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Abstract

Background: In spite of increasing evidence highlighting the role of dynamic functional connectivity (FC) in
characterizing mental disorders, there is a lack of (a) reliable statistical methods to compute dynamic connectiv-
ity and (b) rigorous dynamic FC-based approaches for predicting mental health outcomes in heterogeneous dis-
orders such as post-traumatic stress disorder (PTSD).
Methods: In one of the first such efforts, we develop a reliable and accurate approach for estimating dynamic FC
guided by brain structural connectivity (SC) computed using diffusion tensor imaging data and investigate the
potential of the proposed multimodal dynamic FC to predict continuous mental health outcomes. We develop
concrete measures of temporal network variability that are predictive of PTSD resilience, and identify regions
whose temporal connectivity fluctuations are significantly related to resilience.
Results: Our results illustrate that the multimodal approach is more sensitive to connectivity change points, it can
clearly detect localized brain regions with the dynamic network features such as small-worldedness, clustering
coefficients, and efficiency associated with resilience, and that it has superior predictive performance compared
with existing static and dynamic network models when modeling PTSD resilience.
Discussion: While the majority of resting-state network modeling in psychiatry has focused on static FC, our
novel multimodal dynamic network analyses that are sensitive to network fluctuations allowed us to provide
a model of neural correlates of resilience with high accuracy compared with existing static connectivity ap-
proaches or those that do not use brain SC information, and provided us with an expanded understanding of
the neurobiological causes for PTSD.

Keywords: dynamic functional connectivity; Gaussian graphical models; multimodal imaging; post-traumatic
stress disorder; scalar-on-function regression; trauma resilience

Impact Statement

The methods developed in this article provide reliable and accurate dynamic functional connectivity (FC) approaches by
fusing multimodal imaging data that are highly predictive of continuous clinical phenotypes in heterogeneous mental dis-
orders. Currently, there is very little theoretical work to explain how network dynamics might contribute to individual
differences in behavior or psychiatric symptoms. Our analysis conclusively discovers localized brain resting-state networks,
regions, and connections where variations in dynamic FC (that is estimated after incorporating brain structural connectivity
information) are associated with post-traumatic stress disorder resilience, which could potentially provide valuable tools for
the development of neural circuit modeling in psychiatry in the future.

Introduction

Over the last decade, numerous advances have been
made in developing neuroimaging biomarkers for men-

tal illnesses that offer tremendous versatility in terms of
understanding and targeting pathophysiological mechanisms.

Of these, static functional connectivity (FC) has emerged as
one of the most promising biomarkers capable of classifying
and predicting mental disorders (see Du et al., 2018 for a re-
cent review).

However, it is increasingly recognized that the brain con-
nectivity may not remain constant over time, and is likely to
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exhibit dynamic variations that may be linked to changes in
vigilance (Thompson et al., 2013), arousal (Chang et al.,
2013), personality traits (Kabbara et al., 2020), behavioral
performance ( Jia et al., 2014), disease status ( Jin et al.,
2017), and so on. Most existing methods use the sliding win-
dow approach (Sagoklu et al., 2010) to compute dynamic con-
nectivity, although other approaches such as hidden Markov
models (Vidaurre et al., 2016) and change point estimation
(Kundu et al., 2018) are gaining in prominence.

There has been limited literature on disease phenotypic
classification using dynamic FC (Du et al., 2018), with the
overwhelming majority of methods investigating differences
in dynamic FC between prespecified clinical phenotypes
(Fu et al., 2019; Jin et al., 2017). However, predefined clin-
ical labels may be erroneous due to gaps in diagnosis, which
is especially true in heterogeneous disorders such as post-
traumatic stress disorder (PTSD) where a gold standard for
classification may not be present. Hence, more recently,
there has been a push toward continuous measures of assess-
ment, for example, the research domain criterion (Insel and
Cuthbert, 2015). Compared with existing classification ap-
proaches, there are even lesser number of approaches
that use dynamic FC to model continuous clinical measures
(Haslam, 2003; Widiger, 2005), although the need for such
predictive approaches for heterogeneous mental disorders
such as PTSD is clear. Some challenges include the follow-
ing: (a) developing reliable measures of dynamic FC based
on single subject data and identifying quantifiable dynamic
network summaries that provide the highest differentiat-
ing power with respect to the continuous clinical outcomes
of interest; (b) discovering localized brain regions whose
dynamic FC signatures are directly related to behavior; and
(c) developing predictive models for continuous clinical
outcomes based on dynamic networks, which goes beyond
disease phenotype classification. Challenges (b)–(c) can
only be tackled adequately, provided one can find accurate
and reliable estimates for dynamic FC [issue (a)]. However,
current approaches for dynamic FC based on single subject
data may be compromised due to noise in the functional
magnetic resonance imaging (fMRI) data and other factors
(Kundu et al., 2018), which demands more innovative and
novel statistical methods.

The goal of this work is twofold. First, to develop novel,
accurate, and reliable methods for dynamic FC estimation
using resting-state fMRI (Rs-fMRI) data that are guided by
brain structural connectivity (SC) information obtained
through diffusion tensor imaging (DTI) data; and second,
to develop a scalar-on-function regression framework for
predictive modeling of resilience in PTSD using dynamic
FC. To address issue (a), we identify time-varying network
summaries such as network efficiency, clustering coefficient,
and small-worldedness that encode patterns of information
transmission and are highly predictive of PTSD resilience.
Our analysis helps identify localized brain regions and net-
work edges, as well as resting-state networks, that are most
strongly associated with resilience [question (b)]. The dy-
namic networks obtained through the multimodal approach
provide greater predictive accuracy when modeling trauma
resilience [issue (c)]. Using extensive validation studies,
we conclusively illustrate that the multimodal dynamic FC
approach is able to recover the true dynamic network with
high accuracy. A graph theoretic approach is used for net-

work modeling, where brain regions are perceived as nodes
and edges encode network connectivity, and strength of
edges is measured through partial correlations.

To our knowledge, we are one of the first to develop and
investigate multimodal dynamic FC (mDFC) as a neuroimag-
ing biomarker for predictive analysis of continuous mental
health outcomes. Of course, the motivation for structurally
guided dynamic FC stems from a well-established litera-
ture illustrating the relationship between static FC and SC
(Sporns, 2013). Such evidence has given rise to some limited
development of static FC approaches guided by SC knowl-
edge (Higgins et al., 2018). Since static FC can be interpreted
as an average of dynamic FC values over time, it is natural to
conjecture that dynamic FC is also regulated by brain SC
to some degree. However, it is nontrivial to generalize the
existing approaches to our settings of interest involving the
estimation of dynamic networks guided by SC, and this re-
quires major methodological and scientific innovations un-
dertaken in the article, with the ultimate goal of developing
neuroimaging biomarkers based on dynamic FC.

Materials and Methods

Description of Grady Trauma Project data

Our study involves female African American participants
from the Grady Trauma Project (GTP). These participants
were recruited from primary care clinics at Grady Health
System, a publicly funded, tertiary care center in Atlanta,
Georgia. A majority of these participants have experienced
significant psychological trauma of various types (Gillespie
et al., 2009). Imaging modalities including Rs-fMRI and
DTI data were collected for each individual—the details
for the preprocessing steps are provided in the Supplemen-
tary Data. The participants were all female and African
American (age 25.8 – 3.1) and did not have any disability
or head injury, and were not on psychoactive medications.
We confined our analysis to a subset of 31 younger individ-
uals who were aged <30 years to bypass any potential con-
founding effects due to aging that may interfere with our
final findings and interpretations, and to protect against po-
tential white matter integrity issues that are expected to
affect the DTI data (Gunning-Dixon et al., 2009) in older
adults. Of these participants, 16 subjects were diagnosed
with PTSD (resilience score within �1.11 to 28.9), and the
other 15 subjects were not (resilience score within �13.4
to 17.5); the procedure for determining the PTSD status is
similar to Falsetti et al.’s (1993; Supplementary Data). Our
clinical outcome of interest is the resilience score that is
a transdiagnostic indicator of mental health in the face of
adversity and is measured through the approach of Ioannidis
et al. (2020). The resilience score was computed as the devi-
ation in PTSD symptoms beyond what would be expected
based on childhood trauma exposure using residuals in a
linear regression model (Supplementary Data). Negative
residuals indicate lower-than-expected PTSD symptoms,
representing psychiatric resilience, while positive residuals
indicate higher-than-expected PTSD that represents psychi-
atric risk.

Power atlas and functional modules. We use a whole-
brain parcellation corresponding with 264 Region of Interest
(ROI) under the Power system (Power et al., 2011). Further,
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we group these ROIs into 10 functional modules as identified
by Cole et al. (2013), which better characterize resting-state
functional networks. These modules included sensory/
somatomotor, cingulo-opercular (CON), salience (SAL),
auditory (AUD), subcortical (SCOR), default mode network
(DMN), visual, frontoparietal (FPL), ventral-attention net-
work (VAN), and dorsal-attention network (DAN). The
coordinates for the ROIs and their allocation to these mod-
ules are presented in Supplementary Table S1.

Overview of statistical approach

Our goal is to develop an approach for estimating dynamic
connectivity based on Gaussian graphical models (GGMs)
that are guided by SC knowledge. GGMs assume that the
fMRI measurements are normally distributed, and are char-
acterized by a sparse inverse covariance or precision matrix
that has zero off-diagonals corresponding to absent edges in
the network. Moreover, the nonzero elements of the preci-
sion matrix encode the strength of the important edges,
which are estimated after incorporating brain SC strengths,
which are in turn computed using probabilistic tractography
on the DTI data as in Higgins et al. (2018; Supplementary
Data). The proposed approach uses a change point estima-
tion approach to identify the number and locations of state
phases, which results in a piecewise constant connectivity
matrix that is learnt from the data. Moreover, the pattern of
zeros in the precision matrix at each time point essentially
provides all the necessary information about the time-
varying network. We denote our approach as mDFC through
the rest of the article. A diagrammatic illustration is provided
in Figure 1, and full details regarding the statistical method
are provided in the Supplementary Data.

Analysis outline

Using the mDFC approach, we first compute the dynamic
resting-state network and subsequently investigate whether
the temporal connectivity changes can explain variations in dis-
ease severity (resilience). Our primary analysis does not involve
confounding variables such as depression (measured through
Beck depression inventory or BDI) since they are often strongly
associated with PTSD severity (Kim et al., 2019), and may mask
the brain network effects on resilience. However, we also per-

formed a secondary analysis that adjusts for BDI when model-
ing resilience using dynamic networks (prediction results in the
Supplementary Data). Figure 2 provides an illustration of the
different steps in our BDI-unadjusted analysis, which are de-
scribed in detail below. We compare our method with two al-
ternate approaches: a Bayesian structurally informed GGM by
Higgins et al. (2018), which estimates a static network guided
by brain SC information, and the SC naive version of the pro-
posed approach that is similar to dynamic connectivity
regression proposed by Cribben et al. (2013). The performance
metrics used for comparison are described in detail in the Sup-
plementary Data.

Detecting temporal connectivity fluctuations related to
resilience. To assess potential associations between tempo-
ral variability in FC and disease severity, we (a) investigated
whether temporal edge variability in terms of the number of
fluctuations between the present and absent states (measured
through change points) is significantly different between in-
dividuals with and without PTSD (or equivalently high and
low resilience groups); (b) examined if fluctuations in con-
nectivity strengths (partial correlations) are related to the
continuous resilience measure; and (c) identified which net-
work nodes are most significantly associated with resilience
in terms of node-level dynamic network features. For (b), we
performed a univariate regression analysis (one edge at-a-
time) to identify those edges whose standard deviation of
the partial correlations is significantly related to the resil-
ience score. For (c), we performed a univariate scalar-on-
function regression model (Prediction based on dynamic
FC through scalar-on-function regression) with the explana-
tory variables being the node-level dynamic network features
(one node at-a-time). Because multiple regression models
were fit, significant effects were identified after multiplicity
adjustment for p-values using the Benjamini–Hochberg cor-
rection (Benjamini and Hochberg, 1995). Edges having a sig-
nificantly positive (or negative) association will imply
connections where greater variability in connectivity
strength enhances (or decreases) resilience and vice versa.

Prediction based on dynamic FC through scalar-on-
function regression. We use scalar-on-function regression
to predict the resilience score using the dynamic functional

‰

FIG. 1. A diagrammatic illustration of our novel mDFC approach using Rs-fMRI data, which is guided by brain SC
information computed from DTI data. Given a set of nodes in the network, the approach is able to learn change points or
jumps in the network in an unsupervised manner, where the number and locations of the change points are unknown and the
network is assumed to remain constant within a state phase defined as the time interval between two consecutive change
points. The greedy partitioning scheme used to compute change points uses state phase-specific networks that are computed
after incorporating brain SC knowledge—in this manner, the change point estimation procedure is influenced by the given
brain SC information. To scale up the mDFC approach to high-dimensional networks, we propose a subnetwork sampling
scheme where we use the mDFC approach to compute change points using several smaller subsets of nodes or subnetworks.
This process is applied repeatedly for a large number of subnetworks, and the set of change points for each subnetwork is
recorded. The subnetwork sampling scheme yields a frequency or score for each time point to be identified as a network-
level change point, and a systematic data-adaptive thresholding strategy to determine frequency cutoffs that can be used to
determine network-level change points that are consistently identified across most subnetworks. Conditional on the
estimated network-level change points, the structurally informed precision matrix estimation is applied once again to
compute a distinct sparse inverse covariance matrix encoding the network separately for each state phase. The state phase-
specific networks are computed by integrating brain SC information that encourages greater weights for FC corresponding
to those edges with strong SC under a Gaussian graphical model. DTI, diffusion tensor imaging; FC, functional
connectivity; fMRI, functional magnetic resonance imaging; mDFC, multimodal dynamic FC; Rs-fMRI, resting-state fMRI;
SC, structural connectivity. Color images are available online.
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connections as a function of time. The scalar-on-function re-
gression (Ramsay and Silverman, 2005) can be expressed as
zi = !0

Tq̂i(t)b (t)dt + ei, where ei denotes the residual that is
assigned a Gaussian distribution, zi represents the scalar clin-
ical outcome, and qi(t) denotes some network summary mea-
sure of the estimated time-varying FC for the i-th individual
derived under the dynamic network (see the sequel for more
details), and b (t) denotes the time-varying coefficient func-
tion that weights the dynamic connection over time to model
the outcome and can be interpreted as a dynamic analog of
regression coefficients in usual linear regression models.
We used the R package FDBoost (Brockhaus et al., 2018)
for implementing the scalar-on-function regression. The pre-
dictive accuracy of the scalar-on-function regression was
assessed using out-of-sample mean squared error that calcu-
lates the averaged squared difference between the observed
and predictive values in the test sample. We performed a
leave-one-out prediction strategy that excludes the t-th indi-
vidual to be kept aside as the test set, and then fit the model
using the training data involving the remaining N-1 individ-
uals, where N is the total sample size. Out-of-sample predic-
tion corresponding to the t-th test sample is performed, and
the predictive accuracy is computed. This process is repeated
by cycling over all individuals as test samples one at a time,
and the predictive accuracy is averaged over all test samples.
We did not include gender, race, or age in our regression
model since the entire sample comprised of African Ameri-
can females between 19 and 30 years.

Dynamic network summaries for prediction of disease
severity. Edge-level analyses, although more easily inter-
pretable, may often be subject to greater levels of noise
and may be less reproducible across studies. Hence, instead
of using edge-level features, we investigated the predic-
tive ability of global dynamic network summaries such as
small-worldedness, global efficiency, and global clustering
coefficients, as well as local clustering coefficient and local
efficiency corresponding to some local functional modules.
These include Visual, SAL, SCOR, VAN, and DAN modules
that were identified as regions with the highest FC changes
for trauma-exposed individuals under our dynamic network
analysis (Fig. 4). We also reported the prediction results cor-
responding to the small-worldedness for all modules. Clus-
tering coefficient and small worldedness were chosen
based on recent findings of differences in these metrics
in static networks between individuals with and without
PTSD (Rowland et al., 2018), whereas the global and local
efficiency are additional network metrics that we chose to in-
vestigate in the context of predicting resilience. We note that

all the network metrics in our analysis are time dependent.
The network metrics were computed using the Matlab tool-
box Brain Connectivity Toolbox (Rubinov and Sporns,
2010) and are described in Supplementary Data. Our analysis
results correspond to networks with *15% density for all
participants, which seem to reflect an acceptable sparsity
level in connectome studies, although the predictive perfor-
mance for 10% and 5% network densities is also presented
in the Supplementary Data.

Results

Findings in PTSD data analysis

Multimodal approach is more sensitive to dynamic network
changes. Figure 3 provides the histogram for the number of
change points for the proposed approach and the SC naive
version of the method. Our method detected 5 change points
on average across all participants, with the number of change
points ranging from 3 to 7. On the contrary, the SC naive ver-
sion of the method registers only 1 change point for a large
majority of participants, and only one subject has 3 change
points. Given 146 brain volumes in the fMRI time series
and recent findings that some brain networks may change
within as little as 30–60 sec (Sagoklu et al., 2010; Shirer
et al., 2012), the number of change points under the SC
naive version seems to be unrealistic, whereas the number
of change points under the proposed method appears more
practical and supported by previous evidence. Our findings
reveal that the brain network computed through the proposed
multimodal FC method is much more sensitive to tempo-
ral fluctuations in the network than the SC naive version.
Hence, incorporating brain SC information provides greater
power to detect dynamic FC changes.

The edges with the largest temporal fluctuations, identified
as those that consistently switch over the different state
phases, are illustrated in Figures 4A–C. This figure depicts
the proportion of times each edge flips (changes from present
to absent state from one time point to the next, and vice
versa) over the scanning session averaged over all individu-
als (Fig. 4A), and separately for the PTSD (Fig. 4B) and non-
PTSD (Fig. 4C) cohorts. From Figure 4A, we observe that
connectivity within and between the Visual, FPL, DAN,
and VAN resting-state networks exhibits the highest number
of temporal fluctuations. We also report those edges that ex-
hibit the largest fluctuations in terms of edge strengths in
Table 1, which is another way of assessing temporal fluctu-
ations. This table indicates that these edges are concentrated
in the superior parietal lobule, middle frontal gyrus, and the
fusiform gyrus regions located in the DAN and VAN

‰

FIG. 2. The proposed analysis pipeline. (A) Illustrates the nodes used in brain functional connectivity that are
distinguished based on the known functional modules. (B) Illustrates the computed dynamic functional connectivity
separately for each individual, the method for which is detailed in the Methods section and Figure 1. (C) Depicts a heatmap
with summary measures that reflect the degree of temporal variation for edges across all the individuals. (D) Illustrates our
discovery regarding the edges whose temporal fluctuations are directly related to trauma resilience. (E) Provides boxplots
for out-of-sample prediction accuracy using the edge-wise dynamic connections to predict the continuous clinical outcome,
through the scalar-on-function statistical methodology. (F) Provides a visual depiction of the performance metrics from our
extensive validation studies comparing the proposed approach with alternative methods. AUC, area under the ROC curve;
CP, change Point Detection; DAN, dorsal-attention network; DCR, dynamic connectivity regression; DMN, default mode
network; FP, false positive of CP; FPL, frontoparietal; GTP, Grady Trauma Project; PTSD, post-traumatic stress disorder;
ROI, region of Interest; siCCPD, proposed method; siGGM, Bayesian structurally informed Gaussian graphical models;
VAN, ventral-attention network. Color images are available online.
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modules. Interestingly, the highest temporal fluctuations
in connectivity occur between the different functional
networks, whereas the temporal fluctuations within each
functional module are largely limited. The least temporal
variability was observed within and between Sensory,

CON, AUD, and DMN resting-state networks, which implies
stable connections. The Visual network had the largest share
of edges with large temporal fluctuations that were concen-
trated in left occipital inf, left lingual, right inferior temporal
gyrus, right cuneus, and left middle occipital lobes. These
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regions have been shown to be involved in upregulated per-
ception of environmental stimuli that could be arousal medi-
ated (Mueller-Pfeiffer, et al., 2013). The SAL and SCOR
modules have previously demonstrated altered resting-state
connectivity (Brown, et al., 2014; Rabinak, et al., 2011),
and gray matter alterations were discovered in subcortical
areas for PTSD individuals (O’Doherty, et al., 2017).

Do temporal network fluctuations drive disease
severity? To investigate this question, we first compared
the temporal fluctuations for individuals with and without
PTSD in terms of the frequency of state changes in the net-
work in Figures 4A–C. Figure 4B–C clearly illustrate very
limited differences in temporal variability patterns in individ-
uals with and without PTSD, although individuals with PTSD
tend to have slightly higher number of fluctuations in brain
network state phases. In particular, only 213 edges (0.61%
of all possible edges in the network) have significantly differ-
ent frequency of state phase changes between the PTSD and
non-PTSD groups at 5% level of significance after adjusting
for family-wise error rate over all edges using Bonferroni cor-
rections. Almost all of these edges correspond to a higher fre-
quency of changes under the PTSD group. Overall, this part
of our analysis points to the limited ability of the frequency
of state phase changes to distinguish between the PTSD and
non-PTSD groups. Hence, it is imperative to develop alter-
nate measures of dynamic connectivity that provides a greater
distinction with respect to disease severity.

To develop a connectivity measure that captures important
associations between the continuous metric of disease sever-
ity and the dynamic network, we investigated the ability of
temporal variability of edge-wise connectivity strengths
(measured as the standard deviation of partial correlations)
to predict resilience scores. Figure 4D illustrates those dy-
namic FC that have significant associations between tempo-
ral variability in connectivity strength and resilience. The
significant edges were detected using univariate analysis at
5% level of significance and using multiplicity corrections
for controlling family-wise error rate over all edges through
Bonferroni corrections. The overwhelming number of edges
between the Visual and Sensory functional modules had fluc-
tuations in connectivity strength, which were significantly
related to resilience. The temporal fluctuations of connectiv-
ity strengths between and within the Visual, FPL, VAN, and
DAN modules are also often significantly associated with
resilience. The functional modules with the smallest propor-

tion of edges whose temporal variability was related to resil-
ience include the DMN, SAL, and subcortical modules. We
also listed a subset of edges with the strongest associations
with resilience in Table 2. These edges appear to be con-
centrated in the middle gyral, lingual gyral, angular gyral,
occipital gyral, and frontal gyral regions, along with the pre-
cuneus, anterior cingulate, and parietal lobe regions.

The overwhelming majority of the significant associations
(96.1%) are negative, which means that increased tempo-
ral fluctuations for these connections lead to lower PTSD
symptoms than predicted, relative to experiences of early
adversity (reflecting greater resilience). A small number of
positive associations between the temporal edge variability
and resilience can be found within the DMN, and between
DMN and the Visual module and FPL modules. Since the
connections in DMN were shown to be relatively stable
(Fig. 4A–C), significant positive associations imply lower
resilience resulting from stable connections within DMN.
On the contrary, the largely negative associations corre-
sponding to edges with negligible temporal fluctuations in
other brain regions (Fig. 4A–C) point to an increase in resil-
ience due to more stable associations. Further, the largely
negative associations corresponding to edges with increased
temporal connectivity fluctuations within and between the
Visual, FPL, VAN, and DAN modules, between the Visual–
SAL modules, and the Visual–Subcortical modules, imply
greater resilience due to increased dynamic connectivity.

Finally, we also report those network nodes where changes
in the dynamic network in terms of nodal efficiency and nodal
degree are most strongly associated with changes in resilience
(Tables 3 and 4). The nodes whose degree is most strongly as-
sociated with resilience were largely situated in the ventral vi-
sual stream (bilateral inferior temporal gyri) and other nodes
of the visual network, bilateral posterior parietal regions in-
volved in attention regulation, and the right middle frontal
gyrus. Further, those nodes whose local efficiency was most
strongly associated with resilience were located in the tempo-
ral and parietal lobes confined to the VAN and DAN resting-
state networks. Two nodes in the DAN resting-state module,
one located in the superior parietal gyrus in the left cerebrum
([�32,�46,47]) and the other in the superior parietal lobule
in the right cerebrum ([25,�58,60]), are shown to be strongly
associated with resilience in terms of both the local degree
and local efficiency in the dynamic network. These nodes
imply promising findings in terms of gaining deeper under-
standing of the neurobiological basis of PTSD.

FIG. 3. Histogram for the
number of FC change points
detected in the PTSD data
analysis. The left and right
panels depict the results
under the proposed approach
and under the SC naive
version of the method. The
multimodal dynamic FC
approach seems to be more
sensitive to network changes.
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Dynamic networks provide higher predictive accuracy
for trauma resilience

The results of our predictive analysis are reported
through boxplots for out-of-sample MSE corresponding to
the different network metrics are presented in Figure 5.
An additional Figure 6 also demonstrates the predictive

accuracy using small-worldedness derived from different
localized functional modules.

A multiplicity-adjusted permutation test revealed that
the improvements in predictive accuracy (compared with
the alternative network modeling methods) were signifi-
cantly better under mDFC when using dynamic global effi-
ciency and clustering coefficient using all the network

FIG. 4. (A–C) Illustrates the edge-wise temporal variation averaged over all individuals, individuals with PTSD, and those
without PTSD, respectively. Here, the temporal variation for an edge was calculated as the ratio of the number of state
changes for that edge divided by the number of state changes in the network. Edges in several modules including Visual,
SAL, SCOR, VAN, and DAN show strong temporal fluctuations resulting from frequent state changes. On the contrary,
the Sensory, Cingulomotor, and DMN register the fewest temporal fluctuations over time. Only 213 edges illustrated signif-
icant differences in terms of the proportion of edge-specific state changes between the PTSD and non-PTSD groups, which
suggests the inadequacy of this measure to distinguish disease severity. Of these 213 edges, almost all had a higher frequency
corresponding to the PTSD group, illustrating higher temporal fluctuations in this cohort. (D) Illustrates edges whose fluc-
tuations in terms of the edge strength (measured through edge-specific standard deviations for partial correlations over
time) are significantly related to PTSD resilience (multiplicity adjusted). Most of these edges lie between functional modules
and are contained between the Visual and other modules, as well as between the DAN and other modules. Blue and red colors
imply a negative and positive association with PTSD resilience, respectively. It is clear that an increase in temporal edge
strength fluctuations in most edges leads to decrease in resilience and vice versa. However, a small number of connections
within DMN and between DMN and other modules lead to increased resilience corresponding to higher fluctuations in edge
strength and vice versa. AUD, auditory; CON, cingulo-opercular; DMB, default mode network; SAL, salience; SCOR, sub-
cortical. Color images are available online.
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nodes as well as localized resting-state networks with a
subset of nodes (Fig. 5; Supplementary Table S1). The pre-
dictive performance under the global small-worldedness as
well as corresponding to most localized modules was also
improved compared with the existing approaches (Fig. 1).
The highest predictive accuracy was obtained under the
local efficiency corresponding to the VAN and VAN and
Visual resting-state networks, which showcases the impor-
tance of these regions in characterizing PTSD.

We note that our findings go further than the results of
Rowland et al. (2018) who illustrated differences between
individuals with and without PTSD based on small-
worldedness and global clustering coefficient derived from
static networks. Our investigation not only reveals the impor-

tance of these metrics along with network efficiency under
dynamic networks for modeling disease severity but also
identifies more localized functional modules whose cluster-
ing coefficient and efficiency based on the dynamic network
are related to resilience. Moreover, identical analyses as
above but using 10% and 5% network densities revealed con-
sistent gains in predictive accuracy, although some variations
in relative performance were noticed when using global dy-
namic network features (results in Supplementary Data).
Our secondary BDI-adjusted analysis also suggested signifi-
cantly improved predictive performance for resilience under
the proposed mDFC approach, compared with BDI-adjusted
models that employ alternative dynamic network model-
ing methods. However, the gains in prediction accuracy

Table 2. List of Edges with the Highest Association (Measured through R-Squared Values)

between the Edge Strength Variability and Resilience

Node 1 Node 2

Index Location Index Location R-squared

5 Subgyral 162 Cuneus 0.5938
37 Sensory/somatomotor RSN 154 Middle occipital gyrus 0.4999
64 Insula 231 Subcortical RSN 0.5664
69 Postcentral gyrus 229 Subcortical RSN 0.4983
85 Inferior frontal gyrus 212 Anterior cingulate 0.4847
96 Angular gyrus 158 Lingual gyrus 0.4641
96 Angular gyrus 173 Middle occipital gyrus 0.5189

122 Anterior cingulate 144 Middle temporal gyrus 0.4643
136 Precuneus 234 Thalamus 0.5429
143 Parahippocampal gyrus 213 Cingulate gyrus 0.5082
148 Lingual gyrus 206 Salience RSN 0.5968
158 Lingual gyrus 243 Declive 0.5209
161 Middle occipital gyrus 213 Cingulate gyrus 0.4944
163 Precuneus 235 Inferior parietal lobule 0.5436
172 Middle occipital gyrus 234 Thalamus 0.4968
174 Middle frontal gyrus 187 Inferior frontal gyrus 0.5645
177 Inferior parietal lobule 258 Superior parietal lobule 0.5821
199 Inferior parietal lobule 213 Cingulate gyrus 0.5802
208 Salience RSN 261 Middle frontal gyrus 0.5322
208 Salience RSN 264 Middle frontal gyrus 0.5058
217 Anterior cingulate 256 Precuneus 0.4515
217 Anterior cingulate 261 Middle frontal gyrus 0.4652

These edges seem to be concentrated in the middle gyral, lingual gyral, angular gyral, occipital gyral, and frontal gyral regions, along with
the precuneus, anterior cingulate, and parietal lobe regions.

RSN, resting-state networks.

Table 1. Edges with the Highest Variability in Their Edge Strengths (in Terms of Partial Correlations)

Over the Duration of the Functional Magnetic Resonance Imaging Experiment

Node 1 Node 2

Index Name Index Name SD for edge strength

258 Superior parietal lobule 263 Superior parietal lobule 0.03
258 Superior parietal lobule 264 Middle frontal gyrus 0.03
260 Precuneus 263 Superior parietal lobule 0.03
261 Middle frontal gyrus 263 Superior parietal lobule 0.03
261 Middle frontal gyrus 264 Middle frontal gyrus 0.03
262 Fusiform gyrus 263 Superior parietal lobule 0.03
262 Fusiform gyrus 264 Middle frontal gyrus 0.04
263 Superior parietal lobule 264 Middle frontal gyrus 0.05

We observe that most of these edges are concentrated in the superior parietal lobule, middle frontal gyrus, and the fusiform gyrus regions.
SD, standard deviation.
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decreased under the BDI-adjusted analysis compared with
the BDI-unadjusted analysis, due to the fact that BDI is
often significantly associated with PTSD symptoms, so that
the predictive ability of BDI is likely to overshadow the con-
tributions by the dynamic brain network. Hence, we chose to
not include BDI in our primary analysis focused on discov-
ering localized dynamic network features associated with
PTSD.

Results from additional validation studies

In addition to the analysis of PTSD data, we performed
extensive numerical studies using simulated data involving
different network types and network dimensions, which are
presented in full detail in the Supplementary Data. These
studies clearly illustrated the prowess of the proposed multi-
modal approach in terms of near-perfect change point esti-
mation, as well as accurate recovery of the true underlying
network compared with existing methods.

Discussion

Our findings suggest that (1) estimating dynamic network
connectivity models can be improved with the addition of
DTI-based structural constraints; and (2) including metrics
of dynamic change in resting networks will improve models
for predicting psychiatric risk and resilience to trauma and
stress. One possible explanation for the association between
SC and network changes is that the dynamic FC can be con-
sidered as distinct manifestations of an underlying intrinsic
network that is associated with the brain SC, in a manner

that is similar to the association between static FC and SC.
Additional work is needed to investigate the above conjec-
ture; but if true, then this could potentially be a novel finding
with considerable implications. Our PTSD data analysis dis-
covers resting-state network alterations among participants
exposed to varying degrees of trauma based on dynamic con-
nectivity, and illustrates the direct link between temporal
fluctuations of connections with PTSD resilience. The ability
of small-worldedness, clustering coefficients, and efficiency
computed from the dynamic network to accurately predict
trauma resilience points to the potential of these dynamic
network metrics as neuroimaging biomarkers in trauma resil-
ience studies. Identifying biomarkers of risk and resilience
for post-trauma psychopathology is critical for the develop-
ment of targeted treatment approaches, particularly in the
case of early interventions (Watkins et al., 2018). Localiza-
tion of these effects to brain networks such as visual attention
network, VAN, and DAN may have strong clinical interpre-
tations in terms of PTSD diagnosis and treatment in a civil-
ian, highly traumatized sample of African American women.

In addition, the two nodes that are strongly associated with
resilience in terms of both nodal degree and nodal efficiency
are located in the bilateral superior parietal nodes of the
DAN, and are known to be involved in the regulation of
attention. Theories of attention posit that DAN and VAN
may compete or collaborate (Majerus et al., 2012; Vossel
et al., 2014) in the allocation and direction of attentional re-
sources, particularly in the case of visual attention. Our find-
ings fit these theories, in that it is likely that DAN and VAN
regulation of visual attention requires temporal shifts in the

Table 3. Nodes Whose Degree in the Dynamic Network Were Associated with Resilience Score

as Indicated by R-Squared Values >0.25

Node index R-square Resting-state network MNI coordinate Region

250 0.49844 Uncertain (�50,�7,�39) Inferior temporal gyrus
259 0.351967 DAN (�32,�46,47) Superior parietal gyrus
232 0.349966 Subcortical (�31,�11,0.3) Putamen
236 0.346671 VAN (�56,�50,9) Superior temporal gyrus
243 0.321025 Cerebellar (�16,�65,�19) Cerebellum—declive
246 0.305447 Cerebellar (0.5,�61,�18) Cerebellum—declive
247 0.302259 Uncertain (32,�12,�34) Parahippocampal gyrus
258 0.29569 DMN (25,�58,60) Superior parietal lobule
249 0.285476 Uncertain (48,�2,�38) Inferior temporal gyrus
257 0.260607 DAN (46,�58,3) Middle temporal gyrus
264 0.255546 DAN (28,�4,53) Middle frontal gyrus
262 0.253069 DAN (�42,�60,�8) Fusiform gyrus

DAN, dorsal-attention network; MNI, Montreal Neurological Institute; VAN, ventral-attention network.

Table 4. Nodes Whose Local Efficiency in the Dynamic Network is Strongly Associated

with Resilience as Indicated by R-Squared Values >0.25

Node index R-square Resting-state network MNI coordinate Region

259 0.406118 DAN (�32,�46,47) Superior parietal gyrus
252 0.390547 DAN (�52,�63,5) Middle temporal gyrus
235 0.351281 VAN (53,�42,21) Inferior parietal lobule
258 0.282145 DAN (25,�58,60) Superior parietal lobule
234 0.255562 Subcortical (8,�3,5) Thalamus

All of these nodes are located in the right or left cerebrum, and concentrated in the temporal and parietal lobes. These nodes are primarily
located in the VAN and DAN resting-state networks.
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engagement of each network with visual cortex. Patients
with PTSD show difficulties in disengaging spatial attention,
with less connectivity between SAL network and DAN
nodes during static rsfMRI (Block et al., 2017).

These findings build upon traditional neural circuit mod-
els of trauma-related psychopathology and resilience,
which have focused primarily on individual differences in
fear learning and extinction, supported by plasticity within
an amygdala–mPFC–hippocampal circuit ( Johnson, et al.,
2012). Recent findings suggest that stress resilience also de-
pends on the instantiation of fear memories throughout a
broader network of regions, including the primary sensory

cortex through which initial information about the trauma
or threat was gathered (Ressler, 2020). Network-based
resting-state FC findings have supported this idea in PTSD.
For example, visual and sensorimotor networks were impli-
cated in identifying subtypes of PTSD among war-exposed
male military veterans (Maron-Katz, et al., 2019). Further-
more, Harnett et al. (2020) have shown that in the early
weeks after trauma exposure, both the structure and static
FC of the visual network predicts the emergence of later
PTSD. We extend such findings by showing that, in our
structure-guided dynamic connectivity analyses, greater tem-
poral fluctuation in the visual network and its connections

FIG. 5. Prediction performance in terms of MSE when using dynamic network metrics for predicting resilience score under
mDFC, SC naive version of mDFC (denoted as DFC), and siGGM. The subplots indicate MSE values when using the
following time-varying explanatory variables in scalar-on-function regression. (A) Global clustering coefficient and global
efficiency. (B) Local clustering coefficient for DAN+VIS, SAL+VIS, SCOR+VIS, VAN+VIS functional modules. (C) Local
efficiency in DAN, SCOR, and VAN functional modules. (D) Local efficiency in DAN+VIS, SCOR+VIS, VAN+VIS func-
tional modules. MSE, mean squared error; VIS, visual. Color images are available online.
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with the SAL, subcortical, and attention networks were asso-
ciated with greater resilience in the context of a sample of
female civilian trauma survivors with histories of multiple
trauma spread over the life span, supporting the importance
of sensory resting-state nodes to trauma-related pathology
across multiple populations. The current findings may be
consistent with an ‘‘overconsolidation’’ hypothesis (Yehuda
and LeDoux, 2007), such that individuals at risk of PTSD or
other forms of psychopathology after trauma may have very
efficient communication between various aspects of the net-
work supporting fear memory, and thus encode and stabilize
a very strong fear memory when exposed to trauma. Given
that currently, there is very little theoretical work to explain
how network dynamics contribute to individual differences
in behavior or psychiatric symptoms, our contributions in
this work are important for future efforts in neural circuit
modeling in psychiatry.

One limitation of the study (that is consistent with most
brain network studies in the literature) is that the results
are potentially sensitive to the brain network density used
in the analysis. One way of choosing the network density in-
volves a data-adaptive approach through some goodness-of-
fit criteria such as Bayesian information criteria, which does
not assume a predetermined network density level. While ap-
pealing, one disadvantage of this approach is that the results
of our analysis are likely to be suboptimal when the data-
adaptive network density varies widely across samples.
Moreover, the predictive results of the scalar-on-function re-
gression approach may not be comparable between different
network estimation approaches if they report networks with
very different network densities. Although our analysis
does not require the network density to be similar across in-
dividuals, to ensure meaningful comparisons between com-
peting methods, we prefixed the average density across all
samples. The prefixed network density was set to *15%

for all samples in our analysis, which is within the range of
network densities encountered in practical neuroimaging
applications (Higgins et al., 2018); however, we also inves-
tigated network densities of 10% and 5% as mentioned pre-
viously, with results included in the Supplementary Data.
Another potential limitation is the smaller sample size of
the study that was carefully chosen to include only younger
participants so as to bypass any white matter integrity issues
associated with aging. In future work, we plan to investigate
how our findings generalize to a larger cohort of individuals
with trauma exposure and/or PTSD diagnosis.

Conclusion

Notably, our study was novel within the field of neural
circuit-based models of trauma resilience, because we
study a high-risk but understudied population. Previous mod-
els of the neural correlates of resilience have often focused
on populations of treatment-seeking patients with either de-
pression or PTSD, whereas in this study we recruited broadly
among a sample at high risk for trauma but without respect to
any mental health diagnosis or complaint. We note that while
the majority of resting-state network modeling in psychiatry
has focused on static FC, our novel analyses that are highly
sensitive to network dynamics allowed us to provide a model
of the neural correlates of resilience with much lower error
than a static connectivity-based comparison model (refer to
Figs. 5 and 6).
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FIG. 6. Prediction performance in terms of MSE when using small-worldedness derived from localized functional modules
for predicting resilience scores. Results are reported for mDFC and the SC-naive version of the method (denoted as DFC),
along with the siGGM approach that computes static networks. The results indicate that MSE values are lower or comparable
under the mDFC method across all local functional modules, with significant improvements corresponding to the salience
network. Color images are available online.
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