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Abstract

We provide a new, annotated genome assembly of Neomicropteryx cornuta, a species of the so-called mandibulate archaic moths

(Lepidoptera: Micropterigidae). These moths belong to a lineage that is thought to have split from all other Lepidoptera more than

300Ma andare consequently vital tounderstanding theearly evolution of superorder Amphiesmenoptera, which contains theorder

Lepidoptera (butterflies and moths) and its sister order Trichoptera (caddisflies). Using PacBio HiFi sequencing reads, we assembled a

highly contiguous genome with a contig N50 of nearly 17 Mb. The assembled genome length of 541,115,538 bp is about half the

lengthof the largestpublishedAmphiesmenopteragenome (Limnephilus lunatus, Trichoptera) anddouble the lengthof the smallest

(Papilio polytes, Lepidoptera). We find high recovery of universal single copy orthologs with 98.1% of BUSCO genes present and

provide a genome annotation of 15,643 genes aided by resolved isoforms from PacBio IsoSeq data. This high-quality genome

assembly provides an important resource for studying ecological and evolutionary transitions in the early evolution of

Amphiesmenoptera.
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Significance

Neomicropteryx cornuta is a member of the family Micropterigidae, sister to all other extant Lepidoptera. In this article,

we report the first high-quality genome of a micropterigid, which is essential for studying ecological and evolutionary

transitions in the early evolution of superorder Amphiesmenoptera.
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Introduction

Lepidoptera are one of the most diverse herbivorous insect

lineages, with more than 160,000 described species (Mitter

et al. 2017). They are one of the two extant orders, along with

caddisflies (Trichoptera), that comprise the superorder

Amphiesmenoptera. Modern Lepidoptera and Trichoptera

are morphologically similar in many ways, including dense

covering of hairs or scales on their wings (Kristensen 1984),

but in the �310 Myr since they were believed to have di-

verged from each other (Kawahara et al. 2019), they have

developed very different behaviors and ecological roles.

Trichoptera larvae are primarily aquatic, with a diversity of

feeding behaviors ranging from pure herbivory to opportunis-

tic scavenging to predation (Mackay and Wiggins 1979). In

contrast, almost all Lepidoptera larvae are terrestrial and her-

bivorous, and the adults provide essential pollination services

for many flowering plants (Scoble 1992).

The earliest diverging lineage of Lepidoptera includes the

mandibulate archaic moths, Micropterigidae (Kawahara et al.

2019). The family includes roughly 20 extant genera (Van

Nieukerken et al. 2011), and is sister to all other extant

Lepidoptera. Its fossil record dates back to the Lower

Cretaceous (Azar et al. 2010; Kristensen and Skalski 1999;

Whalley 1978), though recent phylogenetic studies estimate

that the family could be as old as 300 Myr (Kawahara et al.

2019). Micropterigids are known for their unusual feeding

habits and mouthpart morphology relative to other moths.

The larvae feed on liverworts (Imada et al. 2011), whereas the

larvae of most other extant Lepidoptera feed on angiosperms.

Many micropterigid larvae, including those in the genus

Neomicropteryx, have a plastron and other morphological

features conducive to survival in flooded habitats (Davis and

Landry 2012); this aquatic association is in sharp contrast with

the primarily terrestrial habitats of most other Lepidoptera.

Micropterigid adults have mandibulate (chewing) mouth-

parts, with some species feeding on angiospermous pollen

(Kristensen 1999) or spores of ferns and lycopods (Gibbs

2014), whereas most other adult Lepidoptera are either non-

feeding or consume nectar with an elongate, flexible probos-

cis (siphoning-sucking mouthparts). Fossil evidence suggests

that the most recent common ancestor of Lepidoptera was

mandibulate, like extant Micropterigidae, and had small struc-

tures called galea (also present in micropterigids) that evolved

into the proboscis found in nearly all other butterflies and

moths (Kristensen 1984; Krenn 2010). Since micropterigids

remained mandibulate, their genetic makeup could shed light

on the early evolution of ancient Lepidoptera and Trichoptera.

Despite their unique ecology and the fact that

Micropterigidae represent a possible important transition be-

tween Trichoptera and Lepidoptera, there are no existing ge-

nome assemblies of Micropterigidae. By November 2020,

there were 118 Lepidoptera and six Trichoptera genome as-

semblies available on GenBank (Hotaling et al. 2021). With

more than 250 Myr of evolution between available genomes

of Trichoptera and Lepidoptera (Triant et al. 2018), a

Micropterigidae genome is an important evolutionary re-

source. Moreover, both orders are known for producing

silk, but the structure and function of that silk can vary greatly

between the two orders. Modern genomic analysis is an es-

sential tool for extrapolating the evolutionary processes and

transitions that resulted in the extant diversity stemming from

the ancestral amphiesmenopteran. Here, we provide an an-

notated genome of Neomicropteryx cornuta, the first avail-

able genome of any mandibulate Lepidoptera.

We use PacBio HiFi sequencing data to assemble a highly

contiguous N. cornuta genome. This is especially important

since many genomes of Lepidoptera are of low quality (Ellis

et al. 2021). We also provide a genome annotation by re-

solved isoforms from PacBio IsoSeq data. Our genome assem-

bly provides an important resource to study ecological and

evolutionary transitions in the early evolution of

Amphiesmenoptera and sets the stage for future studies on

the genomics of Amphiesmenoptera.

Results and Discussion

Assembly

Sequencing the N. cornuta genome using two PacBio SMRT

cells produced 8.8 and 8.4 Gb of HiFi data, respectively, cor-

responding to �31� PacBio HiFi read coverage. Blobtools

analysis assigned 99.8% of all base pairs to the phylum

Arthropoda (supplementary fig. 1, Supplementary Material

online) and the resulting assembly contained 101 contigs

with a contig N50 of 16,921,359 bp. This is the second-

longest contig N50 for an amphiesmenopteran genome pub-

lished thus far (Hotaling et al. 2021), shorter only than the

genome of the silk moth Samia ricini (GCA_014132275.1),

which was also generated by PacBio HiFi sequencing.

Assembly GC content was 33.4% and the total assembly

length was 541,115,538 bp, which is intermediate in length

compared with other Amphiesmenoptera genomes (with

BUSCO scores > 90%), which range from 227,005,758 bp

(Papilio polytes) to 1,369,180,260 bp (Limnephilus lunatus)

(Hotaling et al. 2021). BUSCO analysis identified 98.1%

(97.9% complete; 0.3% fragmented) of the Insecta gene

set in the assembly (fig. 1, table 1).

Annotation

We also report the functional annotations of N. cornuta. Of

the 15,643 predicted proteins, 86.62% (13,550) were verified

by BLAST and/or transcript evidence, 63.04% (9,862) were

mapped to GO terms, and 43.95% (6,875) were functionally

annotated in Blast2Go. Top GO annotations include catalytic

activity (4,512), cellular process (4,492), binding (4,414), and

metabolic process (4,296) (supplementary figs. 4–6,

Supplementary Material online). We annotated a total of
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48.61% of the genome assembly as repeats using

RepeatModeler and RepeatMasker. Unclassified repeats com-

prise>161 million bases, which is the highest among all types

of repeats (genome proportion of 29.82%). Long inter-

spersed nuclear elements (LINEs) are the second most abun-

dant repeat category with >39 million bases (7.23%),

followed by DNA transposons and rolling circles and long

terminal repeats (LTRs), which have >15 million (2.82%)

and >11 million bases (2.10%) respectively. Percent compo-

sition of repeats and predominance of LINEs were similar to

both the S. ricini and Bombyx mori genome assemblies (Lee

et al. 2021).

Conclusions

Our results provide a new genome for a relict evolutionary

lineage, separated by more than 250 Myr of evolution from

any currently existing genome. Results from our study show

that high fidelity, long-read sequencing facilitates the produc-

tion of more contiguous assemblies and generates high-

quality resources for further investigation of genome func-

tions. Our new genome will be useful for future studies on

amphiesmenopteran genetics, conservation and ecology.

Materials and Methods

Sequencing and Assembly

Larval specimens of N. cornuta were field collected at two

sites in Kochi Prefecture, Japan, and flash frozen (supplemen-

tary note 1, Supplementary Material online). DNA was

extracted from a single specimen using a Zymo Quick-prep

HMW DNA extraction kit. Following DNA extraction, the se-

quencing library was prepared according to the “Using

Express Template Prep Kit 2.0 With Low DNA Input” protocol

from PacBio. The library was then sequenced on two PacBio

Sequel II SMRT cells in CCS mode. Further details are provided

in supplementary note 1, Supplementary Material online. Q20

HiFi CCS reads were generated from the raw data using the

pbccs tool, which is included in the pbbioconda package

(https://github.com/PacificBiosciences/pbbioconda, last

accessed August 9, 2021). The reads were then assembled

into contigs using Hifiasm v0.13-r307 with the option for

aggressive duplicate purging enabled (option -l 2) (Cheng

et al. 2021). The primary contig assembly was used for all

downstream analyses.

RNA was extracted from the head and silk gland, and li-

brary preparation was performed using the IsoSeq express
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FIG. 1.—Comparison of BUSCO (blue, yellow and red bars) and contig N50 (gray bars) results for the genomes of Trichoptera and Lepidoptera species

(from top to bottom: Hydropsyche tenuis (Hydropsychidae), Stenopsyche tienmushanensis (Stenopsychidae), Hesperophylax magnus (Limnephilidae),

Neomicropteryx cornuta (Micropterigidae), Tinea trinotella (Tineidae), Anthocharis cardamines (Pieridae), Autographa gamma (Noctuidae), Bombyx mori

(Bombycidae)). Each silhouette to the right of the plots is derived from a member of the same genus as the genome assemblies. The phylogeny is based on

Kawahara et al. (2019) and Thomas et al. (2020). Original photographs for silhouettes T. trinotella provided by Donald Hobern, Au. Gamma provide by

Martin Olofsson; other silhouettes made from photographs by authors or drew by XL.
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workflow. The library was then sequenced on a single Sequel

II PacBio SMRT cell. Further details are provided in supplemen-

tary note 1, Supplementary Material online. The IsoSeq3 pipe-

line, part of the pbbioconda package, was used to generate

IsoSeq clusters, following the published PacBio IsoSeq work-

flow (https://github.com/PacificBiosciences/IsoSeq/blob/mas-

ter/isoseq-clustering.md, last accessed August 9, 2021). The

steps in the pipeline are 1) circular consensus sequence calling

(CCS read generation), 2) primer removal and demultiplexing,

3) refining (trimming of polyA tails and concatemer removal),

4) clustering, and 5) polishing.

We screened the genome assembly for potential contam-

inants with BlobTools v1.0 (Laetsch and Blaxter 2017) (sup-

plementary note 2 and supplementary fig. 1, Supplementary

Material online). We assessed genome quality and complete-

ness with BUSCO v4.1.1 (Seppey et al. 2019) (supplementary

note 3, Supplementary Material online) using the OrthoDB

v.10 Insecta gene set (Kriventseva et al. 2019), and generated

genome statistics using the assembly_stats v0.1.4 script

(Trizna 2020) (supplementary table 1, Supplementary

Material online, for full output). We conducted genome pro-

filing (estimation of major genome characteristics such as size,

heterozygosity, and repetitiveness) on the HiFi sequence data

with GenomeScope 2.0 (Ranallo-Benavidez et al. 2020); these

methods are described in supplementary note 4 and supple-

mentary figures 3 and 4, Supplementary Material online.

Repeat and Gene Annotation

We identified and classified repetitive elements de novo and

generated a library of consensus repeat sequences for the

genome using RepeatModeler 2.0 (Flynn et al. 2020). We

then annotated and masked repeats in the assembly with

RepeatMasker 4.1.1 (Smit et al. 2013–2015) using the custom

repeat library generated in the previous step. Finally, we reran

RepeatMasker on the masked genome using the Repbase

arthropod repeat library (Bao et al. 2015). We annotated

the N. cornuta genome assembly using MAKER v3.01.03

(Cantarel et al. 2008) and generated ab initio gene predictions

using SNAP (Korf 2004), with more details provided in sup-

plementary note 5, Supplementary Material online. To gener-

ate functional predictions on the predicted proteins, we used

Blast2GO. First, we extracted the CDS sequences from the

genome and then used blastx (nr, e-value 1e-4, max_target_-

seqs ¼ 5) to compare the predicted genes against the NCBI

RefSeq nonredundant protein database. We used Blast2GO

v1.4.4 (Götz et al. 2008) to map functional annotation and

GO terms to the resulting sequences.

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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