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Background: Untreated hypothyroidism is associated with acquired von Willebrand syndrome, and hyper-
thyroidism is associated with increased thrombosis risk. However, the causal effects of thyroid function on
hemostasis, coagulation, and fibrinolysis are unknown.
Methods: In a two-sample Mendelian randomization (MR) study with genome-wide association variants, we
assessed causality of genetically predicted hypothyroidism (N = 134,641), normal-range thyrotropin (TSH;
N = 54,288) and free thyroxine (fT4) (N = 49,269), hyperthyroidism (N = 51,823), and thyroid peroxidase anti-
body positivity (N = 25,821) on coagulation (activated partial thromboplastin time, von Willebrand factor
[VWF], factor VIII [FVIII], prothrombin time, factor VII, fibrinogen) and fibrinolysis (D-dimer, tissue plas-
minogen activator [TPA], plasminogen activator inhibitor-1) from the CHARGE Hemostasis Consortium
(N = 2583–120,246). Inverse-variance-weighted random effects were the main MR analysis followed by sen-
sitivity analyses. Two-sided p < 0.05 was nominally significant, and p < 0.0011[ = 0.05/(5 exposures · 9 out-
comes)] was Bonferroni significant for the main MR analysis.
Results: Genetically increased TSH was associated with decreased VWF [b(SE) = -0.020(0.006), p = 0.001]
and with decreased fibrinogen [b(SE) = -0.008(0.002), p = 0.001]. Genetically increased fT4 was associated
with increased VWF [b(SE) = 0.028(0.011), p = 0.012]. Genetically predicted hyperthyroidism was associ-
ated with increased VWF [b(SE) = 0.012(0.004), p = 0.006] and increased FVIII [b(SE) = 0.013(0.005),
p = 0.007]. Genetically predicted hypothyroidism and hyperthyroidism were associated with decreased TPA
[b(SE) = -0.009(0.024), p = 0.024] and increased TPA [b(SE) = 0.022(0.008), p = 0.008], respectively. MR
sensitivity analyses showed similar direction but lower precision. Other coagulation and fibrinolytic factors
were inconclusive.
Conclusions: In the largest genetic studies currently available, genetically increased TSH and fT4 may be
associated with decreased and increased synthesis of VWF, respectively. Since Bonferroni correction may
be too conservative given the correlation between the analyzed traits, we cannot reject nominal associations
of thyroid traits with coagulation or fibrinolytic factors.

Keywords: coagulation, fibrinolysis, hemostasis, hyperthyroidism, hypothyroidism, thyroid hormone, thyroid
peroxidase antibody, thyrotropin

Introduction

Hypothyroidism is characterized by increased thyro-
tropin (TSH) and decreased free thyroxine (fT4),

whereas hyperthyroidism is characterized by decreased TSH
and increased fT4. Von Willebrand factor (VWF) is secreted
by vascular endothelium and platelets, and VWF promotes
platelet aggregation and adhesion to the vascular endothe-
lium in primary hemostasis (1). In observational studies,
untreated hypothyroidism is associated with acquired von
Willebrand syndrome (2,3), characterized by decreased
concentrations of VWF and factor VIII (FVIII), and bleeding
symptoms such as mild mucocutaneous bleeding (3) and
menorrhagia, but rarely major hemorrhage (2–4). Possible
underlying mechanisms for these findings include (i) a syn-
thesis defect with downregulation of VWF and (ii) an un-
derlying autoimmune mechanism (2). In favor of the
synthesis defect is the restoration of VWF in hypothyroid
patients when they reach the euthyroid state after levothyr-
oxine replacement (3,5,6). Concordantly, in observational
studies, elevated fT4 is associated with increased concen-
trations of VWF and FVIII (7–10), increased risk of venous
thromboembolism (VTE) (8,11,12), and increased risk of
stroke (13). However, effects of thyroid function on other
measures of the coagulation and fibrinolytic system (acti-
vated partial thromboplastin time [APTT], prothrombin time
[PT], factor VII [FVII], D-dimer, plasminogen activator
inhibitor-1 [PAI-1], tissue plasminogen activator [TPA]) are
still debated (9,10,14).

The genetic diversity of thyroid function and regulation by
the hypothalamic–pituitary–thyroid pathway is reflected by
the multiple genes implicated by genome-wide association
studies (GWAS) in hypo- and hyperthyroidism (15–17),
normal-range TSH and fT4 concentrations (16,18,19), and
thyroid peroxidase antibodies (TPOAb, a marker of autoim-
mune thyroid suppression) (20,21). The Mendelian randomi-
zation (MR) design can be used to integrate this information to
investigate the causal relevance of thyroid function on coag-
ulation and fibrinolysis, avoiding the confounding and reverse
causation in the traditional, that is, nongenetic observational
designs. In MR studies, genetically predicted hypothyroidism
and increased TSH are associated with decreased risk of atrial
fibrillation (AF) (22,23) and decreased kidney function (24),
and genetically increased TSH is also associated with de-
creased risk of ischemic stroke (25), increased risk of type 2
diabetes (26), and increased low-density lipoprotein concen-
tration and blood pressure (26). However, genetically pre-
dicted thyroid function is not associated with bone mineral
density (27), cerebral hemorrhage (23), or VTE (23). In this
novel MR study, we hypothesize that thyroid function is
causally associated with changes in coagulation and fibrino-
lysis. We investigated this using summary estimates on thyroid
function from the ThyroidOmics Consortium (16) and 23an-
dMe (17). We used summary statistics on outcomes from the
Cohorts for Heart and Aging Research in Genetic Epide-
miology (CHARGE) Hemostasis Group on coagulation
(VWF, FVIII, APTT, fibrinogen, PT, FVII) and fibrinolysis
(D-dimer, TPA, PAI-1) (28–34).

1306 ELLERVIK ET AL.



Materials and Methods

Genetic variants associated with thyroid function

For hypothyroidism, we used 18 single nucleotide poly-
morphisms (SNPs) from the European ancestry GWAS
study by Pickrell et al. including 17,558 participants with
hypothyroidism and 117,083 control participants from
23andMe (Table 1) (17). Hypothyroidism was determined
by self-reported use of thyroid medication, self-reported
increased TSH levels, or self-reported Hashimoto’s
thyroiditis (Supplementary Fig. S1 and Supplementary
Table S1).

For TSH, we used the largest and most recent European
ancestry meta-GWAS for normal-range TSH from the
ThyroidOmics Consortium, an international consortium that
studies the determinants and effects of thyroid diseases and
thyroid function (16). The GWAS by Teumer et al. con-
sisted of data from 22 independent cohorts with 54,288
participants for TSH. The study identified 60 SNPs and 1
indel (in 41 loci) associated with TSH (16). A priori, we
excluded the indel, and two variants associated with TSH
levels, which were highly pleiotropic (ABO-rs8176645) or
had the same effect allele associated ( p < 0.05) with both
higher TSH levels and higher fT4 levels within the normal
range (BCAS3-rs1157994). Several variants associated with
TSH levels in the GWAS by Teumer et al. (16) have also
been associated with autoimmune thyroid disease (AITD),
including Hashimoto’s thyroiditis, Graves’ disease, and
TPOAb positivity (16,21,35). To investigate pleiotropy, we
identified variants (i) associated with AITD and (ii) variants
not associated with AITD (Supplementary Tables S1 and
S2). Only individuals with TSH values within their cohort-
specific normal ranges were included in the GWAS. Parti-
cipants with known thyroid disease were excluded. Details
on laboratory analyses for each cohort are provided in the
article by Teumer et al. (16).

For TPOAb, we used two European ancestry studies by
Schultheiss et al. (20) and Medici et al. (21) of 17 cohorts with
25,821 participants (3009 TPOAb positive [11.7%], 22,812
TPOAb negative), and which identified 6 SNPs (Supplemen-
tary Methods section and Supplementary Table S1).

For hyperthyroidism (NSNP = 8), we used the European
ancestry GWAS study by Teumer et al. (16) of 51,823 par-
ticipants including 1840 participants with TSH below the
cohort-specific normal range, which for most cohorts was
below 0.4 mIU/L (Supplementary Table S1). Participants
with known thyroid disease were excluded. For this study, we
excluded the variant rs925488 in FOXE1 as the effect allele
also increases TSH (16).

For normal-range fT4 (NSNP = 31) concentrations, we used
the European ancestry GWAS study from ThyroidOmics
Consortium published by Teumer et al. (16) (Supplemen-
tary Table S1) or proxy SNPs from previous fT4 GWAS
studies (18,19). The study consists of 19 cohorts with 49,269
participants for fT4. Participants with known thyroid dis-
ease were excluded. Details on laboratory analyses for each
cohort are provided in the article by Teumer et al. (16). As
the genetic variants associated with fT4 levels form a highly
heterogeneous group with potentially diverse effects on
thyroxine (T4) and triiodothyronine (T3) tissue availability
(36,37), we stratified fT4 variants into: (i) variants within
the deiodinases loci (i.e., DIO1 and DIO2), which are en-
zymes involved in conversion of fT4 to the bioactive free
triiodothyronine (fT3), and (ii) other (nondeiodinase) ge-
netic variants associated with fT4 levels in the GWAS by
Teumer et al. (16). There was only a limited overlap be-
tween GWAS TSH SNPs that were nominally associated
with fT4 and vice versa (16).

For all thyroid traits, we included independent SNPs with
minor allele frequency >1% previously identified in the
GWAS studies with p < 5 · 10-8 (Supplementary Methods
section and Supplementary Tables S1 and S2) (16,17,20).

Table 1. Characteristics of Cohorts and Consortia

Trait Consortium European, % N cohort Sample size Reference

Exposure
Hypothyroidism 23andMe 100 1 17,558ca/117,083co Pickrell et al. (17)
TSH ThyroidOmics 100 22 54,288 Teumer et al. (16)
TPOAb positivity — 100 17 25,821 Schultheiss et al. (20)
Hyperthyroidism ThyroidOmics 100 22 51,823 Teumer et al. (16)
fT4 ThyroidOmics 100 19 49,269 Teumer et al. (16)

Outcome
APTT CHARGE 100 1 9240 Tang et al. (28)
D-dimer CHARGE 100 13 21,052 Smith et al. (34)
Fibrinogen CHARGE 100 34 120,246 de Vries et al. (31)
FVII CHARGE 85.40 9 23,434 de Vries et al. (33)
FVIII CHARGE 79.40 9 32,610 Sabater-Lleal et al. (32)
PT CHARGE 100 3 2583 Tang et al. (28)
PAI-1 CHARGE 100 8 19,599 Huang et al. (29)
TPA CHARGE 100 14 26,929 Huang et al. (30)
VWF CHARGE 91.80 18 46,354 Sabater-Lleal et al. (32)

Hypothyroidism was self-reported and included a confirmed diagnosis of hypothyroidism, increased TSH levels, or taking medication for
hypothyroidism. For TSH and fT4, people were excluded if they reported use of thyroid medication (defined as ATC, code H03) or previous
thyroid surgery. Hyperthyroidism was defined as TSH below the cohort-specific normal range. Controls were free of thyroid disease.

APTT, activated partial thromboplastin time; ATC, Anatomical Therapeutic Chemical; ca, cases; co, controls; fT4, free thyroxine; FVII,
factor VII; FVIII, factor VIII; PAI-1, plasminogen activator inhibitor 1; PT, prothrombin time; TPA, tissue plasminogen activator; TPOAb,
thyroid peroxidase antibody; TSH, thyrotropin; VWF, von Willebrand factor.
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Instrument strength for each SNP in MR was estimated with
an approximated F-statistic as a function of the magnitude
and precision of the genetic effect: F = (bGX)2/(SEGX)2,
where bGX is the per-allele genotype–phenotype association
on the biomarker and SEGX is the standard error (SE) (38).
Included SNPs had F above 10 as recommended to avoid weak
instrument bias and commonly considered as sufficient
strength threshold for valid genetic variants (39). b and SEs for
TSH, fT4, and TPOAb are expressed in standard deviation
(SD) units, whereas b and SEs for genetically predicted hypo-
and hyperthyroidism are expressed as logodds.

Genetic estimates of thyroid function
on coagulation and fibrinolysis

We examined TSH, hypothyroidism, TPOAb, fT4, and
hyperthyroidism SNPs in the CHARGE Hemostasis data sets
in relation to coagulation (VWF, FVIII, APTT, PT, FVII,
fibrinogen) and fibrinolysis (D-dimer, TPA, PAI-1) (Fig. 1).
APTT is test for the coagulation factors in the intrinsic and
common pathways, whereas PT is a test for coagulation
factors in the extrinsic and common pathways. In CHARGE,
the number of cohorts varied from 1 to 34, and the total
number of participants varied from 2583 to 120,246 de-
pending on the biomarker. The majority of participants were
European (Table 1 and Supplementary Table S3) (28–34).

We extracted summary statistics for the thyroid function
instruments, indexing SNP position according to build
GRCh37.13. We aligned the effect of the outcome SNPs to the
thyroid effect alleles with ‘‘effect allele’’ as the thyroid risk
increasing allele. Preanalytical and analytical details for the
measurement of the CHARGE Hemostasis biomarkers are
listed in the GWAS articles and are summarized in Supple-
mentary Table S3 (28–34). The beta and its SE for D-dimer,
fibrinogen, FVII, FVIII, PAI-1, TPA, and VWF were all cal-
culated on natural logarithm transformed trait, whereas the
beta and its SE for APTT (28) was initially provided as a
Z-score and converted to SD units (Supplementary Methods
section), and based on international normalized ratio units for
PT. We were not able to identify all thyroid exposure SNPs for
the CHARGE coagulation outcomes, as genotyping and im-
putation were performed on reference panels using HapMap,
while 1000G was used for TSH and fT4.

Statistical analysis

For each SNP, we calculated the instrumental variable ratio as
the quotient of the SNP-outcome to SNP-exposure effects using
the Wald estimator. We calculated the combined effect across
all SNPs using inverse-variance weighted random effects (IVW-
RE), which was the main analysis. We assessed the robustness
of the IVW-RE in three complementary sensitivity analyses
with different assumptions about horizontal pleiotropy: weigh-
ted median, weighted mode, and MR-Egger regression (40–43).
The between-instrument heterogeneity Cochran’s Q-statistic
and the I2 index were used to assess heterogeneity in the meta-
analysis (44). We used the MR-PRESSO to test and correct for
possible bias from horizontal pleiotropy (45). We stratified TSH
SNPs based on their previous association with autoimmune
diseases, and fT4 SNPs based on their involvement in the en-
zymatic conversion of fT4 to fT3 (i.e., SNPs in DIO1 and DIO2
genes) (Supplementary Tables S1 andS2). We considered
p < 0.05 as nominally significant. A Bonferroni correction was
used to control for false-positive findings due to multiple com-
parisons, and with five thyroid traits (TSH, hypothyroidism,
TPOAb positivity, fT4, hyperthyroidism) and nine biomarker
outcomes, a two-sided p < 0.0011 [ = 0.05/(5 exposures · 9
outcomes)] was considered significant for the main IVW-RE
analysis. We used the Stata package mrrobust for all analyses,
except MR-PRESSO, which was performed in R. This study
was based on aggregate data and did not require IRB approval.

Results

Genetically increased TSH was associated with de-
creased VWF [b(SE) = -0.020(0.006), p = 0.001] among
all TSH SNPs (Fig. 2 and Supplementary Table S4) and
[b(SE) = -0.038(0.013), p = 0.004] among autoimmune TSH
SNPs (Supplementary Table S5); p-values were borderline
significant after Bonferroni correction (Fig. 2 and Supple-
mentary Tables S4–S6). Genetically increased normal-range
TSH was associated with decreased fibrinogen [b(SE) =
-0.008(0.002), p = 0.001], which was significant after Bon-
ferroni correction (Fig. 2 and Supplementary Tables S4–S6).
Genetically predicted hypothyroidism did not associate with
decreased VWF [b(SE) = -0.005(0.003), p = 0.15] (Fig. 3 and
Supplementary Table S7), although the direction was similar
as to TSH. Genetically predicted TPOAb positivity did not

FIG. 1. A simplified
overview of coagulation and
fibrinolysis. Coagulation
factors denoted Roman
numbers are shown. Itali-
cized words are inhibitors.
The arrows show the acti-
vating direction of the
coagulation cascade.

: denotes inhibition. Dashed
circles indicate the biomark-
ers investigated in this study.
PAI-1, plasminogen activator
inhibitor; TPA, tissue plas-
minogen activator; VWF,
von Willebrand factor.
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associate with VWF (Supplementary Table S8). Genetically
increased normal-range fT4 was nominally associated with
increased VWF [b(SE) = 0.028(0.011), p = 0.012] (Fig. 2 and
Supplementary Table S9). Genetically increased normal-range
fT4 driven by DIO1 and DIO2 variants was nominally asso-
ciated with increased VWF [b(SE) = 0.040(0.015), p = 0.007]
(Fig. 2 and Supplementary Tables S10 and S11). Genetically

predicted hyperthyroidism was nominally associated with in-
creased VWF [b(SE) = 0.012(0.004), p = 0.006] and increased
FVIII [b(SE) = 0.013(0.005), p = 0.007] (Fig. 2 and Supple-
mentary Table S12).

Genetically predicted hypothyroidism [b(SE) = -0.009
(0.024), p = 0.024] and TPOAb positivity [b(SE) = -0.045
(0.020), p = 0.026] were nominally associated with decreased

FIG. 2. Mendelian randomization of thyroid function on VWF, FVIII, and APTT. Results shown are based on inverse-
variance-weighted random effects analyses. AITD, autoimmune thyroid disease; APTT, activated partial thromboplastin
time; b, beta coefficient; DIO1/DIO2, Deiodinase 1 and Deiodinase 2 genes; FVIII, factor VIII; SNPs, N, number of single
nucleotide polymorphisms for each analysis; TSH, thyrotropin.

FIG. 3. Mendelian randomization of thyroid function on fibrinogen, PT, and FVII. Results shown are based on inverse-
variance-weighted random effects analyses. fT4, free thyroxine; FVII, factor VII; PT, prothrombin time.

THYROID FUNCTION, HEMOSTASIS, COAGULATION, AND FIBRINOLYSIS 1309



TPA, whereas genetically predicted hyperthyroidism was
nominally associated with increased TPA [b(SE) = 0.022
(0.008), p = 0.008] (Fig. 4). Genetically increased TSH and
fT4 were not associated with TPA.

The sensitivity analyses for the above-mentioned results
showed similar direction but lower precision (Supplementary
Tables S4–S12). For other coagulation and fibrinolytic fac-
tors, results were inconclusive (Figs. 2–4).

Discussion

This is the first MR study to investigate the causal effects of
thyroid function on hemostasis, coagulation, and fibrinolysis.
The hypothalamic–pituitary–thyroid axis is a hormonal feed-
back system with tight regulation and represents in an MR
context an endogenous vertical pleiotropy. We found that ge-
netically increased normal-range TSH, mainly driven by au-
toimmune variants, was associated with decreased VWF
levels, and correspondingly genetically predicted hyperthy-
roidism and genetically increased normal-range fT4 driven by
DIO1 and DIO2 variants were associated with increased VWF
levels. The sensitivity analyses showed similar direction but
with lower precision. Genetically predicted hypothyroidism
and TPOAb positivity did not associate with increased VWF.

VWF is secreted from the vascular endothelium and
platelets. VWF acts as a carrier for FVIII to protect it from
degradation and acts as a bridge between platelets to promote
platelet aggregation and adhesion to the vascular endothe-
lium during vascular injury (1). Observationally, untreated
hypothyroidism is associated with acquired von Willebrand
syndrome (2,3), and concordantly, untreated hyperthyroid-
ism is associated with increased concentrations of VWF and
FVIII (7–10). The genetic correlation of FVIII and VWF is
83.5% (32); therefore, low VWF is often associated with a
low FVIII activity and vice versa.

In the present MR study, we found a potential association
that may be suggestive of a causal mechanism between thy-
roid function and VWF concentrations. The observed asso-
ciations for genetically increased TSH on VWF were
mirrored by genetically predicted hyperthyroidism and fT4.
These findings serve as an internal validation of the results,
despite that sensitivity analyses were not Bonferroni signif-
icant. Genetically predicted hyperthyroidism was the only
thyroid trait associated with increased FVIII, further vali-
dating the observations for VWF (through the high genetic
correlation between the two biomarkers). We were not able to
find a causal association between genetically predicted hy-
pothyroidism, a diagnosis that was partially based on self-
reported levothyroxine treatment, and decreased VWF. This
is also in accordance with the observational literature
showing that VWF concentrations in hypothyroidism restore
after levothyroxine replacement therapy and achievement of
euthyroidism (3). Our findings that TSH was associated with
decreased VWF, while fT4, particularly through deiodinase
variants, was associated with increased VWF, are in line with
the synthesis defect, that is, downregulation of VWF. We
cannot exclude an underlying autoimmune mechanism, as the
genetic TSH association was mainly driven by autoimmune
variants. However, we were not able to find a causal asso-
ciation between genetically predicted TPOAb positivity and
decreased VWF, but this could be due to the low number of
genetic variants.

The genetic loci contributing to thyroid function did not
include the VWF gene, and therefore, the observed MR as-
sociation of increased TSH with decreased VWF does not
qualify as von Willebrand disease, but may rather contribute
to the variability and explain a low-level VWF phenotype
(46). The observed effects of thyroid function on VWF as
observed in this MR study may have physiological impor-
tance but weak clinical importance. Despite our suggestive

FIG. 4. Mendelian randomization of thyroid function on D-dimer, PAI-1 (plasminogen activator inhibitor) and tissue
plasminogen activator (TPA). Results shown are based on inverse-variance-weighted random effects analyses.
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MR finding that increased TSH is associated with decreased
VWF and conversely increased fT4 was associated with
increased VWF, previous MR studies of genetically in-
creased TSH and fT4 did not find an association with in-
tracerebral or subarachnoid hemorrhage (23) and VTE (23).
Furthermore, in previous MR, genetically increased TSH
was associated with decreased risk of AF (22) and decreased
risk of stroke, but the latter association fully disappeared
when controlling for AF (25), suggesting that other pleio-
tropic biological pathways between TSH and stroke other
than AF are unlikely. Thus, despite the effect of increased
VWF and FVIII on increased risk of ischemic stroke, VTE
and coronary artery have been established (32); the sug-
gestive effect in this MR of hyperthyroidism and increased
fT4 on increased VWF and FVIII does not translate into a
dominant clinical mechanism. Prospective studies are nee-
ded to address if patients with increased TSH and low VWF
concentration will benefit from hemostatic treatment during
surgical interventions, and if patients with decreased TSH
and increased VWF concentration will benefit from VTE
prophylaxis for surgical interventions.

Epidemiological evidence and directionality for the
association of thyroid function on other measures of the
coagulation and fibrinolytic system (increased concentra-
tions of APTT, PT, FVII, D-dimer, PAI-1, TPA) are still
debated (9,10,14). TPA is primarily synthesized and se-
creted by the vascular endothelium and is a biomarker of
thromboembolic stroke (47) and major cardiovascular
events in patients with atrial fibrillation (48). TPA does
therefore not represent fibrinolysis alone, but also an in-
creased activation of the coagulation cascade. In our MR
study, genetically predicted hypothyroidism and TPOAb
positivity were nominally associated with decreased TPA,
whereas genetically predicted hyperthyroidism was nomi-
nally associated with increased TPA.

In this MR, the effect of thyroid function on other coag-
ulation and fibrinolysis factors was null given the large
number of tests and the corresponding Bonferroni standards
for significance. Since Bonferroni correction, which as-
sumes independence, was overly conservative, given the
correlation between thyroid traits, and between coagulation
outcomes, and statistical tests were correlated, we cannot
completely reject nominal associations of thyroid traits
with coagulation or fibrinolysis. The correlation structures
for thyroid traits and coagulation outcomes are complex
(49,50). Thyroid traits are (i) ordered (TSH before fT4) in
the hypothalamic–pituitary–organ axis with negative feed-
back of fT4 on TSH, (ii) ranked as hypothyroidism, eu-
thyroidism, or hyperthyroidism, and (iii) classified into
autoimmunity or not (TPOAb positivity) (16,20). The co-
agulation system is (i) divided into the intrinsic and ex-
trinsic systems, which are not independent and are regulated
by the anticoagulation system, (ii) is an ordered sequence of
dependent events, and (iii) commences in a common path-
way (fibrinogen), which is regulated by the fibrinolytic
(PAI-1, TPA) system with D-dimer as the breakdown
product (28–34). The nine outcomes assessed both overall
function and separate factors for the intrinsic (APTT) and
the extrinsic (PT) systems (49,50). Finally, the five MR
analyses were correlated as they use meta-analysis as the
underlying model but have different assumptions and han-
dling of heterogeneity (51).

We were unable to investigate the VWF activity using the
platelet binding ristocetin (VWF:RCo) assay or the collagen
binding activity (VWF:CB) assay, as GWAS for these ana-
lyses have not been published. However, as the VWF gene is
not among the thyroid trait loci, a functional thyroid-
associated VWF defect is unlikely. Therefore, in hypothyroid
patients, low concentration of VWF can be detected using
VWF:Ag assay, as in this study (46). Another potential lim-
itation is population stratification, as genetic studies on VWF
(and also FVIII and FVII) included trans-ethnic populations
(79–92% of European ancestry), while genetic studies on all
other coagulation, fibrinolysis, and all thyroid traits were
limited to individuals of European ancestry. The number of
individuals included in the GWAS for the outcomes varied
from 2583 (PT) to 120,246 (fibrinogen), and due to the less
dense imputation in the CHARGE compared with the Thy-
roidOmics Consortium (HapMap vs. 1000G reference panel),
the number of SNPs obtained varied substantially. Thus,
these MR analyses may be worth revisiting in the future with
greater number of SNPs, which provide stronger instrumental
variables.

In the largest studies currently available, genetically in-
creased TSH and fT4 may be associated with decreased and
increased synthesis of VWF, respectively. Bonferroni cor-
rection was conservative as thyroid traits, coagulation out-
comes, and MR analyses were correlated, and thus, we cannot
completely reject nominal associations of thyroid traits with
coagulation or fibrinolytic factors.
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