killip class, again two variable combinations that are represented
in the SPUM-ACS Score. This variable selection strategy explains
why the 8 top-ranked parameters in the variable ranking differ from
those featured in our robust risk score model.

Limitations

Our study tests 56 variables associated with outcomes in ACS
patients. However, not all currently known risk markers were col-
lected or analysed. Further, variables were categorized into practical
and impractical in line with the experience of the clinical co-authors.
As such, this categorization is subjective and researchers in different
clinical environments may categorize differently. This limits transfer
to different clinical contexts with different availability and cost con-
straints, while at the same time delineates the importance and possi-
bility to take such considerations into account already during model
development. This way, one can prevent purely data-driven machine
learning pipelines to yield models that are impractical for the
intended clinical use and instead refine the space of possible models
to one’s needs. The proposed SPUM-ACS Score was focused on
models that outperformed the GRACE 2.0 Score in predicting all-
cause death at 1 year, without considering other less robust clinical
outcomes or shorter time windows such as in-hospital mortality.

The relatively low number of events in our cohort limits the reli-
ability of our models when predicting events from baseline variables
in other cohorts. Our study reports a 1-year all-cause mortality rate
which may be in the lower range, but appears in line with other stud-
ies (4.1–4.9%),25,26 likely reflecting different patient characteristics at
baseline and therapy of patients. We searched for external validation
cohorts but could not identify a cohort that the corresponding
authors were willing to share and that provided sufficient matching of
the key variables needed for our SPUM-ACS Score.

Conclusions and Perspectives

Our findings highlight the computational feasibility of large-scale ex-
haustive ML-based analyses for improved risk stratification in cardio-
vascular medicine: the proposed SPUM-ACS Score is a
representative and robust choice among all candidate models that
outperform the GRACE 2.0 Score for predicting 1-year all-cause
mortality and among which our internal cross-validation cannot fur-
ther resolve. The score comprises age, glucose, NT-proBNP, LVEF,
Killip class, and history of PAD, malignancy, and CPR. The variable im-
portance ranking highlights the relevance of age, heart failure/damage
(NT-proBNP, creatinine, Cyr61, hs-cTnT), lipid metabolism (Cer),
stress (glucose), atherosclerosis burden (history of PAD and MI), and
immune response (PMN, hsCRP, history of malignancy) across all
multivariate models for risk prediction.

Our data underscore the need for a comprehensive and expedient
management of ACS patients in these areas for improving
prognosis in ACS patients. Confirmation, refinement, and external
validation of our proposed exhaustive model development proced-
ure is needed.

Improving 1-year mortality prediction in ACS patients using machine learning 863
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Rodondi N, Räber L, Windecker S, Gencer B, Pedersen ER, Tell GS, Nygård O,
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