
Strub et al. BMC Med Genomics          (2021) 14:258  
https://doi.org/10.1186/s12920-021-01106-7

RESEARCH ARTICLE

Analysis of multiple gene co‑expression 
networks to discover interactions favoring CFTR 
biogenesis and ΔF508‑CFTR rescue
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Abstract 

Background:  We previously reported that expression of a miR-138 mimic or knockdown of SIN3A in primary cultures 
of cystic fibrosis (CF) airway epithelia increased ΔF508-CFTR mRNA and protein levels, and partially restored CFTR-
dependent chloride transport. Global mRNA transcript profiling in ΔF508-CFBE cells treated with miR-138 mimic or 
SIN3A siRNA identified two genes, SYVN1 and NEDD8, whose inhibition significantly increased ΔF508-CFTR traffick-
ing, maturation, and function. Little is known regarding the dynamic changes in the CFTR gene network during such 
rescue events. We hypothesized that analysis of condition-specific gene networks from transcriptomic data character-
izing ΔF508-CFTR rescue could help identify dynamic gene modules associated with CFTR biogenesis.

Methods:  We applied a computational method, termed M-module, to analyze multiple gene networks, each of 
which exhibited differential activity compared to a baseline condition. In doing so, we identified both unique and 
shared gene pathways across multiple differential networks. To construct differential networks, gene expression data 
from CFBE cells were divided into three groups: (1) siRNA inhibition of NEDD8 and SYVN1; (2) miR-138 mimic and 
SIN3A siRNA; and (3) temperature (27 °C for 24 h, 40 °C for 24 h, and 27 °C for 24 h followed by 40 °C for 24 h).

Results:  Interrogation of individual networks (e.g., NEDD8/SYVN1 network), combinations of two networks (e.g., 
NEDD8/SYVN1 + temperature networks), and all three networks yielded sets of 1-modules, 2-modules, and 3-mod-
ules, respectively. Gene ontology analysis revealed significant enrichment of dynamic modules in pathways includ-
ing translation, protein metabolic/catabolic processes, protein complex assembly, and endocytosis. Candidate CFTR 
effectors identified in the analysis included CHURC1, GZF1, and RPL15, and siRNA-mediated knockdown of these genes 
partially restored CFTR-dependent transepithelial chloride current to ΔF508-CFBE cells.

Conclusions:  The ability of the M-module to identify dynamic modules involved in ΔF508 rescue provides a novel 
approach for studying CFTR biogenesis and identifying candidate suppressors of ΔF508.
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Introduction
Cystic fibrosis (CF) is the most common lethal autoso-
mal disease in Caucasian populations, affecting approxi-
mately 75,000 individuals worldwide [1, 2]. CF harms 

multiple organ systems and can cause meconium ileus, 
growth failure, diabetes, increased sweat chloride con-
centrations, and infertility, among other symptoms 
[3–10]. However, the majority of CF-associated morbid-
ity and mortality results from chronic and progressive 
lung dysfunction, characterized by acidic airway surface 
liquid, weakened antimicrobial defenses at the airway 
surface, and impaired mucociliary transport leading to 
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chronic bacterial airway infections, irreversible tissue 
remodeling, and respiratory failure.

CF is caused by mutations in cystic fibrosis transmem-
brane conductance regulator (CFTR) which encodes 
an anion channel. Although over 2000 mutations have 
been identified in CFTR, over 70% of disease-associated 
alleles contain a deletion of phenylalanine at position 
508, termed ΔF508, correlating to roughly 90% of indi-
viduals with CF having one or two ΔF508 alleles [11–15]. 
The ΔF508-CFTR mutation results in protein misfolding 
and proteasomal degradation [16, 17]. The observation 
that low temperature (27  °C) incubation could rescue 
and traffic ΔF508-CFTR to the cell surface was compel-
ling because it demonstrated that partial function could 
be retained if ΔF508-CFTR escaped the endoplasmic 
reticulum-associated degradation (ERAD) pathway and 
trafficked to the cell membrane [16]. Although manipula-
tion of temperature is not therapeutically practical, this 
observation encouraged the investigation of genes affect-
ing the processing and maturation of CFTR. We previ-
ously identified microRNA-138, SIN3A, NEDD8, and 
SYVN1 as members of the CFTR biogenesis pathway [18, 
19]. Functional assays determined that miR-138 over-
expression or siRNA knockdown of SIN3A, SYVN1, or 
NEDD8 partially restored the maturation, trafficking, and 
function of ΔF508-CFTR.

Additional transcriptomic studies have identified 
effectors of CFTR biogenesis. For example, Clarke and 
colleagues performed a microarray study of primary epi-
thelial cells from ΔF508 homozygotes and non-CF con-
trols, which yielded a molecular signature of native CF 
airway epithelial cells in which a noteworthy number of 
genes involved in inflammation and defense were upreg-
ulated, including S100A8, S100A9, and SERPINA3 [20]. A 
follow-up meta-analysis by Clark et al. identified several 
negative regulators of CFTR, including SNX6, PSEN1, 
and RCN2 [21]. When these genes were knocked down 
via siRNA, a considerable increase in CFTR trafficking to 
the cell membrane was observed.

Despite the identification of several in vitro effectors of 
ΔF508-CFTR correction, its biogenesis pathway remains 
incompletely understood. Analyzing and understanding 
rescue-specific molecular events are critical for under-
standing CF biogenesis and the development of thera-
peutics. Network biology is a powerful tool for analyzing 
such complex disease phenotypes. For example, Taylor 
et al. demonstrated that hub gene topology could be used 
to improve the prognosis of breast cancer, while Chuang 
and colleagues revealed that differentially expressed 
subnetworks are effective biomarkers for breast cancer 
metastasis [22, 23]. However, a common theme of net-
work biology is the dichotomization of disease progres-
sion, either for the onset or severity of disease, as many 

studies analyze each condition individually. Such studies 
highlight hubs, modules, or edges that are significantly 
associated with only a single condition, rather than mod-
eling the gene expression data as a single continuum. This 
ultimately limits our ability to observe changes at a path-
way level during disease progression.

Likewise, focusing on only CF vs. non-CF omics data, 
or the analysis of only a single rescue signature, may limit 
the detection of CFTR biogenesis interactors. To address 
this critical gap in network biology, Tan and colleagues 
developed a general framework, termed M-module, to 
reveal subnetwork dynamics by joint analysis of multi-
ple gene co-expression networks [24, 25]. They demon-
strated that the use of network connectivity dynamics 
significantly improved the classification accuracy of mul-
tiple breast cancer stages. Here, we use this M-module 
framework to analyze multiple gene co-expression net-
works relevant to CFTR to identify interactions favoring 
CFTR biogenesis (Table 1). These networks include miR-
138 overexpression and SIN3A knockdown, NEDD8 and 
SYVN1 knockdown, and low temperature treatments.

Materials and methods
M‑module analysis
To identify both unique and shared gene pathways across 
multiple differential networks, we grouped gene expres-
sion data from CFBE41o− cells (GSE142610) into three 
conditions (Table  1). The first group, termed “miR-138/
SIN3A”, compared overexpression of miR-138 and siRNA 
knockdown of SIN3A with a scrambled siRNA con-
trol [18]. The second group, termed “NEDD8/SYVN1”, 
compared siRNA knockdown of NEDD8 and SYVN1 
compared to a scrambled siRNA control [19]. The third 
group, termed “Temperature”, included treatment condi-
tions of 27 °C for 24 h, 40 °C for 24 h, and 27 °C for 24 h 
followed by 40 °C for 24 h, compared to a 37 °C control 
[16]. A summary and full lists of differentially expressed 
genes across conditions can be found in Additional 
file 1: Tables S1-S4, and Figure S1. We used a literature-
based curated list of 333 CFTR-associated genes, termed 
the “CFTR Interactome”, as seed nodes (Additional 
file 1: Table S5). The gene expression profiles across the 

Table 1  Co-expression networks analyzed using the M-module 
framework

Group Control Treatments

Temperature 37 °C 27 °C for 24 h, 40 °C for 24 h, 27 °C for 
24 h followed by 40 °C for 24 h

NEDD8 Scrambled siRNA siRNA inhibition of NEDD8 and SYVN1

miR-138 Scrambled siRNA miR-138 mimic and siRNA inhibition 
of SIN3A
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multiple rescue conditions were superimposed on human 
protein–protein interaction networks and used to build 
differential gene networks [26–29]. First, we constructed 
a binary expression network with edges chosen based on 
the absolute value of Pearson correlation of the expres-
sion profiles of two genes (i,j). Edges whose correlation 
did not exceed a pre-defined threshold δ were removed 
from the binary network. Remaining edges were then 
weighted (wi,j) using the geometric mean of the p values 
(pi and pj) of differential gene expression between the 
baseline and rescue conditions. Second, multiple differ-
ential networks were analyzed to identify multiple dif-
ferential modules (M-DMs) under different conditions. 
1-Modules are modules that were only found in one 
experimental condition whereas M-Modules with M ≥ 2 
are modules that were found in multiple conditions.

Module gene significance
Module gene significance was determined by running 
10,000 randomized iterations of the M-module analy-
sis and calculating average distances of non-seed genes 
to seed genes. If the distance was significantly less in 
the randomized networks, then the gene was consid-
ered insignificant in our module output. Genes with 
FDR < 0.01 were considered significant.

Gene ontology enrichment analysis
We next ranked non-seed significant module genes by 
minimum distance to closest seed genes. Gene Ontol-
ogy (GO) enrichment analysis was performed on the 
non-seed significant module genes. For each enriched 
GO term, the average minimum distance between con-
tributing non-seed module genes and CFTR-associated 
seed genes was calculated. Such analyses allowed for the 
unbiased identification of candidate genes potentially 
involved in CFTR-relevant pathways and functions.

Cultured cells
CFBE41o− cells, termed “CFBE cells”, originally devel-
oped by immortalization of CF airway epithelial cells and 
later transduced with a ΔF508-CFTR expression cassette 
using the TranzVector lentivirus system were cultured as 
previously described [30–32]. These cells were obtained 
from Dr. J.P. Clancy at Cincinnati Children’s Hospital.

Oligonucleotide reagents
Dicer-Substrate Short Interfering RNAs (DsiRNAs) were 
obtained as TriFECTa kits from IDT (Coralville, IA), each 
containing three pre-designed siRNAs per gene. Trans-
fections were performed in 24-well plates, with 3 μL of 
Lipofectamine RNAiMAX (Invitrogen, Carlsbad, CA) 
and 1 μL of each 10 μM DsiRNA added to 94 μL of Opti-
MEM (Gibco, Waltham, MA) media per well. Following a 

five minute incubation at room temperature, 50 μL of the 
DsiRNA-lipid complex was added to each well and 200s 
cells were suspended in 100 μL of Opti-MEM and seeded 
onto 24-well plates. Knockdown efficiency was meas-
ured following 24 h of incubation at 37  °C. To ascertain 
the specificity of the oligonucleotides, we harvested RNA 
from cells transfected with the three pooled oligonucleo-
tides per gene and measured the expression of multiple 
genes 24 h post-transfection. First-strand cDNA was syn-
thesized using SuperScript II (Invitrogen, Carlsbad, CA) 
with oligo-dT and random-hexamer primers. Primers 
for each gene were designed and produced by IDT and 
validated in HEK cells. Quantitative RT-PCR was per-
formed using the QuantStudio 6 Flex Real-Time PCR 
system (Applied Biosystems, Foster City, CA). All experi-
ments were performed in quadruplicate. Following vali-
dation of knockdown efficiency, three siRNAs per gene 
were pooled and CFBE cells were reverse-transfected 
and grown on microporous membranes of Transwell 
(Corning, Corning, NY) plates seven days prior to the 
electrophysiology measurements [33]. Oligo sequences 
and siRNA knockdown efficiencies can be found in Addi-
tional file 1: Table S6.

Transepithelial chloride current studies
Transepithelial chloride current measurements were 
made in Ussing chambers approximately seven days 
post-seeding. Briefly, epithelial sheets were mounted 
in the Ussing chamber and transepithelial chloride cur-
rent (It) was measured under short-circuit conditions. 
After measuring baseline current, 100  μM amiloride 
(Amil) was added apically to inhibit epithelial sodium 
channels (ENaC) followed by apical addition of 100 μM 
4,4′-diisothiocyanoto-stilbene-2,2′-disulfonic acid 
(DIDS) to inhibit non-CFTR chloride channels. Next, we 
applied 10 μM forskolin and 100 μM 3-isobutyl-1-meth-
ylxanthine (IBMX). These agents elevate intracellular 
cAMP levels leading to the PKA-mediated phosphoryla-
tion and activation of CFTR channels. Finally, 100  μM 
GlyH-101, an inhibitor of CFTR channels, was added 
apically. Studies were conducted with 135  mM NaCl, 
1.2 mM MgCl2, 1.2 mM CaCl2, 2.4 mM K2PO4, 0.6 mM 
KH2PO4, 5 mM dextrose, and 5 mM HEPES (pH 7.4) on 
the basolateral surface, and an apical chloride concentra-
tion gradient with gluconate substituted for chloride.

Statistical analysis
For electrophysiology studies, the average change in peak 
transepithelial current (It) was calculated and statistical 
significance was determined using the Brown-Forsythe 
ANOVA with Benjamini–Hochberg multiple compari-
son correction (*p < 0.05) [34]. Data are presented as a 



Page 4 of 11Strub et al. BMC Med Genomics          (2021) 14:258 

mean ± standard error of individual data points. p < 0.05 
was considered significant.

Results
Identification of individual rescue condition‑specific 
modules and networks
As shown in Fig. 1, the miR-138, NEDD8, and tempera-
ture co-expression profiles were used to create differen-
tial networks that yielded multiple M-Modules. Static 
1-Modules were unique to an individual rescue condi-
tion, where 2-Modules were modules found across two 
networks and 3-Modules were modules found across all 
networks. As shown in Table 2, 70 1-Modules containing 
964 significant genes were identified in the miR-138 net-
work. The NEDD8 network yielded 55 1-Modules con-
taining 764 significant genes. 44 1-Modules containing 
342 significant genes were found in the temperature net-
work. The miR-138 network shared 13 2-Modules con-
taining 159 significant genes with the NEDD8 network 
and 19 2-Modules containing 191 significant genes with 
the temperature network. The NEDD8 and temperature 

networks shared 10 2-Modules containing 160 significant 
genes. All rescue conditions shared seven 3-Modules 
containing 103 significant genes.

Gene ontology analysis of non‑seed module genes 
identifies enriched CF‑relevant terms
We ranked non-seed significant module genes by mini-
mum distance (the sum of weight of the shortest path 
between two nodes) to closest seed genes. Gene Ontol-
ogy (GO) enrichment analysis was performed on the 
non-seed significant module genes. For each enriched 
GO term, the average minimum distance between con-
tributing non-seed module genes and CFTR-associated 
seed genes was calculated. Several CFTR-relevant path-
ways were identified using this unbiased approach, fur-
ther validating that M-module could connect genes 
previously unknown to affect CFTR biogenesis to ΔF508-
CFTR-related functions. For example, the following 
terms were enriched in at least two conditions: trans-
lation, protein metabolic/catabolic processes, protein 

Fig. 1  Rescue conditions queried in the M-module framework. Gene expression profiles across the miR-138/SIN3A, NEDD8/SYVN1, and 
Temperature rescue conditions used to build differential gene co-expression networks. A binary co-expression network was constructed in which 
genes were selected based on the absolute value of Pearson correlation of the expression profiles of two genes. Only edges whose correlation 
exceeded a pre-defined threshold were included. Edges were then weighted (wi,j) based on the p values (pi and pj) of differential gene expression 
between the baseline and rescue conditions. Multiple differential co-expression networks were then analyzed to identify shared and unique 
multiple differential modules. 1-Modules are unique to a single rescue condition, whereas 2-Modules are found across two rescue conditions, and 
3-Modules are found in all three rescue conditions. Adapted from [24]
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complex assembly, endocytosis, vesicle-mediated trans-
port, apoptosis, and autophagy, among others (Fig. 2).

Identification of candidate CFTR effectors
To identify novel CFTR effectors, significance was first 
determined by comparing individual module genes to a 
randomized network. Genes with a FDR < 0.01 were con-
sidered significant, narrowing the number of genes across 
all modules and conditions from 8643 to 2683. Next, all 
CFTR interactome genes were removed, as were all genes 
that had previously been tested in various studies, leaving 
901 untested non-seed module genes (Additional file  1: 
Table  S7) [18, 19, 35–47]. Due to the known interac-
tions between CFTR and several E3 ubiquitin ligases, we 
chose to investigate ASB6 and ASB13 (components of the 
SOCS-box ubiquitin ligase complex), FBXO46 (F-box), 
ZFAND5 (zf-A20), and the BTB domain-containing pro-
teins GZF1, KLHL29, and ZBTB38 [19, 36, 37, 48–62]. As 
Lukacs and colleagues recently identified several com-
ponents of the ribosomal stalk as being CFTR effectors, 
we also elected to study RPL15, RPL28, and RPL39L [63]. 
Lastly, we tested non-seed module genes whose closest 
seed neighbor was the ERAD-associated protein SYVN1, 
as our previous studies demonstrated that SYVN1 knock-
down restored partial function to ΔF508-CFTR [19]. 
These genes included C11ORF1, CADM1, CHURC1, 
JPT1, MFF, POLR1F, RRS1, and THOC7. Figure  3 dis-
plays a 1-Module containing CHURC1 and the neighbor-
ing SYVN1.

siRNA‑mediated knockdown of CHURC1, GZF1, and RPL15 
restores partial function to ΔF508‑CFTR
We used pools of three siRNAs per gene to knockdown 
candidate gene mRNA transcripts in CFBE cells, using 
the change in cAMP-activated chloride secretion as an 
endpoint [33]. Knockdown of CHURC1 significantly 
improved CFTR-dependent transepithelial chloride 
current in ΔF508-CFTR CFBE cells, with an increase 
of 89% in peak chloride current after the addition of 

forskolin and IBMX compared to the scrambled control 
(p = 0.0112; Fig. 4). Compared to knockdown of SYVN1, 
CHURCH1 knockdown increased peak chloride current 
by over 20%. Knockdown of GZF1 resulted in an increase 
of 129% in peak chloride current when compared to 
the scrambled control (p = 0.0405) and an increase of 
46% compared to SYVN1. Lastly, knockdown of RPL15 
also produced a statistically significant ~ 25% increase 
in cAMP-activated, GlyH-101-sensitive transepithe-
lial chloride current compared to the scrambled control 
(p = 0.0446). Representative transepithelial current trac-
ings showing CFTR-dependent chloride current in CFBE 
cells treated with a scrambled control or siRNA target-
ing GZF1 are shown in Fig.  4b. Additional representa-
tive tracings of knockdown of CHURCH1, RPL15, and 
THOC7 are displayed in Additional file 1: Fig. S2.

Discussion
While several transcriptomics-based studies have iden-
tified effectors, CFTR biogenesis remains incompletely 
understood. The analysis of the underlying molecular 
events responsible for ΔF508-CFTR rescue is crucial for 
understanding the CFTR biosynthetic process and the 
development of therapeutics. As many transcriptomic 
and network biology studies of CF focus on diseased ver-
sus healthy cells, the resulting seed genes, subnetworks, 
and edge sets are significantly associated with only one 
condition and this may limit the detection of CFTR 
interactors. To address critical gaps in the knowledge of 
CFTR biogenesis, we applied the M-module framework 
to reveal subnetwork dynamics by joint analysis of mul-
tiple co-expression networks representing ΔF508-CFTR 
rescue. These networks included miR-138 overexpression 
and SIN3A knockdown, NEDD8 and SYVN1 knockdown, 
and low temperature treatments.

As displayed in Table 2, dozens of unique static mod-
ules were identified in the individual conditions, as well 
as many dynamic modules that were shared between two 
or all conditions. To assess the quality of these modules, 

Table 2  M-module query results

Type of module Condition # of modules # of unique genes # of significant 
genes 
(FDR < 0.01)

1-DM miR-138 70 3109 964

NEDD8 55 2438 764

Temperature 44 1433 342

2-DM miR-138 + NEDD8 13 393 159

miR-138 + Temperature 19 654 191

NEDD8 + Temperature 10 305 160

3-DM miR-138 + NEDD8 + Temperature 7 311 103
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we performed gene ontology (GO) analyses on all sig-
nificant non-seed module genes across all conditions. 
Removing all CF-related genes allowed for an unbiased 
assessment of the functional gene groups represented by 
the modules. Rather than CF-related genes pushing the 
gene ontology analysis toward enrichment of CF-related 
terms, we could instead assess GO enrichments driven 
exclusively by genes previously unassociated with CFTR. 
As shown in Fig. 2, many GO enriched terms were related 

to CF and multiple terms were present across several 
conditions. For example, genes involved in translation, 
protein metabolic/catabolic processes, and protein com-
plex assembly were enriched in multiple conditions and 
both 1- and 2-Modules. As ΔF508-CFTR is classified as 
a protein folding defect, it is perhaps not surprising that 
signatures of its rescue were highly enriched for genes 
involved in translation and protein metabolism [16, 17]. 
However, the removal of all CFTR-related genes prior to 

Fig. 2  Gene Ontology analysis of non-seed module genes. Enriched terms for significant non-seed module genes found exclusively in 1-Differential 
Modules (DMs) (top panel), 2-DMs (middle panel), or 3-DMs (bottom panel). X-axis represents the average distance of significant non-seed module 
genes to CF seed genes
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Fig. 3  Example 1-Module containing CHURC1. The miR-138/SIN3A differential gene co-expression network yielded 70 unique 1-modules, including 
the 1-Module shown here. Diamonds represent seed genes, while circles signify non-seed genes. The node color is proportional to the −log10 p 
value of gene expression, with red indicating up-regulation and green down-regulation. The inset contains CHURC1 (gray arrow) and shows that its 
nearest seed neighbor is SYVN1 (black arrow). This figure was created using Cytoscape [83]

Fig. 4  siRNA-mediated knockdown of CHURC1, GZF1, and RPL15 rescues ΔF508-CFTR function in CFBE cells. a Average change in transepithelial 
current (It) in response to the cAMP agonists forskolin and IBMX (F&I) and the CFTR inhibitor GlyH-101 under open circuit conditions was 
measured in CFBE cells. Three siRNAs per gene were pooled and CFBE cells were reverse-transfected using Lipofectamine RNAiMAX and grown 
on microporous Transwell membranes seven days prior to the electrophysiology measurements. Error bars indicate standard error. Statistical 
significance compared to the scrambled control was determined by Brown-Forsythe ANOVA and post-hoc Benjamini–Hochberg multiple 
testing correction (*p < 0.05). n = 4–6 per gene. CHURC1, GZF1, and RPL15 are highlighted in green. b Representative transepithelial current 
tracings showing CFTR-dependent chloride current in CFBE cells treated with a scrambled control or siRNA targeting GZF1. The Y-axis represents 
transepithelial current in µA and the X-axis represents time in seconds
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gene ontology analysis means that only genes previously 
unlinked to CFTR biogenesis were responsible for such 
GO enrichments. Therefore, is it likely that our modules 
contain previously undiscovered CFTR effectors that 
contribute to ΔF508-CFTR rescue.

Likewise, GO analysis indicated that our non-seed 
modules were enriched for genes involved in endocyto-
sis, vesicle-mediated transport, autophagy, and apoptosis. 
CFTR is regulated in part by cAMP-dependent vesicle 
traffic to the apical membrane, although ΔF508-CFTR is 
typically degraded before reaching the cell surface [64]. 
Even if mutant protein reaches the cell membrane, clath-
rin-mediated endocytosis efficiently removes it from the 
cell surface via recycling endosomes and the protein is 
directed to lysosomes for degradation [65, 66]. Further-
more, ΔF508-CFTR causes dysfunction of apoptotic and 
autophagic processes, which may contribute to CF lung 
disease progression [67–69]. These gene ontology results 
strongly support the likelihood of our non-seed module 
genes being members of the CFTR interactome and con-
tributing to its biogenesis.

As our gene ontology analyses suggested that non-seed 
module genes may contribute to ΔF508-CFTR rescue, 
we aimed to identify specific genes with such functions. 
By focusing on genes with SYVN1 as their nearest seed 
neighbor, we hypothesized that CHURC1, among several 
other genes, could affect CFTR rescue. siRNA-mediated 
knockdown of CHURC1 rescued CFTR-dependent tran-
sepithelial chloride current to ΔF508-CFTR by 89% com-
pared to a scrambled control. Knockdown of CHURC1 
even produced an increase of over 20% in peak chlo-
ride current when compared to knockdown of SYVN1. 
CHURC1 (Churchill Domain Containing 1) is a transcrip-
tional activator that mediates fibroblast growth factor 
(FGF) signaling during neural development in zebrafish 
[70–73]. Rotin and colleagues recently identified FGF 
Receptor 1 (FGFR1) as a suppressor of ΔF508-CFTR mat-
uration [46]. Further analysis revealed that knockdown of 
FGFR1, FGFR2, FGFR3, and downstream signaling pro-
teins ERK1, ERK2, AKT, PLCγ-1, and FRS2α, increased 
ΔF508-CFTR channel activity and protein maturation. 
These data suggest that CHURC1 knockdown may res-
cue mutant CFTR function through the FGF signaling 
pathway.

To further elucidate potential mechanisms of CHURC1, 
we queried the gene in ARChS4, which allows for massive 
mining of publicly available RNA-seq data [74]. Interest-
ingly, the highest ranked predicted GO biological process 
for CHURC1 was ribosomal small subunit biogenesis 
(Additional file  1: Table  S8). Additional enriched terms 
included cotranslational protein targeting to membrane, 
protein targeting to ER, translational elongation, ribo-
somal large subunit biogenesis, translational initiation, 

and protein complex assembly. Lukacs and colleagues 
recently identified a component of the ribosomal stalk, 
RPL12, as an effector of ΔF508-CFTR [63]. Silencing of 
RPL12 slowed the rate of translation, while increasing the 
folding efficiency and conformational stability of ΔF508-
CFTR. Furthermore, RPL12 knockdown in combina-
tion with lumacaftor restored ΔF508-CFTR function to 
approximately 50% of the wild-type channel in primary 
human airway epithelial cells. Lukacs and colleagues also 
observed that silencing of ribosome stalk proteins RPLP0, 
RPLP1, and RPLP2 partially rescued ΔF508-CFTR func-
tion. In our siRNA knockdown screen, knockdown of 
RPL15, also a protein member of the ribosomal stalk, sig-
nificantly restored CFTR-dependent chloride secretion. 
Similar to CHURC1, the GO analysis results for RPL15 
were enriched for ribosome-related processes (Addi-
tional file 1: Table S9). While CHURC1 was identified in 
all three 1-Module conditions, RPL15 was identified in 
the NEDD8 and Temperature 1-Modules. Our M-mod-
ule analysis not only identified CHURC1 and RPL15 as 
potential effectors of CFTR rescue, it also suggests that 
an underlying mechanism of our queried rescue signa-
tures is the manipulation of translation and the ribosome.

Lending additional support to the candidacy of 
CHURC1 as a CFTR effector is the Encyclopedia of 
DNA Elements (ENCODE), which provides evidence for 
SIN3A transcription factor binding at the promotor of 
CHURC1 in several cell types, including the A549 respir-
atory epithelial cell line [75, 76]. SIN3A can also bind the 
promoter of RPL15 in A549 cells, according to ENCODE. 
Furthermore, TargetScan predicts that miR-138 regulates 
expression of CHURC1 [77]. Therefore, it is also possi-
ble that CHURC1 and RPL15 act through the miR-138/
SIN3A pathway we previously described [18]. While 
GO analysis of GZF1 did not yield ribosomal- or CFTR-
related biological processes (Additional file 1: Table S10), 
ENCODE and ChIP Enrichment Analysis (ChEA) Tran-
scription Factor Targets both indicate that FOXA1 and 
FOXA2 bind the promoter of GZF1 [78, 79]. Harris and 
colleagues demonstrated that depletion of FOXA1 and 
FOXA2 represses CFTR expression. Interestingly, these 
forkhead box transcription factors have also been shown 
to act as transcriptional repressors [80, 81]. GZF1 was 
identified in a miR-138/SIN3A 1-Module and ENCODE 
also suggests that SIN3A binds the promoter of GZF1, 
supporting the hypothesis that GZF1 may also act 
through the miR-138/SIN3A pathway.

Conclusion
The ability of the M-module to identify dynamic mod-
ules involved in ΔF508-CFTR rescue provided a novel 
approach for studying CFTR biogenesis and allowed for 
the identification of previously unknown CFTR effectors. 
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siRNA-mediated knockdown of CHURC1, GZF1, and 
RPL15 significantly restored CFTR-dependent tran-
sepithelial chloride current in ΔF508-CFTR CFBE cells. 
Further analysis of these genes and their roles in ΔF508-
CFTR rescue and CFTR biogenesis will be required to 
elucidate exact mechanisms of action.
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