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Abstract
Transcriptional enhancers play a key role in the initiation and maintenance of gene expression programmes, particularly in 
metazoa. How these elements control their target genes in the right place and time is one of the most pertinent questions 
in functional genomics, with wide implications for most areas of biology. Here, we synthesise classic and recent evidence 
on the regulatory logic of enhancers, including the principles of enhancer organisation, factors that facilitate and delimit 
enhancer–promoter communication, and the joint effects of multiple enhancers. We show how modern approaches build-
ing on classic insights have begun to unravel the complexity of enhancer–promoter relationships, paving the way towards a 
quantitative understanding of gene control.
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Introduction

In complex organisms, the vast majority of genes are not 
controlled by promoters alone, but additionally receive input 
from one or more non-coding DNA cis-regulatory elements, 
the best-characterised of which are enhancers. The first tran-
scriptional enhancers were identified about 40 years ago, and 
their critical role in development has been clear for at least 
two decades. Advances in recent years have led to the identi-
fication of millions of enhancers active in an ever-expanding 
array of cell types. Meanwhile, population genetics studies 
have revealed the enrichment of these elements for genetic 
variants associated with common diseases. Most recently, 
targeted perturbation and imaging techniques have taken 
functional analyses of enhancers to a new level of scale 
and resolution. As the quest for a mechanistic understand-
ing of enhancers continues, the function of these elements 
emerges as a complex phenomenon that integrates multiple 
levels of nuclear organisation, from primary DNA sequence 
and sequence-specific transcription factors to higher-order 

chromatin architecture through chromatin remodelling com-
plexes, chromosomal loops and potentially phase-separated 
condensates. In this review, we synthesise classic and recent 
evidence on the organisation and function of enhancers, 
focusing in particular on the principles governing their com-
munication with target gene promoters.

Organisation and function of enhancers in 
cis

Classic definition of enhancers

Enhancers were first described around 20 years after the 
discovery of the gene promoter [1–7]. In 1980, the first 
evidence for enhancers arose when short DNA sequences 
were discovered within the simian virus 40 (SV40) [2] and 
the sea urchin genome [3] that were remote from a gene 
promoter, yet seemed to stimulate gene expression by an 
unknown mechanism. Subsequent landmark experiments by 
the groups of Walter Schaffner [4] and Pierre Chambon [5] 
confirmed that a 72-bp repeat sequence element in SV40 [8, 
9] was an “enhancing” sequence, capable of vastly upregu-
lating gene expression from a plasmid upon transfection 
into mammalian cells. Moreover, this enhancer could acti-
vate rabbit or human β-globin genes from varying distances 
from their promoters, regardless of its orientation [4, 5]. At 
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around the same time, similar observations were made for 
an unrelated enhancer sequence within the polyoma virus 
[10]. We now know that the ability to function remotely and 
independently of orientation are classic features of enhanc-
ers. The SV40 discovery was useful for identifying further 
enhancers via the “enhancer trap” method: an SV40 genome 
lacking its known enhancer was combined with fragments 
of other viruses and transfected into mammalian cells. DNA 
combinations with the ability to replicate must have gained 
an enhancer from the new fragment [11, 12].

Enhancers were soon discovered in the genomes of other 
model organisms in a range of complexities from yeast 
[13] to Drosophila [14] and mouse [15–17]; enhancer-
like sequences were also detected in bacteria [18–22]. In 
Drosophila, newly discovered enhancers orchestrated the 
regulation of developmental genes that were crucial for the 
correct formation of the embryo [23, 24]. It soon became 
clear that enhancers also played vital roles in humans, with 
non-coding enhancer deletions starting to be linked to severe 
disease phenotypes such as beta thalassaemia and polydac-
tyly [25–28].

Enhancers as transcription factor recruitment units

At the DNA level, enhancers represent clusters of bind-
ing sites for sequence-specific transcription factors (TFs) 
(Fig. 1A) (reviewed in [29, 30]). However, the ability of 
enhancers to recruit their cognate TFs may be constrained 
by inaccessible (“closed”) chromatin conformation, whereby 
enhancer regions are tightly packaged in nucleosomes. 
A subset of TFs known as pioneer factors are capable of 
overcoming this constraint through chromatin remodelling 
(reviewed in [31, 32]). Pioneer factors play particularly 
important roles in priming enhancers in order to program 
gene expression patterns during early development. In Dros-
ophila, the Zinc Finger Early Drosophila Activator (Zelda) 
is critical for lowering the nucleosome barrier at enhancers 
for genes driving zygotic gene activation [33–35]. In mice 
and humans, the pioneer factors OCT4 and SOX2 form a 
core part of the regulatory network controlling stem cell 
pluripotency [36]. The mechanisms of pioneer factor action 
are still being established [37], but at least some of them 
(such as FOXA, OCT4 and SOX2/SOX11) have been shown 
to initiate chromatin opening by direct displacement of his-
tones [38–41], whilst many others recruit chromatin remod-
elers [42–50]. Often, pioneer factors must recruit additional 
non-pioneer sequence-specific TFs for efficient enhancer 
activation [30, 31]. For instance, Zelda promotes the for-
mation of local TF hubs involving important transcription 
factors required for developmental patterning, such as Bicoid 
and Dorsal [51–54]. Synthetic enhancers recruiting multi-
ple heterotypic TFs showed stronger transcriptional effects 
compared with those recruiting high amounts of a single 

TF, providing a functional rationale for combinatorial TF 
recruitment to natural enhancers [55].

Mechanistically, a key function of sequence-specific TFs 
is the recruitment of “workhorse” cofactors that facilitate 
enzymatic chromatin remodelling, histone modification 
and act as scaffolds for recruitment of additional factors. 
These cofactors include, but are not limited to, SWI/SNF 
and FACT chromatin remodelling complexes, P300 and 
CBP chromatin activators, Bromodomain-containing (BRD) 
proteins and the Mediator complex [56, 57]. The SWI/SNF 
complex is involved in regulating occupancy and spacing 
of nucleosomes at promoters and enhancers [58], while the 
most established role of FACT is in facilitating transcrip-
tional elongation [57]. SWI/SNF recruits the chromatin 
activators P300 and CBP, which mediate the acetylation of 
histone H3 lysine 27 through their intrinsic histone acetyl-
transferase (HAT) activity [59–62]. This P300/CBP-induced 
acetylation has recently been implicated in the release of 
“paused” RNAP at both enhancers and promoters to promote 
active transcription [63]. P300 and CBP also serve as scaf-
folds that connect RNA polymerase II (RNAP) and RNAP-
associated “general transcription factors” to the chromatin 
[64, 65]. At active enhancers, the BRD4 protein co-localises 
with the Mediator complex, which in turn assembles the pre-
initiation complex (PIC) and RNAP to initiate transcription 
[66–68].

Recent experiments degrading Mediator and BRD4 have 
shown that these proteins are critical for gene expression 
[69]. In particular, Mediator and BRD4 co-localise at very 
high levels at “super-enhancers” (SEs): long stretches of 
sequences with gene regulatory activity that generally drive 
greater levels of gene expression than regular enhancers 
[69–72]. We will return to Mediator and BRD4 later in the 
review to discuss their possible roles in enhancer–promoter 
communication.

The majority of active enhancers are themselves tran-
scribed, producing enhancer RNAs (eRNAs) in a bi-direc-
tional manner [73–77]. These eRNAs are rapidly degraded 
and might be merely by-products of RNAP recruitment to 
enhancers [78]. However, studies that knock down selected 
eRNA have found reduced expression of the correspond-
ing gene targets, suggesting functionality [79–81]. The 
exact  functions of eRNAs are as yet unclear but could 
include, among others, maintaining enhancer chromatin 
accessibility [82, 83] and interacting with TFs or cofactors 
such as BRD4 [84, 85] (reviewed in [86]).

The chain of molecular events following the binding of a 
pioneer TF to its target sequence (in this case, a promoter-
proximal region) has been elegantly documented in a fine-
grained time-course experiment following oestrogen recep-
tor activation in a cancer cell line [87]. This study detected 
multiple “waves” of a progressive recruitment of at least 46 
sequence-specific TFs and cofactors, including chromatin 
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remodelling complexes and histone acetyl-transferases, 
eventually resulting in a derepression of an oestrogen-
response gene pS2 [87].

Flexibility of enhancer organisation

Given that multiple TF binding sites are the essential build-
ing blocks of enhancers, the key question is whether their 
positioning within enhancers needs to follow any kind of 
“grammar”, with respect to their particular order and orien-
tation, for an enhancer to function properly (Fig. 1B). The 
various proposed models for enhancer grammar range from 
very rigid to flexible, largely dependent on the species, cell 

types and loci in which they were formulated (reviewed in 
[29]). At the rigid end, the “enhanceosome” model suggests 
that the TF binding sites must remain in the same order and 
orientation for the enhancer to work. This model was based 
on careful dissection of the virus-responsive interferon beta 
enhancer, which has eight TF binding sites [88]. The model 
dictates a set organisation of motifs and spacers consistent 
with the formation of a heteromultimer of cooperatively 
bound TFs, each of which directly binds the DNA. Virtually 
every nucleotide of the interferon beta enhancer is evolution-
arily conserved; this is likely because the eight TFs cooper-
ate to form a composite surface that recognises the entire 
sequence of the enhancer as one effective binding site [88, 

Fig. 1   Organisation of active enhancers in cis. A Enhancers become 
activated by pioneer factors that increase chromatin accessibility, 
perhaps through histone displacement, allowing for binding of cell-
specific TFs and cofactors. Cofactors such as P300 and MLL perform 
chromatin remodelling via acetylation or methylation of histone tails. 
TFs and cofactors recruit BRD4/Mediator and further transcriptional 
machinery to begin active transcription at the enhancer and the dis-

tal gene promoter. B Models of enhancer grammar include the rigid 
Enhanceosome model [88], in which TFs bind in a particular order 
and spacing; the Billboard model, in which TFs bind in a very flex-
ible arrangement [90], and the TF Collective model, in which a full 
set of particular TFs is required for enhancer activation, but not all 
TFs must bind directly to the DNA and instead are recruited via pro-
tein–protein interactions [91]



6456	 H. Ray‑Jones, M. Spivakov 

1 3

89]. In contrast, later studies of Drosophila developmental 
enhancers found evidence for much less rigid motif organi-
sation [90, 91]. At the most flexible end, the loosely organ-
ised “billboard” model developed in Drosophila implies no 
cooperativity between TFs for DNA binding and, therefore, 
the location and spacing between binding sites is not crucial 
for conserved enhancer function [90, 92]. Enhancers con-
sistent with the billboard model are likely also widespread 
in vertebrate genomes [55, 93]. An intermediate model for 
enhancer grammar known as the “TF collective” proposes 
that a set of the same TFs binds to multiple enhancers but 
an individual enhancer does not necessarily have the full 
set of TF binding sites [30, 91]. TF recruitment is therefore 
facilitated by a combination of DNA binding affinity and 
protein–protein interactions between TFs. The TF collec-
tive model was originally formulated in Drosophila, where 
a set of five TFs bound multitudes of enhancers required 
for heart development that showed no detectable similar-
ity in their sequence organisation, beyond the presence of 
binding motifs for some of these TFs [91]. Later studies 
provided further examples of “TF collective” enhancers. For 
example, dissection of an enhancer controlling the specifi-
cation of Drosophila leg precursor cells showed that it was 
robust against motif disruption, but relied on DNA–protein 
and protein–protein interactions between a particular set 
of TFs [94]. Similarly, TFs governing serotonergic neuron 
differentiation showed synergy despite flexible sequence 
organisation of their cognate enhancers [95]. Flexibility 
of enhancer organisation with respect to binding site order 
and orientation was also observed in a massively parallel 
synthetic enhancer experiment [55]. Biophysical modelling 
and machine learning approaches have provided more evi-
dence for flexible enhancer grammar [96–98]. For example, 
modelling the effects of targeting engineered transcription 
activators and repressors to enhancers suggested that TFs 
can contribute additively to enhancer function, regardless of 
their identity [96]. Additionally, a deep learning algorithm 
applied to binding of pluripotency TFs at base resolution 
in mouse embryonic stem cells (ESCs) suggested a “soft 
motif syntax” whereby TFs help each other to bind directly 
to the enhancer with a lenient distance-dependency between 
binding sites [98].

The prevalence of flexible enhancer organisation is 
also supported by rapid evolutionary turnover of enhanc-
ers, which exceeds that of proximal promoter regions [29, 
99, 100]. In terms of their sequence, there are no known 
enhancers that are completely conserved at the base level 
across the animal kingdom [101]. Instead, enhancer con-
servation is typically “modular”, commonly preserving the 
sets of binding sites for the required TFs, but often not their 
exact sequence and orientation [101–109]. Consistent with 
this, homologous enhancers in a pair of distantly related 
species can retain their function in the non-host organism 

despite differences in DNA sequence [101, 110, 111]. Fur-
thermore, even enhancers with extremely high evolutionary 
conservation may not require the exact preservation of their 
sequence for their correct function, as was recently shown 
using CRISPR-mediated mutagenesis [112].

While it is clear that enhancers typically favour the more 
flexible models of sequence organisation, the degree of 
necessary cooperation between TFs is less obvious, particu-
larly since TF binding to DNA appears to be very transient 
[113–117]. Recent technological advances such as single 
molecule footprinting (SMF) have begun to unpick how TFs 
work with each other at enhancers [118, 119]. First devel-
oped in Drosophila, SMF can detect the binding of multiple 
TFs on a single DNA molecule [116]. SMF showed high 
TF cooperativity at active enhancers and identified cases 
where TFs bind independently, sequentially or simultane-
ously [118]. SMF has also recently been adapted to mam-
malian cells, detecting widespread co-occupancy of coopera-
tive TFs at enhancers [119]. Notably, at dimeric motif sites, 
TFs tended to bind initially as monomers with subsequent 
dimerisation presumably stabilising the DNA–protein com-
plex [119]. Interestingly, at non-dimeric sites, physical inter-
actions between co-bound TFs were not necessary [119], 
consistent with evidence from Drosophila where co-occu-
pied DNA-bound TFs were often spaced quite widely apart 
(> 50 bp) [118]. Jointly, these results point to synergistic 
mechanisms between different TFs that do not require direct 
protein–protein interaction.

How does the flexibility in enhancer organisation result 
in the robust control of gene expression? In part, this is 
achieved through tight regulation of the expression of the 
TFs themselves. One of the best-characterised examples 
of this is the development of gene expression “stripes” in 
Drosophila embryonic development, which is driven by the 
expression of pair-rule genes such as even-skipped (eve) 
[120]. The stripe 2 enhancer controls eve expression in early 
embryogenesis via binding of tissue-specific TFs [121–123]. 
This enhancer contains clusters of TF binding sites, with 
the sites for transcriptional repressors overlapping those for 
the activators. Activating TFs Bicoid and Hunchback are 
expressed only in the anterior section of the embryo, while 
the repressors Giant and Kruppel are expressed in anterior 
and posterior regions on either side of stripe 2, such that 
the stripe 2 enhancer is only activated within a 2–3 cell-
wide section of the embryo [108, 121, 124]. Another means 
by which flexible enhancer grammar ensures robust gene 
expression control is through “suboptimal” TF binding 
motifs, which reinforce the requirement for TF cooperativ-
ity and create opportunities for fine-tuning enhancer activity 
levels [125–128]. Consistent with this, “strengthening” TF 
binding sites at developmental enhancers results in aber-
rant gene expression patterns [125]. Finally, gene control 
is maintained by the multiplicity of enhancer inputs to the 
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same gene and its regulation by the broader chromatin con-
text, as will be reviewed below.

The chromatin states of enhancers

Active enhancers reside in open chromatin and occupy 
regions away from gene TSSs. However, open chromatin 
regions are not limited to active enhancers, and also harbour 
other regions including active gene promoters, regulatory 
elements in a ‘poised’ chromatin configuration (discussed 
below), as well as some structural regions such as tissue-
invariant binding sites for the architectural protein CCCTC-
binding factor (CTCF) [129–132]. Post-translational modi-
fications of histone tails provide a more specific readout of 
enhancer activity. Currently mono-methylation of histone 
H3 lysine 4 (H3K4me1), associated with the binding of 
Trithorax/MLL complexes, is taken to be the hallmark of 
both ‘primed’ and active enhancers, whilst active enhancers 
additionally tend to associate with the acetylation of histone 
H3 lysine 27 (H3K27ac) [133–137]. In contrast, the trimeth-
ylation of histone H3 lysine 4 (H3K4me3) is typically con-
sidered a promoter-associated mark and, in regions proximal 
to a known TSS, has been used to distinguish the enhancer 
from a promoter [131]. In addition to the ‘primed’ and 
active states, enhancers can also reside in a ‘poised’ state 
exhibiting both H3K4me1 and H3 lysine 27 trimethylation 
(H3K27me3) that is associated with Polycomb repressive 
complexes [131, 135, 136, 138]. Finally, some enhancers 
are marked with H3K27me3 alone and are considered to 
be “Polycomb-repressed” [139–141]. Many developmental 
enhancers are found in the poised or Polycomb-repressed 
state in early development [139, 142, 143], and the func-
tional role of these states remains an area of active research. 
One possibility is that poised enhancers may be ‘held in 
check’ for rapid activation [144]. However, enhancer asso-
ciation with Polycomb repressors may also merely serve to 
suppress enhancer activity [145] or potentially convert these 
regions to active ‘silencers’ [139].

Enhancer detection in high throughput

The epigenetic hallmarks of enhancers, including histone 
modifications and the binding of cofactors such as P300, 
have enabled their detection at a global scale. Following pio-
neering studies in a small number of cell types [146–148], 
large-scale consortia such as ENCODE, Roadmap Epig-
enomics and BLUEPRINT [131, 149–151] have profiled 
the epigenetic hallmarks of DNA regulatory elements across 
cell types in human and mouse cells, as well as in multiple 
Drosophila and Caenorhabditis species (through modEN-
CODE) [152, 153]. While the initial efforts focused on cell 
lines, the analyses have eventually been expanded to mul-
titudes of primary samples, including blood cells and solid 

tissues. The most recent (phase 3) release of the ENCODE 
project has compiled an updated registry of predicted cis 
regulatory elements in more than 500 cell or tissue types 
in human and mouse [131]. Finally, the EpiMap project 
has combined direct epigenetic mapping with imputation 
to generate a compendium of 833 reference epigenomes 
across 18 epigenetic assays [154]. The recently developed 
CUT&RUN [155]  and CUT&TAG [156]  methods that 
require fewer cells and less sequencing compared with ChIP 
are enabling enhancer identification in an ever-expanding 
array of cell types and tissues, as well as in single cells [157, 
158]. Complementary to this, bespoke methods have been 
developed to partition the genome into distinct regulatory 
‘states’ by integrating information across multiple histone 
marks accounting for spatial dependency [134, 159–161] to 
provide an easily interpretable and visualisable readout of 
enhancer activity in a given tissue.

While enhancer detection based on chromatin profil-
ing has become standard, this approach may falsely detect 
regions without appreciable regulatory activity, as well as 
miss some functional elements [146, 162]. For example, 
enhancers devoid of the classic H3K27ac mark have recently 
been described [163]; consistent with this, it was shown that 
this mark is not required for enhancer function, at least in 
mouse ESCs [164]. These limitations can be partially miti-
gated by high-throughput techniques that obtain a readout 
of enhancer activity as opposed to the markers of their chro-
matin state. For example, methods such as Cap Analysis 
of Gene Expression (CAGE) can be used to detect eRNA 
transcripts generated from enhancers, including in single 
cells [74, 165–167]. In addition, massively parallel reporter 
assays such as MPFD [168] and STARR-seq [169] make 
it possible to assess huge libraries of enhancer sequences 
for transcriptional regulatory activity in vitro [168–175]. 
Finally, the advent of CRISPR-based techniques stream-
lines the perturbation analysis of enhancers in vivo. Most 
relevantly, using the fusions of the ‘dead’ (endonuclease-
deficient) Cas9 protein (dCas9) with either transcriptional 
repressors such as KRAB, or activators such as P300 or tan-
dems of herpesvirus VP16 transactivation domain, enables a 
guide RNA (gRNA)-targeted inhibition (CRISPRi) or activa-
tion (CRISPRa) of theoretically any regulatory region in the 
genome [176–178]. A recent modification of this approach 
(known as enCRISPRi/a) combines multiple effector pro-
teins with dCas9 to modulate enhancer (rather than pro-
moter) activity more specifically [179]. To enable CRISPR-
mediated enhancer targeting in high throughput, populations 
of cells are transduced with pooled gRNA libraries, followed 
by single-cell readouts of enhancer or transcriptional activ-
ity from scRNA-seq [180, 181], scATAC-seq [182] and 
flow cytometry-based RNA FISH [183, 184] to obtain tiled 
maps of functional regulatory regions for multiple genomic 
loci in several cell types. In addition to targeting chromatin 
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modifiers using dCas9, knockout screens using wild type 
Cas9 can also be useful for identifying regulatory elements 
in high throughput [185–187]. Most of these studies are per-
formed in cell lines; however, CRISPR screening in primary 
cells is starting to gain momentum [188–190]. Genome edit-
ing of enhancers has even been conducted in situ, by inject-
ing guide RNA combinations along with Cas9 mRNA into 
fertilised mouse oocytes [111]. These novel techniques hold 
promise for the functional identification of enhancers on a 
global scale in vivo.

Natural variation at enhancers and its consequences

While much of the evidence for enhancer function was 
obtained through perturbing these regions artificially, natu-
ral genetic variation at enhancers is commonly observed 
in human populations, consistent with the relatively low 
sequence constraint of these regions [191, 192]. Much of 
this variation has apparently little phenotypic effect due to 
redundancy both within enhancers (such as through multiple 
homotypic TF binding sites [191, 193]) and across them (such 
as through multiple enhancers regulating the same gene, as 
will be discussed below). Nonetheless, enhancer variation 
is also known to underlie significant pathologies in both 
model organisms and humans. In Drosophila, for example, 
point mutations in the binding site for the Kruppel TF within 
an enhancer controlling the abdominal fate specifier abd-A 
results in its misexpression in a thoracic segment, leading to 
its conversion to an abdominal one [194]. Likewise, mutations 
in the enhancers controlling the expression of Drosophila 
homolog of Pax2 affected mechanosensory bristle develop-
ment [195]. In humans, a point mutation within a downstream 
enhancer controlling PAX6 expression causes the congenital 
eye malformation aniridia [196]. This mutation was found to 
prevent PAX6 itself from binding to the enhancer [196]. Point 
mutations in the ZRS enhancer of the sonic hedgehog (SHH) 
gene are associated with several types of congenital limb mal-
formation and skeletal abnormalities [27, 197, 198] (notably 
this enhancer is located ~ 1 megabases away from SHH and 
within an intron of another gene, as will be further discussed 
below). Functional analysis of the ZRS enhancer revealed that 
these mutations either create gain-of-function binding sites 
for activating TFs (ETS1 and GABPα) [199], or abolish a 
repressive TF site [200], leading to ectopic SHH expression. 
Other examples of genes mis-regulated by point mutations in 
enhancers leading to human disease include TBX5 (congeni-
tal heart disease) [201], PTF1A (pancreatic agenesis) [202] 
and IRF6 (Van der Woude syndrome) [203]. Capitalising on 
these observations, sequences predicted to affect TF binding 
have been used to prioritise causal expression quantitative trait 
locus (eQTL) variants at enhancers [204–207].

The importance of enhancer variation in human pathology 
has been further highlighted by genome-wide association 

studies (GWAS), since GWAS-detected genetic variants 
associated with complex traits and diseases are typically 
non-coding, non-promoter associated and highly enriched 
in enhancers [184, 208, 209]. A classic example is in obesity 
susceptibility, where trait-associated SNPs are located within 
the intron of the FTO gene, but lead to the dis-regulation of 
the distal IRX3 gene [210]. In another example, a systemic 
lupus erythematosus-associated variant (termed TT > A) 
situated within an enhancer downstream of TNFAIP3 has 
been shown to abrogate NF-kB binding, affecting TNFAIP3 
expression [211, 212]. Subsequent genome-wide TF bind-
ing analyses in population cohorts have identified multiple 
loci of differential TF binding (tfQTLs) across individuals 
that overlap GWAS variants. For example, genetic variants 
associated with differential binding of PU.1 were found to 
underpin GWAS variants associated with blood cell count 
and autoimmune diseases [213–215]. Beyond differential 
TF binding, population variation in readouts such as chro-
matin accessibility [216–219], DNA methylation, histone 
modifications [220–223] and chromatin looping [215, 224, 
225] can provide insights into the genetic determinants of 
enhancer activity and a functional interpretation of disease 
associations.

Notably, some enhancer variants that appear functionally 
neutral when tested under normal steady-state conditions 
may show “cryptic” effects under stress or upon stimulus 
response [107, 226, 227]. For instance, eQTL analysis in 
monocytes stimulated with interferon-γ or lipopolysaccha-
ride has revealed thousands of new variants affecting gene 
expression, which overlapped nearly 250 variants associ-
ated with response to infection and susceptibility to renal 
and immunological disorders [228]. Likewise, variants 
associated with type 1 diabetes were strongly enriched at 
promoter-connected active enhancers in activated, compared 
with resting, CD4+ T cells [229]. Condition-specific eQTLs 
were also detected in the cardiomyocytes of patients given 
the chemotherapy drug doxorubicin, with these loci poten-
tially explaining the differential risks of heart failure upon 
doxorubicin treatment [230]. The emerging tools for QTL 
analysis in the single-cell setting [231, 232] have the poten-
tial to streamline the identification of regulatory genetic 
variants with transient effects.

Similarities and differences between enhancers 
and promoters

Contrary to the initial assumption that enhancers and pro-
moters were biologically distinguishable elements, it is 
becoming clear that they share many properties (reviewed 
in [233]). The ENCODE project, for instance, found that 
an element might be classified as a promoter in the cell 
type-agnostic setting, but as a proximal enhancer-like ele-
ment in a specific cell type [131]. Likewise, proximal and 
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distal enhancer-like elements sometimes display elevated 
promoter-associated H3K4me3 [131, 234, 235]. Both active 
enhancers and promoters occupy nucleosome-free chroma-
tin, bind RNAP and can be divergently transcribed [73, 236, 
237]. In addition, enhancers within genes are sometimes 
capable of acting as alternative promoters [238]. Finally, evi-
dence from multiple sources including reporter assays [169, 
175, 239, 240], CRISPR [240–242], chromatin mapping 
[243, 244] and population genetics analysis [207, 245] sug-
gests that certain promoters, termed ‘epromoters’, can also 
function as enhancers (reviewed in [246]). Notably, while 
many such elements control house-keeping genes in cis (as 
promoters), they may regulate lineage-specific or inducible 
genes distally (as enhancers) [240, 247]. In addition, whilst 
genetic variants at epromoters may affect the expression of 
both the proximal and distal gene, a large proportion are 
associated with only the distal one [207]. Therefore, the 
mechanisms by which epromoters control their target genes 
in cis and in trans may not be fully equivalent.

Recently, it has been proposed that cis-regulatory ele-
ments exist on a spectrum of enhancer/promoter ability 
[233, 248]. One key feature determining the position of a 
regulatory element on this spectrum is likely to be the direc-
tionality of its transcriptional output. In a Drosophila assay, 
unidirectionally transcribing elements were more likely to 
drive strong promoter and limited enhancer activity, whilst 
bi-directionally transcribing elements had strong poten-
tial for enhancer activity and could also function as weak 
promoters [248]. The “grey area” between enhancers and 
promoters is supported by evolutionary evidence that some 
enhancers have undergone genetic mutations allowing them 
to be repurposed into gene promoters in mammals [100]. 
Promoters are also sometimes repurposed into enhancers, 
but at a 13-fold lower rate than enhancer-to-promoter [100]. 
In terms of their sequence properties, enhancers and promot-
ers tend to differ in GC content, with many promoters and 
only a subset of enhancers containing CpG islands [74, 249]. 
Therefore, enhancers predisposed to convert into promoters 
may have a particular GC sequence composition and pres-
ence of 5′ splicing regulatory motif patterns [100].

The potential interchangeability of enhancers and promot-
ers is relevant for functionally interpreting promoter–pro-
moter contacts that are abundantly detected in the genome, 
as will be discussed later in the review.

Enhancer–promoter communication in three 
dimensions

Whilst enhancers were classically tested by cloning them 
upstream of a core promoter, it quickly became clear that 
in their native context they are often located large distances 
away from the genes they control. The classic example of 

this is the Shh ZRS enhancer, which is located within the 
intron of the Lmbr1 gene approximately 1 megabase distant 
from Shh [27]. In this chapter, we discuss classic models of 
how enhancers and promoters can communicate over large 
distances, focusing on the evidence for the currently preva-
lent model of direct enhancer–promoter looping and factors 
thought to mediate it. We then move on to review the emerg-
ing exceptions from this model, with potential implications 
for non-looping mechanisms such as liquid–liquid phase 
separation. We have left the discussions on the dynamics of 
enhancer–promoter looping in specific biological settings 
outside the scope of this review. Several recent articles have 
provided up-to-date perspectives in this regard for various 
systems, including lymphocyte development [250, 251], 
heart development and disease [252], and cancer [253].

Evidence for enhancer–promoter looping

Historically, several conceptual models were proposed for 
enhancer–promoter communication. These models were ini-
tially applied to the mammalian β-globin locus, in which the 
developmental β-globin genes are regulated by a powerful 
tissue-specific enhancer known as a locus control region 
(LCR) [254–257]. It was unclear how the LCR could faith-
fully control the expression of the appropriate set of genes 
in each stage of erythroid cell development (embryonic, 
foetal and then adult β-type globin genes). In the “looping” 
model, the chromatin fibre between the LCR and the gene 
promoter could loop out until the LCR, as a single unit, 
is brought close to the promoter in 3D space [257, 258]. 
Looping between the LCR and gene promoters one by one 
would mean that gene promoters compete for LCR activa-
tion. It was unclear whether the amount of cellular energy 
required for such dynamic looping was achievable, particu-
larly over increasingly large distances [259]. Therefore, in 
the alternative “linking” model, TFs binding to the enhancer 
begin a chain of events whereby multiple proteins bind along 
the intervening chromatin between the enhancer and the 
promoter, creating a bridge-like complex [259–261]. In a 
similar vein, the “scanning” model suggests that proteins 
recruited by the enhancer slide along the chromatin towards 
the promoter [262]. According to the linking and scanning 
models, the protein complexes would eventually become 
impeded by the presence of transcriptional machinery at the 
appropriate gene promoter, presumably to prevent spurious 
gene transcription [263, 264]. At the time, each of these 
proposed models were equally plausible as there were no 
appropriate experimental techniques to distinguish between 
them [259].

The development of novel techniques provided evidence 
that looping mechanisms are in fact widespread, even 
though the picture that is currently emerging is more com-
plex, as will be discussed later. Two papers published in 
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2002 used different novel biochemical techniques to dem-
onstrate that the β-globin LCR forms chromosomal loops 
with the active β-globin genes in vivo. Peter Fraser’s team 
used a method called RNA TRAP (“Tagging and Recovery 
of Associated Proteins”), in which horseradish peroxidase 
(HRP)-labelled probes bind to mRNA of specific genes and 
catalyse the deposition of biotin on chromatin proteins in 
close proximity with the transcript [265]. Loci that interact 
with the gene of interest can then be detected by confo-
cal microscopy using fluorescently labelled avidin [265]. 
In parallel, Wouter de Laat’s team adapted the emerging 
chromosome conformation capture (3C) technology to 
explore the β-globin locus [266], after it was pioneered 
in yeast [267]. In 3C, chromatin is fixed by formaldehyde 
crosslinking and then digested into smaller fragments with 
a restriction enzyme. Fragments held together in 3D by 
interacting proteins are ligated (using DNA ligase), with 
the relative concentration of re-ligated pairs reflecting the 
frequency (and potentially strength) of their 3D contacts 
in vivo [267]. 3C confirmed that the LCR comes into close 
contact with active β-globin genes, whilst the intervening 
inactive genes are looped out [266]. Enhancer–promoter 
looping occurred in erythroid cells, in which the β-globin 
genes are expressed, but not in brain cells, in which they 
are not [266]. Further 3C experiments over a developmen-
tal time course revealed that the LCR interacts with differ-
ent β-globin genes depending on the stage of erythroid cell 
development [268]. These findings supported a dynamic 
looping model rather than a linking or scanning model; 
neither of which predicted physical proximity between the 
LCR and the distal gene promoters.

3C technology, which probes the interactions between 
a single “anchor” with multiple “other end” fragments, 
was soon expanded to increase throughput. For example, 
4C (“Circularized Chromosome Conformation Capture” or 
“Chromosome Conformation Capture-on-Chip”) employs 
a secondary restriction digest and inverse PCR to profile 
all loci interacting with the anchor fragment [269, 270]. In 
4C experiments, the LCR was found to interact with mul-
tiple highly transcribed genes in the corresponding active 
cell type (foetal liver) but with different, transcriptionally 
silent genes in an inactive cell type (brain tissue) [269]. 
Further modifications of the 3C technology included 5C 
(few anchors vs few other ends, [271]) and, most signifi-
cantly, Hi-C that uses biotin pulldown to enrich for ligation 
junctions, and is thereby capable of detecting theoretically 
all pairwise interactions between chromatin fragments in 
the nucleus [272]. The newest modification,  Micro-C, 
replaces restriction enzyme digestion with micrococcal 
nuclease (MNase) treatment, resulting in smaller fragments 
and thereby increased resolution of the assay [273, 274]. 
Originally applied in yeast, it was then adapted to mam-
malian cells, including human ESCs and fibroblasts [275] 

and mouse ESCs [276]. Herein, we shall generally refer 
to 3C/Hi-C/Micro-C methods and their modifications as 
“3C-derived” methods.

The high complexity of libraries generated by 3C-derived 
methods necessitates very deep sequencing for identifica-
tion of individual enhancer–promoter loops. This has nev-
ertheless been achieved in a number of cell lines, providing 
further evidence for looping in transcriptional regulation 
[277]. Technologies that combine 3C, Hi-C or Micro-C with 
sequence capture to enrich the libraries for contacts involv-
ing (at least on one end) promoters or enhancers prior to 
sequencing have made this more achievable. Capture Hi-C 
(CHi-C) enriches Hi-C libraries (generated using biotin 
pulldown of proximity ligation junctions) [278–281], while 
Capture-C instead enriches 3C libraries obtained without 
biotin pulldown [282–284]. Most recently reported Micro-
Capture-C (Micro-C coupled with sequence capture) ena-
bles the profiling of pairwise contacts involving selected 
regions of interest, at up to single-base pair resolution 
[285]. These enrichment methods have detected multitudes 
of enhancer–promoter loops in many human and mouse 
cell types [243, 286–291]. Alternatively, methods such as 
HiChIP [292] and PLAC-seq [293] (based on Hi-C), or 
ChIA-PET [294] (based on 3C), use immunoprecipitation 
to enrich for contacts that are bound to a protein of inter-
est. Using these techniques with antibodies to enhancer- 
and promoter-associated histone modifications or those to 
RNA polymerase has also revealed large numbers of 3D 
enhancer–promoter contacts [244, 295–301].

Imaging techniques provide a complementary way to 
ascertain the spatial relationships in the genome. The ‘clas-
sic’ DNA fluorescence in situ hybridisation (FISH) [302] 
enables measuring the distance between candidate genomic 
loci at a single-cell level. DNA FISH has been used to 
characterise enhancer–promoter loops for several devel-
opmental genes such as Shh and HoxD [303, 304]. Unlike 
standard 3C-derived methods, imaging techniques obtain a 
direct distance measurement between the loci of interest at 
a single-cell level. This gives an opportunity to distinguish 
between interacting loci that either (a) are moderately prox-
imal in the majority of cells (unimodal behaviour) or (b) 
have great cell-to-cell variability i.e. are very close in some 
cells and far apart in other cells (bimodal behaviour) [305]. 
Single-cell Hi-C can also be used to assess the heteroge-
neity of chromosomal  topologies across cells  (reviewed 
in [306]). However, along with other 3C-derived methods, 
it can only detect contacts between loci in those cells in 
which they localise at a close enough proximity to be ligated 
together (the exact such distance is not fully established). 
In contrast, DNA FISH gives access to the full distribu-
tion of inter-locus distances across all analysed cells [307]. 
Therefore, 3C-derived methods and FISH cannot be consid-
ered merely as “mutually validating” techniques, and they 
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may produce genuinely divergent results, which need to be 
interpreted carefully [307]. At present, standard DNA FISH 
cannot reliably detect contacts between loci that are located 
short genomic distances away (dozens of kilobases) from 
each other, and have a limited throughput that may miss 
rare but functionally significant genomic contacts. However, 
advances in super-resolution microscopy are beginning to 
mitigate these limitations [308, 309]. Finally, high-reso-
lution live imaging has also paved the way for a real-time 
visualisation of enhancer–promoter dynamics in vivo using 
genetic tools and CRISPR-mediated targeting to label these 
loci with fluorophores [310–312].

The recently developed “forced looping” methodolo-
gies have made it possible to probe the causal relationship 
between chromatin looping and gene expression [313, 314]. 
The CLOuD9 approach is based on the fusions of two dCas9 
variants with the plant molecules ABI1 and PYL1, which 
dimerise in the presence of a plant phytohormone [313]. 
The two fusion proteins are directed to the chosen genomic 
anchors via complementary gRNAs, and phytohormone-
induced dimerisation then drives the formation of an artifi-
cial chromatin loop. Meanwhile, LADL uses dCas9 fusions 
of plant proteins that form a heterodimer in response to blue 
light [314]. Forced looping between β-globin and its LCR 
was shown to rescue β-globin expression in K562 eryth-
roid cells (which instead aberrantly express γ-globin) in a 
reversible manner [313]. Forced looping between these loci 
could also be achieved in HEK293 cells, in which they are 
heterochromatic, but in this case β-globin derepression was 
not achieved [313]. Hence, as expected, looping alone is 
insufficient for gene activation by enhancers.

Factors mediating enhancer–promoter looping

Following the discovery of chromatin looping in the β-globin 
locus, it was ascertained that several TFs were required for 
looping between the LCR and the distal genes, including 
GATA-1, FOG-1, EKLF and NLI/Ldb1 [315–317]. How-
ever, whether these factors directly facilitated chroma-
tin looping remained unclear. A direct role in looping in 
this locus was eventually found for CTCF, whose role we 
will review in this section, alongside other looping factors 
(Fig. 2). Some of these proteins, including CTCF, also play 
a role in organising the global 3D chromosomal architecture, 
which will be discussed later in the text.

CTCF and cohesin

CTCF is a remarkably versatile protein that contains eleven 
highly conserved zinc fingers with both DNA-binding and 
protein-binding capacity [318]. Reporter gene assays in 
selected loci identified context-dependent capabilities of this 
factor as a transcriptional activator and repressor [319–322]. 

More unusually, it emerged that CTCF binding has an 
insulating capacity, effectively blocking signals between 
enhancers and their target genes in the β-globin and H19/
Igf2 loci [323–326]. Dozens of thousands of CTCF binding 
sites were then identified genome-wide in silico [327] and 
in vivo [328–330], and it was found that divergent gene pairs 
separated by CTCF sites had lower than expected correlation 
of gene expression genome-wide, confirming the insulatory 
role of CTCF on the global scale [327]. According to the 
linking or scanning model of enhancer communication, an 
insulatory role for CTCF could be imagined as a “roadblock” 
preventing movement of proteins along the chromatin fibre. 
However, its mechanistic action in the looping model was 
initially unclear [318]. This was partially reconciled by the 
finding that CTCF itself can mediate chromatin loop forma-
tion at the nucleolar surface [331]. Transgene assays of the 
human β-globin locus then showed that two insulator sites 
binding CTCF could form a chromatin loop [332]. Indeed, 
CTCF binding sites flanking the β-globin locus were found 
to physically interact in erythroid progenitor cells, forming 
a large domain encompassing the LCR and its target genes 
[268, 333].

A key insight into how CTCF mediates chromosomal 
looping was the discovery of its association with the cohesin 
complex [132, 334, 335]. Cohesin had long been known for 
its role in holding sister chromatids together from DNA 
replication to chromosomal segregation [336]. The cohesin 
complex has four core subunits: SMC1, SMC3, SCC1 and 
SCC3 that join to form a ring-like structure [337–339]. It is 
currently accepted that this “ring” holds sections of chro-
matin together, both in trans (in sister chromatid cohesion) 
and in cis (when mediating chromomal loops). CTCF is not 
directly required for cohesin loading and unloading from 
chromatin, which is mediated by other factors (reviewed 
in [340]). Instead, it stabilises cohesin loops by blocking 
the movement of the cohesin ring [341, 342]. Consistent 
with this, cohesin recruitment to regulatory elements may 
also occur independently of CTCF, typically in a cell type-
specific manner [343].

Beyond mediating specific enhancer–promoter loops, 
the cooperative action of cohesin and CTCF has emerged 
as a central organiser of the global chromosomal architec-
ture through a mechanism termed loop extrusion, which 
will be discussed later in the text (chapter “Determinants 
of enhancer–promoter selectivity”, section “Large-scale 
chromosomal architecture”). Surprisingly however, dele-
tion or degradation of cohesin or CTCF in differentiated 
cells has only mild effects on gene expression [344–349]. 
Consistent with this, significant numbers of enhancer–pro-
moter contacts remain unaffected upon rapid degradation 
of these proteins, and some contacts even appear de novo 
[349, 350]. Mechanisms underlying this phenomenon are 
still not fully understood, but recent studies suggest that 
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loops that require CTCF might be preferentially long-range 
(> 100 kb) and situated in loci where enhancers are gener-
ally sparse [301, 349]. For example, the contact between 
versican (Vcan) promoter and Xrcc4 epromoter spanning 
over 350 kb is significantly reduced, and Vcan expres-
sion diminished, upon deletion of the CTCF motif at the 
Vcan promoter. Artificial tethering of CTCF to the Vcan 

promoter using a dCas9-CTCF construct effectively res-
cues the loop and, partially, the expression of Vcan [301].

Polycomb repressive complexes

Polycomb group (PcG) complexes have long been known to 
orchestrate the epigenetic silencing of chromatin throughout 

Fig. 2   Effect of depletion of selected proteins on enhancer–promoter 
looping and gene expression. A In the wild type, enhancer–promoter 
contacts (arcs) occur in the context of large-scale contact domains 
such as TADs (red triangles) facilitated by the joint action of cohesin 
and CTCF (see “Large-scale chromosomal architecture”). Other 
cofactors relevant for enhancer–promoter communication (repre-
sented in various colours and shapes) can bind independently or in 
association with CTCF/cohesin at enhancers. Many of these factors 
are also found at promoters (not shown for simplicity). B Removal 
of CTCF or cohesin abolishes TADs. Long-range enhancer–promoter 
contacts proximal to TAD boundaries are disrupted, although some 

short-range contacts remain. In contrast, some long-range Polycomb-
associated contacts (arc connecting red squares) and short-range 
enhancer–promoter contacts appear that spread across the native 
TAD boundaries. The transcriptional effects of this perturbation, 
however, remain relatively mild. C Removal of LDB1 abolishes an 
enhancer–promoter loop and leads to decreased gene expression for 
the affected gene. D Removal of BRD4 and/or Mediator does not dis-
rupt enhancer–promoter contacts, but decreases gene expression. See 
section “Factors mediating enhancer–promoter looping” for details on 
individual factors and references to primary studies
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development. Initially discovered in Drosophila, PcG con-
tain two main families: Polycomb Repressive Complex 1 
(PRC1), which has E3 ligase activity causing the monoubiq-
uitination of histone H2A lysine 118 (Drosophila) or 119 
(vertebrates), and Polycomb Repressive Complex 2 (PRC2), 
which catalyses the di- or tri- methylation of histone H3 
lysine 27 [351]. These histone modifications are thought to 
directly block transcription (reviewed in [352]). In Dros-
ophila, PcG complexes aggregate into foci known as Poly-
comb bodies, which contain co-repressed genes such as Hox 
gene clusters (reviewed in [353]). Within Polycomb bodies, 
PcG complexes were discovered to mediate chromatin loops 
between distal loci. For example, 4C and FISH revealed that 
genes within the Hox loci Antennapedia and Bithorax, which 
are separated by ~ 10 megabases, are looped together with 
their associated regulatory elements, ensuring coordinated 
epigenetic silencing [354]. These findings were corrobo-
rated by genome-wide evidence of PcG-mediated looping in 
embryonic Drosophila cells [355, 356]. In mammals, PcG-
associated promoters and enhancers also engage in multi-
tudes of looping contacts, particularly in early development 
[139, 141, 276, 357]. Many of these contacts are undetect-
able in human naive ESCs where PcG proteins are dispersed 
throughout chromatin and emerge in primed ESCs [358].

Polycomb-mediated looping is likely to work largely 
independently of CTCF and cohesin and is potentially even 
counteracted by the looping activities of these factors in 
ESCs [357]. Whilst the exact mechanisms of how Polycomb 
organises the 3D genome are not fully understood, forma-
tion of bonds between the PHC1/2 SAM domains of PRC1 
complexes was proposed as one potential mechanism [359]. 
However, knockouts of both PRC1 and PRC2 components 
affect chromosomal contacts between Polycomb-bound loci 
[280, 360].

Notably, some contacts between PcG-associated regions, 
including poised promoters and enhancers in ESCs, are 
retained after these regions are activated during cell dif-
ferentiation [141, 143]. Moreover, PRC1 was recently 
found to mediate chromatin interactions between a subset 
of active developmental enhancers and promoters in Dros-
ophila [361]. Jointly, these results raise the possibility that 
at least in some cases, Polycomb-mediated chromatin loops 
may “prime” the connections between regulatory elements 
in early embryonic cells to ensure their appropriate pairing 
upon activation later in development.

YY1 and ZNF143

YY1 and ZNF143 are both zinc finger TFs with DNA bind-
ing domains that have recently been implicated as looping 
factors mediating interactions between active regulatory 
elements [295, 362–365]. YY1 was initially proposed to 
establish loops in the Ig heavy chain locus in pro-B cells 

[366]. Recent studies have confirmed its global role in con-
necting cell type-specific active enhancers and promoters in 
a range of mammalian cell types including mESCs [295] and 
neural progenitor cells [365]. Meanwhile, ZNF143 binds to 
promoters globally [367] and was found at the anchors of 
many lineage-specific enhancer–promoter loops in human 
and mouse cells [362–364, 368]. Unlike CTCF and cohesin, 
long-term depletion of YY1 or ZNF143 in mammalian cells 
causes a significant reduction of enhancer–promoter loops, 
coupled with substantial changes in gene expression [295, 
368, 369] (although short-term YY1 depletion has only a 
modest effect on both [350]).

The mechanisms by which YY1 or ZNF143 mediate reg-
ulatory chromatin contacts are still under investigation. YY1 
does not seem to co-localise with CTCF [365] and instead 
has been proposed to associate with cohesin independently, 
in a manner analogous to CTCF itself [295]. In contrast, 
ZNF143 co-localises with both CTCF and cohesin [369], 
and it has recently been shown that depletion of ZNF143 
disrupts CTCF-mediated enhancer–promoter looping [368].

LDB1

LIM domain-binding protein 1 (LDB1) is a dimeric cofactor 
that does not have direct DNA-binding capacity, but interacts 
with the LIM domain of other TFs to form multi-protein 
complexes [370]. LDB1 was first identified as a looping fac-
tor in the mouse β-globin locus [317, 371]. Later studies 
identified a role for LDB1 in facilitating intra- and inter-
chromosomal interactions upon mouse ESC differentiation 
to myogenic progenitors [372, 373] and in mouse olfac-
tory sensory neurons [373]. In these two studies, deletion 
of LDB1 significantly disrupted the expression of the gene 
programs underpinning appropriate cell differentiation [372, 
373]. Ectopic tethering of LDB1 to chromatin is sufficient 
for loop formation, increased deposition of the enhancer 
mark H3K4me1 and transcriptional activation [372, 374]. 
Jointly, these results implicate LDB1 in connecting lineage-
specific enhancers with their distal target genes by chromo-
somal looping. In contrast to YY1 and ZNF143, LDB1 has 
been shown to form loops independently of both cohesin 
and CTCF [371, 375]. Consistent with this, the binding of 
sequence-specific TF PAX3 associates with either LDB1 or 
CTCF but not both [372]. Likewise, binding sites for Lhx2, 
another TF that recruits LDB1, are devoid of CTCF and 
cohesin binding [373].

The mediator complex and BRD4

The multimeric Mediator complex is recruited to active 
enhancers, where it initiates the assembly of the pre-initi-
ation complex and recruitment of RNAP [376]. Mediator 
was implicated as a looping factor, potentially in association 
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with CTCF and cohesin [377–379]. However, it was shown 
recently that rapid removal of chromatin-bound Mediator 
and RNAP does not significantly affect chromosomal archi-
tecture, including enhancer–promoter interactions, in spite 
of triggering widespread transcriptional changes and cell 
cycle arrest [380].

Mediator recruitment to active enhancers is facilitated by 
the bromodomain and extraterminal domain (BET) protein 
BRD4 [70, 71] that plays crucial roles in pluripotency and 
cancer [71, 381, 382]. Loss of BRD4 leads to global changes 
in transcription and widespread chromatin decompaction 
[383, 384], and BRD4 is enriched at enhancers engaged in 
cohesin-independent promoter contacts in HeLa cells [349]. 
Nonetheless, removing BRD4 (and, consequently, Mediator) 
from chromatin using chemical inhibitors did not perturb 
the majority of enhancer–promoter contacts, despite major 
changes in transcription [69].

Thus, despite their importance for transcription, Media-
tor and BRD4 are likely not essential for looping between 
regulatory elements. Instead, it was suggested that Mediator 
can aid transcription by supplying TFs and transcriptional 
machinery to the promoter by diffusion over a small dis-
tance, which would not require a direct “bridging” interac-
tion [380]. Whilst these activities might occur in association 
with the looping contacts facilitated by cohesin and CTCF 
[380], Mediator and BRD4 may also facilitate liquid–liquid 
phase separation of enhancers and their target promoters that 
does not require direct looping [69, 385], as discussed below.

RNA polymerase and transcription

The transcriptional process and associated RNA molecules 
can also influence DNA architecture. Whilst it is established 
that transcription helps shape up higher-level genome con-
formation (reviewed in [386]), there is also evidence that it 
can either disrupt or stabilise specific enhancer–promoter 
loops. For example, transcription at stimulus–response genes 
was shown to disrupt chromatin loops [387, 388], potentially 
through destabilising cohesin association with the chroma-
tin fibre by RNAP machinery [388]. However, a study in 
bacteria suggests that a related chromatin “ring” (condensin 
II complex) recovers quickly from the encounters with the 
elongating RNAP machinery [389].

There is also evidence suggesting that transcription sta-
bilises enhancer–promoter loops [276, 311]. Live cell imag-
ing experiments using a fluorescent reporter gene in the eve 
locus in Drosophila detected a causal association between 
transcription and the enhanced compaction of the locus, 
bringing the eve enhancers into close proximity with the pro-
moter [311]. Moreover, enhancer–promoter loops dissoci-
ated tenfold faster in the absence of transcription than when 
the reporter gene was being transcribed, suggesting that 
transcription can stabilise contact between these elements 

[311]. One possible mechanism by which transcription may 
stabilise loops is through eRNAs (reviewed in [86]), poten-
tially through their interaction with cohesin [81, 378, 390]. 
Knockdown of eRNAs resulted in decreased enhancer–pro-
moter proximity in human cells [81, 390]. Other proposed 
mechanisms implicate the transcriptional machinery itself. 
Transcription by RNAP was found to support some short-
range enhancer–promoter and promoter–promoter interac-
tions in fine-scale Micro-C data [276]. However, Promoter 
Capture Hi-C-based studies did not observe a significant 
change in enhancer–promoter contacts upon RNAP inhibi-
tion, including in cells rapidly depleted of cohesin or CTCF 
[349, 380].

In conclusion, while cohesin and CTCF remain the 
established key organisers of chromosomal loops, there 
is evidence for loops independent of these proteins and of 
additional looping factors, including potentially RNAP and/
or transcription itself. To what extent this explains cohesin-
independent contacts and the small effects of cohesin/CTCF 
deletion on gene expression still remains unclear, prompt-
ing the question of whether mechanisms other than direct 
looping can mediate enhancer–promoter communication, as 
discussed below.

Permissive and instructive enhancer–promoter 
contacts

A long-standing question in the field has been whether 
enhancer–promoter contacts form concomitantly with the 
activation of these regions (“instructive”) or, alternatively, 
precede it (“permissive”) [391]. There are currently ample 
examples in support of both phenomena. In Drosophila, 
pronounced changes in enhancer activity during embryonic 
development seem to occur without prominent changes 
in their 3D conformation [392, 393]. In mammalian dif-
ferentiation models, in contrast, extensive remodelling of 
enhancer–promoter contacts is typically observed consist-
ently with enhancer activation [141, 394–397]. In addition, 
the patterns of promoter contacts in human primary blood 
cells recapitulate the hematopoietic lineage tree, likely 
reflecting their gradual remodelling during lineage specifi-
cation [243]. One possibility is that the pace of development 
underlies the observed differences in interaction dynamics 
between Drosophila and mammalian models. Nonetheless, a 
significant minority of enhancers in human ESCs also show 
pre-existing “permissive” promoter contacts prior to activa-
tion [141, 394]. In addition, permissive contacts were also 
observed in mammalian cells upon TNF-induced enhancer 
activation [398].

The presence of both instructive and permissive con-
tacts reflects the likely diversity of mechanisms facilitating 
enhancer–promoter connectivity. One proposed mechanism 
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linking enhancer activity with connectivity is based on the 
observation that cohesins can be recruited to H3K4me1-
marked chromatin, which is associated with the “primed” 
state of enhancers and the binding of MLL/Trithorax tran-
scriptional coactivators [399]. Additionally, depletion of 
H3K27ac was shown to result in weaker enhancer–promoter 
looping in human lymphoma cells [400]. However, the exact 
determinants of enhancer–promoter loop formation at a 
given point of time, either prior to or upon the activation of 
these elements, still remain incompletely understood.

Enhancer–promoter communication beyond direct 
looping

Whilst there is now a definitive bulk of evidence in sup-
port of physical looping between enhancers and promoters, 
several recently described phenomena suggest that looping 
is not the only mechanism of how these regions can com-
municate, as will be discussed in this section.

Deviations from the looping model

The Sox2 gene has an essential enhancer, the Sox2 Control 
Region (SCR), which was found by 3C-derived techniques 
to loop to the Sox2 promoter (for example, [379, 401]). 
However, live cell imaging over a ~ 25 min interval could 
not detect close proximity between the SLC and the Sox2 
promoter, even during the bursts of Sox2 transcription [402]. 
Moreover, there was no correlation between Sox2 transcrip-
tional level and enhancer–promoter distance, or any obvious 
reduction in distance prior to transcription initiation, sug-
gesting that this enhancer may activate Sox2 transcription 
via a looping-independent mechanism [402]. While this dis-
crepancy between 3C-derived and imaging-based results is 
puzzling, the findings are not necessarily contradictory, and 
may be jointly consistent with either the presence or lack of 
direct looping. For example, the proximity signal between 
Sox2 promoter and enhancer in 3C/Hi-C might be detected if 
these regions become connected by protein bridges without 
getting physically closer to each other [403], as would be 
expected under the linking or scanning models. In addition, 
3C-derived methods can pick up rare events that imaging is 
underpowered to identify [404]. Finally, recent biophysical 
modelling suggests that functionally causal enhancer–pro-
moter contacts do not have to be temporally concomitant 
with transcriptional bursts [405, 406]. The exact mecha-
nisms underlying the observed phenomenon, however, 
remain to be elucidated.

In contrast, a proximal enhancer of the Shh gene moves fur-
ther away from the Shh promoter upon activation, according to 
both 3C-derived methods and imaging [407]. Recruiting acti-
vators such as VP64, Mediator and SIX3 to this enhancer also 
increased the enhancer–promoter distance whilst upregulating 

Shh expression [407]. It has been argued that this might be 
due to increased enhancer mobility [408] whereby non-thermal 
energy produced during transcription can “stir” the chromatin 
[312]. However, whilst this stirring model predicts that the 
enhancer explores a larger nuclear space, it also moves faster, 
which would potentially increase the frequency of contacts 
with the gene promoter [312]. Notably, synthetic activation of 
the Shh promoter, bypassing the need for enhancer activation 
and causing increased transcription, did not lead to increased 
distance [407]. Combined, these results would argue against 
the classical looping model for this enhancer. Given that the 
looping between the distal ZRS enhancer and Shh promoter 
is well-established, this suggests that multiple enhancers may 
control the expression of their shared target gene through a 
combination of looping and non-looping mechanisms.

Finally, multiple lines of recent evidence suggest that 
many functional enhancers likely do not come into direct 
contact with their target promoters upon Drosophila devel-
opment (although some “permissive” enhancer–promoter 
loops are detectable as discussed above) [392]. For exam-
ple, neither Hi-C nor Micro-C detected a widespread enrich-
ment for enhancer–promoter interactions in early Drosoph-
ila embryos irrespective of the activity of these elements 
[393]. In addition, using high-resolution live imaging, it was 
observed that genes regulated by a single enhancer can local-
ise surprisingly large distances away from each other in 3D 
(at least 100–200 nm), and yet show coordinated bursts in 
transcription, which is inconsistent with their direct looping 
to the shared enhancer [409].

Liquid–liquid phase separation

It has been proposed that chromatin can compartmental-
ise into membrane-less biomolecular condensates in the 
phenomenon known as liquid–liquid phase separation 
(LLPS) [410]. Several recent studies argue the case for LLPS 
as a key mechanism underlying transcriptional control by 
enhancers [385, 411, 412]. Mechanistically, LLPS occurs 
when a particular protein increases in quantity to a criti-
cally high point, whereupon it spontaneously separates into 
two phases that contain either a high or a low concentra-
tion of the molecule [413]. LLPS is thought to be mediated 
by weak protein–protein interactions involving intrinsically 
disordered regions (IDRs) of the protein [412, 414]. Histone 
proteins themselves might have the ability to form LLPS 
via intrinsically disordered nucleosome tails [415–417]. In 
addition, many sequence-specific TFs also have intrinsically 
disordered low complexity domains within their activation 
domains that are capable of forming LLPS [412]. In line 
with this, DNA-bound TFs may have the ability to drive con-
densate formation via weak, multivalent interactions with 
recruited cofactors, such as Mediator and BRD4 [69, 385, 
414]. The number and density of TF binding sites within 
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enhancers potentially facilitates this by crowding DNA-
bound TFs beyond the required threshold required for LLPS 
formation [418, 410].

The engagement of cofactors Mediator and BRD4 in 
LLPS could explain why their depletion results in tran-
scriptional changes without significantly affecting chroma-
tin loops [69, 380]. However, looping and LLPS may not 
be fully orthogonal phenomena, as it was recently proposed 
that cohesin may induce LLPS of chromatin through forming 
protein bridges [419]. Likewise, a recent biophysical model 
could explain the absence of contacts between the SCR and 
the Sox2 promoter observed in live imaging data by a com-
bination of looping and phase separation [420].

Whilst LLPS in general has been demonstrated both 
in vitro and in vivo [421, 422], evidence for chromatin 
LLPS and its functional significance in gene control is still 
incomplete. For instance, whilst TFs were shown to form 
high-concentration stochastic hubs with chromatin in liv-
ing human cells, overexpression of their low complexity 
domains beyond endogenous levels was required for LLPS 
to occur [412]. Furthermore, since high-concentration hubs 
were capable of transactivation and recruitment of RNAP 
even without LLPS, the question remains if LLPS is neces-
sary for any genomic locus [412]. It is possible, for example, 
that LLPS is a distinctive feature of super-enhancers and/or 
is a consequence, rather than cause, of enhancer–promoter 
association [411, 412].

The recent interest in LLPS has prompted calls for more 
rigorous experimental guidelines on its identification and 
characterisation in the cellular environment [423, 424]. For 
example, commonly used in vivo approaches like fast fluo-
rescence recovery after photobleaching (FRAP) and sensitiv-
ity to treatment with 1,6-hexanediol are not always indica-
tive of LLPS [423]. Nonetheless, it is compelling to consider 
if LLPS could be a mechanism of enhancer–promoter com-
munication that is complementary to chromosomal loop-
ing. First, LLPS could underlie gene control by “contact-
less” enhancers, uniting them with their target promoters 
and supplying them with the required proteins without the 
need for physical proximity [52]. LLPS could also provide a 
mechanistic explanation to the classic “transcription factory” 
model [425], whereby specific activators or repressors are 
assembled in high concentration at appropriate genomic loci 
[426, 427]. For example, it has been suggested that Media-
tor and RNAP molecules may accumulate in condensates 
at super-enhancers, and these condensates could facilitate 
efficient loading of the transcriptional machinery to active 
gene promoters [426].

Notably, phase-separated condensates might form and 
dissolve in accordance with local chromatin features, such 
as histone tail acetylation, the presence of linker histone 
H1 presence and inter-nucleosome spacing, as well as the 
concentrations of recruited TFs [52, 415]. Molecules such 

as RNAP might also be passed between different conden-
sates based on their post-translational modifications [426, 
428]. Therefore, such “factories” formed by LLPS may be 
extremely transient [52], consistent with the dynamic and 
“bursty” nature of transcription. Finally, an important fea-
ture of LLPS is that it has been modelled quantitatively, at 
least in simpler systems, building on the foundations of soft 
matter physics [429]. These models facilitate formal testing 
of the involvement of LLPS in chromatin organisation and 
prediction of its implications in gene control.

Determinants of enhancer–promoter 
selectivity

It is clear from both genome-wide profiling and perturba-
tion studies that, of the multitudes of enhancers in a locus, 
not all of them provide input to every promoter [430, 431]. 
The underpinning global genomic context, discussed imme-
diately below, has emerged as a key factor determining 
enhancer–promoter selectivity, providing a means to miti-
gate and modify the effects of linear genomic distance. How-
ever, it still does not explain all observed effects, suggesting 
the involvement of other phenomena, such as the mutual 
compatibility of specific promoters and enhancers that is 
discussed later in this chapter.

Large‑scale chromosomal architecture

Products of loop extrusion: TADs and stripe domains

It has become evident from early analyses of Hi-C data 
that metazoan genomes are organised into megabase-scale 
segregated domains that are often invariant between cell 
types, termed topologically associating domains (TADs) 
[432–434]. While initially, the mechanisms underlying TAD 
formation and maintenance were unclear, an explanation has 
eventually been provided by the model of chromosomal loop 
extrusion [342, 435]. Loop extrusion was initially proposed 
theoretically based on molecular dynamics simulations [342, 
435] and then validated in single-molecule assays [436, 
437]. Under this model, cohesin in interphase nuclei con-
tinuously extrudes chromosomal loops until it encounters 
a boundary, which prevents further extrusion. In the classic 
scenario, this boundary is presented by CTCF binding to its 
sequence motifs located in a divergent orientation at either 
end of the loop [277, 438–440], consistent with CTCF’s 
established role as an insulator-associated protein. Loops 
stalled by CTCF or other boundaries constrain chromosomal 
contacts, giving rise to “loop domains” detectable in Hi-C 
data. Notably, TADs correspond to only one level of a hier-
archy of such “loop domains”, with super-/sub-TADs and 
insulated neighbourhoods potentially corresponding to other 
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levels [434, 441, 442]. It has been suggested, however, that 
the level of the hierarchy corresponding to TADs is “func-
tionally privileged”, as their boundaries show the highest 
enrichment in CTCF binding and conservation across cell 
types [443].

TAD boundaries are classically defined through a 
change in the predominant direction of chromosomal con-
tacts observed in Hi-C data [444]. The majority of specific 
enhancer–promoter loops follow this pattern and are highly 
enriched within, compared with across, TAD boundaries 
[277, 401, 405]. Consistent with this, disruption of TADs 
can cause promiscuous enhancer–promoter contacts and 
ectopic gene expression leading to developmental aberra-
tions and disease (reviewed in [445]). For example, loss of 
TAD insulation between limb-specific enhancers associated 
with EPHA4 expression and a set of adjacent genes, includ-
ing WNT6 and PAX3, results in their misexpression and 
abnormal limb development in both mice and humans [446]. 
More recently, TAD fusion was also proposed as a mecha-
nism leading to several disease phenotypes upon genomic 
duplications in the SOX9 locus [447]. However, TAD struc-
ture in general may play less definitive a role in gene regu-
lation than originally thought. Most strikingly, rapid deple-
tion of cohesin or CTCF quickly abolishes TADs but, as 
mentioned above, has only relatively mild effects on gene 
expression [301, 345–347, 448]. Consistent with this, the 
considerable TAD re-arrangements observed in Drosophila 
balancer chromosomes compared with their wild-type coun-
terparts result in changes in the expression of only ~ 10% of 
genes [449]. Likewise, targeted deletions of TAD boundary-
forming CTCF sites in the Shh locus did not entirely disrupt 
the developmental regulation of Shh expression [450, 451].

The less pronounced than expected role of TADs in gene 
control can be partially explained by the ability of some 
enhancer–promoter contacts to form and/or be maintained 
independently of TAD constraints. For example, Capture 
Hi-C analyses in multiple cell types consistently detect 
enhancer–promoter contacts that cross TAD boundaries 
[141, 243]. Recent mechanistic experiments suggest that 
the insulating effect of TAD boundaries may be inversely 
dependent on enhancer strength [405]. In addition, single-
cell studies show both a substantial cell-to-cell heterogene-
ity of TADs and large numbers of inter-TAD chromosomal 
contacts [448, 452]. Furthermore, in the developing Dros-
ophila embryo, enhancer–promoter loops are formed before 
TADs, and likely also precede the onset of zygotic transcrip-
tion [453, 454]. Cis-regulatory contacts were also shown 
to emerge prior to the formation of TADs in murine cells 
exiting mitosis [455].

Another layer of complexity in the relationship between 
chromosomal domains and specific enhancer–promoter con-
tacts arises from the fact that active promoters and enhancers 
can likely give rise to TAD boundaries even in the absence 

of convergent CTCF sites [401]. Disentangling the cause-
and-effect relationship is particularly challenging in the case 
of a flavour of TAD-like structures known as stripe domains 
(from the way they appear on Hi-C maps) [276, 456, 457]. 
Stripe domains tend to anchor at a single CTCF binding 
site (as opposed to two divergent CTCF sites in the classic 
case for TADs), which points towards a nearby site for the 
cohesin-loading factor NIPBL [456, 457]. It has been sug-
gested that they arise from one-sided loop extrusion, facili-
tated by the loading of cohesin to lineage-specific enhanc-
ers [457]. However, experiments using finer-scale mapping 
with Micro-C have revealed even smaller, nested stripes that 
may occur independently of loop extrusion [276]. These 
10–50 kb pair stripes are enriched in promoter–promoter 
and enhancer–promoter interactions and are largely unas-
sociated with CTCF/cohesin binding [276].

In conclusion, whilst there is clear evidence for a role 
of some TADs in gene control, the emerging view is more 
nuanced than originally envisaged. Rather than being fully 
insulated structures that predetermine enhancer–promoter 
contacts, TADs and related loop domains can be seen as 
flexible hierarchical features of genomic organisation that 
loosely contain, but also can potentially be generated by, 
enhancer–promoter contacts.

A/B compartments and LADs

Beyond TADs, other aspects of the global chromatin struc-
ture may also play a role in enhancer–promoter communi-
cation. Most prominently, contacts from active chromatin 
and heterochromatin regions appear largely segregated into 
separate compartments (referred to as A and B, respectively) 
[272]. These “A/B” compartments are dynamic across cell 
types and conditions. Most strikingly, around 1/6th of the 
genome undergoes compartment changes during the 24 h 
circadian cycle in mouse adult liver [458]. The A/B com-
partment structure does not disappear (and is in fact even 
strengthened) upon cohesin/CTCF depletion [344, 346–348], 
but, like TADs, dissolves in mitosis [459]. It has been sug-
gested that A/B compartments may be facilitated by affinity 
of heterochromatin regions to each other [460, 461]. Whether 
contacts between active cis-regulatory elements (particularly 
those independent of cohesin/CTCF) also participate in com-
partment formation currently remains an open question.

A subset of B compartments corresponds to lamina-
associated domains (LADs) [462]. LADs represent ~ 500 
kb-long chromatin regions localised at the nuclear periphery. 
These regions are generally gene-poor regions with low tran-
scriptional activity. Mechanisms by which LADs promote 
transcriptional repression are not fully understood, but may 
include sequestration of genes and their regulatory elements 
in heterochromatin foci [462]. Whilst many LADs remain 
generally invariant across cell types and conditions, others 
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can move away from the nuclear periphery, for example, 
upon T cell differentiation [463]. This relocation is associ-
ated with the activation of the respective regulatory elements 
and their increased proximity [463]. Recently, some A com-
partment regions consisting of H3K9me2-marked chromatin 
were also found to localise at the nuclear periphery [464]. 
These domains (dubbed H3K9me2-Only Domains; KODs) 
are distinct from LADs and have been suggested to represent 
an “intermediate” chromatin state with a role in regulating 
tissue-specific gene expression [464].

Genomic distance

Chromosomal contacts follow the law of constrained Brown-
ian motion (reviewed in [465]), with the contact probabili-
ties showing a strong power–law dependence on the “linear” 
genomic distance [272, 466]. In mitosis, where TADs and 
compartments dissolve, genomic distance becomes the pre-
dominant factor governing the frequency of chromosomal 
contacts across the genome [459]. However, even in inter-
phase nuclei, genomic distance continues to be a reasonable 
predictor of functional enhancer–promoter contacts, particu-
larly in the short to medium range (< 100 kb), as evidenced 
by high-throughput enhancer perturbation data [183, 184]. 
Recently, Zuin et al. investigated the positional effects of 
enhancer–promoter contacts by embedding an enhancer into 
a PiggyBac transposon and integrating it ectopically next 
to a reporter gene [405]. PiggyBac “jumps” resulted in the 
enhancer relocating away from the promoter over a range 
of distances, but mostly within the same 560 kb TAD as 
the reporter gene, enabling a comparative analysis between 
different clones. In this systematic study, the probabilities 
of enhancer–promoter contacts showed a strong dependence 
on linear distance within the TAD and fell sharply near and 
across the TAD boundaries [405].

The effects of distance, however, are likely not absolute, 
even within the same TAD. For example, analysis in the Shh 
locus suggests that within-TAD chromosomal contacts there 
do not show a pronounced distance dependence [467]. In 
addition, many computational algorithms for the analysis of 
data from Hi-C and related techniques explicitly correct for 
distance decay, identifying “significant interactions” based 
on how unusual their contact frequency is at a given dis-
tance [277, 468–471]. Promoter-interacting regions identi-
fied using these approaches typically show enrichment for 
enhancer-associated chromatin marks and disease-associated 
variants, and in a number of cases their target genes have 
been validated directly (reviewed in [431]). In contrast, 
the model of Zuin et al. [405] discussed above was based 
on the potentially “contactless” SCR and its target Sox2 
promoter. Consistent with this, in the ectopic context this 
enhancer–promoter pair did not show prominent specific 

interactions, despite the clearly detectable transcriptional 
effects of SCR [405]. Therefore, the extent of distance 
dependence of enhancer–promoter contacts likely depends 
on the underlying genomic context and potentially also on 
the properties of specific enhancers and promoters.

Enhancer–promoter compatibility

Even within the same TAD, enhancers are not always fully 
promiscuous and can sometimes “skip” nearby genes, in 
favour of more distal targets [472, 473]. Sequence com-
patibility between enhancers and promoters has been pro-
posed as one of the factors underlying their pairing [474]. 
For example, enhancer trap experiments in Drosophila that 
used randomly integrated reporter genes driven by a TATA- 
and a DPE-containing promoter, respectively, showed that 
some endogenous enhancers had a preference for either of 
the two promoters [475]. More recently, a massively parallel 
reporter assay in Drosophila cells revealed distinct groups of 
enhancers that preferred one of two types of core promoter, 
derived from either a housekeeping or a developmental gene 
and enriched for different TF binding motifs [247]. Notably, 
this preference was consistent with the tissue-invariant or 
tissue-specific activity of the enhancers themselves [247].

Beyond the Drosophila model system, there is currently 
little evidence for inherent enhancer–promoter compatibil-
ity. Further insights on potential selectivity may yet come 
from machine learning methods that are gaining the ability 
to predict enhancer–promoter pairs from sequence alone in 
mammalian cells [476, 477]. While currently these are gen-
erally “black box” methods, such as deep neural networks, 
advances in interpretable machine learning may provide a 
handle on the specific sequence features of these elements 
that are predictive of their compatibility. In addition, at least 
some of the perceived selectivity of enhancer–promoter 
contacts could be due to other factors, such as enhancer 
competition for promoters. For example, it was shown that 
deleting or inactivating the target promoter of a particular 
enhancer releases the enhancer to activate other local pro-
moters [478]. In addition, biophysical modelling suggests 
that the same enhancer may have vastly unequal effects on 
different promoters depending on their intrinsic sensitivity to 
enhancer–promoter contacts (irrespectively of the properties 
of a given enhancer) [406].

The findings discussed in this chapter show a diver-
sity of the aspects of nuclear organisation that regulate 
enhancer–promoter communication. The outstanding ques-
tion is how exactly these multiple aspects work together to 
establish appropriate enhancer–promoter relationships. One 
way to conceptualise this complexity at the current level 
of understanding is to assume enhancer–promoter pairing 
to be a largely stepwise process, as proposed recently by 
Schoenfelder and Fraser [431]. In this view, enhancers are 
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“selected” for activation in cis by TFs, following which their 
contacts with target promoters are then “facilitated” by the 
underlying chromosomal topology and then further “speci-
fied” by parameters of enhancer–promoter compatibility 
[431]. Further functional analyses and quantitative model-
ling of enhancer–promoter communication will help to vali-
date and improve our understanding of these phenomena.

Beyond pairwise enhancer–promoter 
relationships

It follows from the rather flexible requirements for 
enhancer–promoter selectivity (discussed above) and the 
very large number of enhancers active in a given cell at a 
time that genes often receive output from multiple enhanc-
ers. It is also currently clear that the same enhancer can 
control multiple genes. Here, we discuss the functional 
and structural considerations around this multiplicity of 
enhancer–promoter relationships.

Evidence for multiplicity of enhancer–promoter 
connections

One promoter—many enhancers

Enhancers vastly outnumber promoters in human and mouse 
genomes [131], and consistently promoters often contact 
more than one enhancer in the same cell type [141, 243, 
278, 279]. For example, PCHi-C showed that active promot-
ers contacted a median of two active enhancers in human 
primary blood cells [243]. CRISPR-based approaches have 
confirmed that promoters often receive signals from multi-
ple functional enhancers [479, 480]. In developing mouse 
limb tissue, for instance, genes were regulated by a median 
of three functional enhancers and some genes, which coded 
for limb-specific TFs, had more than ten associated enhanc-
ers [480]. Promoters can also engage multiple enhancers 
in different cell types or at different developmental stages. 
For example, in the well-characterised mammalian Hox gene 
cluster, activation of genes with crucial roles in development 
is tightly controlled at each developmental stage by complex 
enhancer networks [481, 482]. In Drosophila, eve expression 
is controlled by five separate enhancers to produce stripe 
patterning in the embryo [483].

Multiple enhancers associated with a single promoter in 
a given cell type may be conceptualised as cis-regulatory 
units (CRUs) [141]. Analyses in human ESCs and early 
ES-derived neural progenitors found that, as expected, 
enhancers within a CRU tended to have the same activity 
state in a given cell type [141]. However, this effect was not 
absolute, with 20% of CRUs detected in these cells being 
“dual-state”, i.e. containing a mixture of active and poised 

or Polycomb-repressed enhancers [141]. Upon early neural 
differentiation, about a third of single-state CRUs in human 
ESCs became dual-state, while around half of all dual-state 
CRUs became single-state [141]. Changes in CRU state were 
predominantly driven by coordinated alterations in the chro-
matin state of enhancers and their promoter contacts, and 
were associated with significant changes in gene expression 
[141]. Notably, the chromatin state of the promoter at dual-
state CRUs typically corresponded to the majority state of its 
enhancers, consistent with a competition of opposing regula-
tory effects at the promoters.

Many promoters—one enhancer

The same enhancer can also regulate more than one target 
gene—either in different spatiotemporal settings or in the 
same one. An example of the former is found in the Dros-
ophila Hox locus, where one enhancer regulates either pb 
or zen2 depending on the developmental stage via distinct 
chromatin loops [484]. Examples of enhancers contacting 
multiple genes in the same cell type are also abundant in 
data from Hi-C and related technologies. While these data 
cannot ascertain whether these contacts occur in the same 
cell, recent evidence suggests that this may indeed be the 
case. For example, the LCR in the β-globin locus can simul-
taneously engage two adult globin genes, Hbb-b1 and Hbb-
b2, while skipping over embryonic globin genes, in mouse 
fetal liver cells [485]. Likewise, evidence from live imag-
ing shows that an enhancer located in-between two reporter 
genes can initiate simultaneous transcriptional bursting from 
both gene promoters [310].

Enhancer chains and networks

In addition to multiple direct enhancer–promoter contacts, 
there is also evidence for enhancer–enhancer interactions 
that create an enhancer “chain” or network [486–489]. In 
this mechanism, not all of the enhancers need to contact the 
gene promoter directly; rather, the signal could be passed 
along the chain. Evidence from Hi-C data analysis has sug-
gested that the “first” enhancer in the chain, i.e. the enhancer 
with direct looping to the gene promoter, is often more dis-
tal than the “second” enhancer, attracts more tissue-specific 
factors and is more enriched for eQTLs than other enhanc-
ers within the chain [490]. Consistent with this, recent 
dissection of an enhancer chain in the INK4a/ARF locus 
revealed that perturbing any promoter-interacting enhancer 
within the chain abolished the functionality of the entire 
network, but deleting the enhancers further down the chain 
had more moderate effects [491]. Furthermore, deletion or 
inhibition of any one of the promoter-interacting enhancers 
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caused disruption of H3K27ac and eRNA levels on the other 
enhancers in the network [491]. Combined, these data sug-
gest that the “first” enhancer is responsible for connecting 
with the promoter and initiating gene transcription, but also 
relies on signals from further down the enhancer chain.

Promoter–promoter contacts

3C-derived methods commonly detect multitudes of promoter-
promoter contacts, typically in addition to promoter-enhancer 
contacts of the same genes. In some well-characterised cases, 
multiple promoters engage in combinations of pairwise inter-
actions with each other, suggestive of promoter-promoter 
“networks”. These include contacts between the promoters 
of Hox genes in ESCs (in which they are inactive) that were 
shown to depend on Polycomb Repressive complex 1 [280]. 
A similar network of contacts is also detectable between the 
active promoters of multiple histone genes in many mam-
malian cell types [243, 279, 471, 492]. These two examples 
may reflect co-regulatory relationships between the interact-
ing promoters, consistent with the classic “transcription fac-
tory” model [425]. In addition, recent evidence that promoter-
promoter contacts within nested stripe domains preferentially 
involve transcriptionally active, rather than inactive, promot-
ers [276], as well as the existence of epromoters (discussed 
above), suggest that some promoter-promoter contacts likely 
have a direct cis-regulatory role similarly to enhancer–pro-
moter contacts. This concept has also recently been supported 
by computational analyses based on Hi-C data [493].

Transient contacts or enhancer hubs?

The subsections immediately above provide an empirical view 
on the multiplicity of enhancer–promoter and promoter-pro-
moter relationships. How can such configurations be achieved 
structurally? Whilst 3C-derived data have indicated that inter-
actomes comprising multiple interacting elements may be 
common in mammalian genomes [360, 488, 494–496], these 
data alone cannot prove the simultaneous association of mul-
tiple loci. This is because in their standard form, 3C-derived 
methods detect pairwise ligation events. Therefore, whilst 
these findings might represent multi-way “hubs”, they might 
equally represent a superposition of multiple independent con-
tacts between enhancers and promoters. In order to explore this 
question further, several techniques have been developed that 
circumvent the limitations of standard 3C-derived methods.

Genome Architecture Mapping (GAM) is one technique 
that enables probing multi-way chromosomal contacts 
[497]. GAM works by laser microdissection of cryopre-
served nuclei, followed by DNA sequencing within a given 
slice, to find all loci that were nearby in 3D space [497]. 
Another inherently non-pairwise method is Split Pool Rec-
ognition of Interactions by Tag Extension (SPRITE), which 

uses chromatin crosslinking but no proximity ligation [403]. 
Instead, barcode signatures are created for restriction frag-
ments that are then sequenced and clustered to identify 
chromatin complexes [403]. While both methods could suc-
cessfully reveal multi-way contacts across TADs and chro-
mosomes, their resolution currently limits robust detection 
of individual CRUs. Multi-way relationships can also be 
inferred using 3C-derived methods, provided that multiple 
pairwise ligation events are detectable in the same sequencing 
read. This was achieved with very short (~ 200 bp) restriction 
fragments (Tri-C [498, 499]), or by using very long (~2 kb) 
reads generated with Oxford Nanopore seqeuencing (MC-4C 
[485]). Both technologies, applied in the α- and β- globin 
loci respectively, provided evidence for higher-order hubs, 
containing three and more regulatory elements [499, 485]. 
Finally, advances in super-resolution imaging (reviewed in 
[500]) now enable the visualisation of multiple interact-
ing loci to the resolution of a few kilobases in single cells 
[448, 501–503]. Hi-M is one such technique that combines 
visualisation of chromatin interactions and transcription in 
single cells [501, 504]. Hi-M was recently employed in the 
developing Drosophila embryo to show that cis-regulatory 
elements cooperate to form hubs early in development prior 
to transcription, facilitated by the pioneer factor Zelda [453]. 
Notably, in addition to multiple enhancers, hubs detected by 
these techniques sometimes contain multiple promoters, cor-
roborating the evidence for promoter-promoter contacts from 
the conventional 3C-derived methods [453, 498].

Evidence from live-imaging studies at candidate loci sug-
gests that physical contacts between enhancers and promot-
ers are often highly dynamic [310, 311, 448]. For example, 
in the β-globin locus, interactions between the LCR and the 
γ-globin or the β-globin genes can switch very rapidly on the 
same DNA strand [505]. Nonetheless, the existence of bona 
fide hubs could be explained by the phenomenon of LLPS, 
rather than direct looping, whereby various interacting regu-
latory elements are integrated into phase condensates [453, 
506, 507]. These LLPS-mediated hubs could be formed or 
dissolved by local changes in factor concentrations or other 
biochemical properties that still allow for a dynamic, adjust-
able system for gene expression control.

Pioneer and maintenance enhancers

So far we have been considering multiple active enhanc-
ers in a unit as generally serving the same role. However, 
there is a possibility that some enhancers may also help 
others to associate with promoters, possibly in addition to 
their direct activity on those same promoters. For example, 
in the vertebrate Hox cluster, a strong enhancer situated 
outside of the gene locus could prime the region, allow-
ing for the emergence of novel enhancers [508], leading 
to the notion of “pioneer enhancers” [509] in an analogy 
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to pioneer TFs. Consistent with this model, it was recently 
shown that deletion of a relatively weak distal enhancer 
in the mouse Sox9 sex determination locus leads to sex 
reversal, while the phenotypic effects of deleting stronger 
and more proximal Sox9 enhancers are much less pro-
nounced [510]. Analysis of enhancer chains suggests that 
the promoter-connected enhancer is often more distal than 
downstream enhancers in the same chain, yet binds more 
tissue-appropriate TFs, suggesting that enhancer chains 
might involve pioneer enhancers [490]. One possibility 
is that pioneer enhancers are required for gene induction, 
while other enhancers are involved in the maintenance and 
fine-tuning of gene expression [511, 512].

Theoretically, cohesin/CTCF-associated enhancers are 
good candidates for pioneer enhancers for a number of 
reasons, most important of which is the selective require-
ment of cohesin for inducible gene control [513]. Cohesin-
dependent enhancers also tend to be longer-range than 
their cohesin-independent counterparts [301, 349, 514]. 
One possibility therefore is that looping orchestrated by 
cohesin/CTCF-bound pioneer enhancers enables cohesin-
independent contacts [349] (Fig. 3), which may be medi-
ated by other factors (such as, for example, LDB1) and 
mechanisms, including LLPS. Further mechanistic analy-
ses of multi-enhancer control of inducible genes will be 
needed to validate this model directly.

Transcriptional effects of enhancer action

What are the consequences of enhancer action on promot-
ers? Conceptually, the simplest model would suggest that 
when an enhancer comes into proximity with a compat-
ible promoter, it transmits to it a “dose of activation” that 
results in a certain level of transcriptional output [107]. 
(In view of the evidence reviewed in the previous sec-
tions, we can assume that this proximity can be achieved 
by either direct looping or otherwise, and may be poten-
tially facilitated by a pioneer enhancer). The “dose of 
activation” model, although necessarily crude, fits well 
with the current understanding of the generally transient 
contacts between regulatory elements, TFs and cofactors, 
as well as with the flexibility of enhancer organisation dis-
cussed above. This model is also supported by the fact that 
transcription itself is discontinuous, occurring in “bursts” 
during which RNAP complexes transcribe one by one from 
the TSS producing one or more transcripts, followed by 
a period of transcriptional silence (reviewed in [515]). 
Evidence from live imaging and single-cell transcrip-
tomics indicates that enhancers increase the frequency of 
transcriptional bursts without significantly affecting their 
amplitude and duration [310, 505, 516].

One implication of the “dose of activation” model is 
that multiple enhancers controlling the same gene are 
expected to provide largely additive inputs to the promoter. 
In support of this notion, the number of enhancers corre-
lates with the expression level of a gene across cell types 
[243, 278, 279, 349]. Likewise, the transcriptional effects 
of enhancer deletions within extended super-enhancer loci 
are also consistent with the generally additive effects of 
individual enhancers [517, 518]. Finally, considerations 
related to the “dose of activation” view also lie at the 
foundation of the Activity-by-Contact (ABC) model for 
estimating the contribution of a given enhancer to a gene’s 
transcriptional output. In ABC, each enhancer is consid-
ered separately and the “dose” of activation it contributes 
to a promoter depends on its individual activity in cis and 
the frequency of the respective enhancer–promoter contact 
[183, 184]. The ABC model showed a good performance 
in predicting the transcriptional effects of CRISPRi-medi-
ated enhancer perturbations (one-by-one) in dozens of loci 
in human cell lines, particularly for the more proximal 
enhancers [183, 184].

However, it has long been known that additivity in 
enhancer action is not absolute, and some enhancers work 
together either synergistically or sub-additively. For exam-
ple, a mixture of additive, synergistic and sub-additive 
effects was demonstrated in a live imaging analysis of can-
didate developmental enhancers in Drosophila embryos 
[519]. Sub-additivity may also underlie some cases of 
functional enhancer redundancy, such as for Drosophila 

Fig. 3   A model of pioneer and maintenance enhancers. A distal pio-
neer enhancer, potentially bound by CTCF and/or cohesin, initiates a 
chromatin loop with the gene promoter and increases accessibility of 
the locus. Subsequently, more proximal cohesin-independent main-
tenance enhancers become activated and initiate gene transcription. 
Blue and red circles denote inactive and active enhancers, respec-
tively
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“shadow enhancers” that can “back up” important develop-
mental enhancers and enable them to accumulate deleteri-
ous mutations [520–522]. In turn, synergistic effects were 
observed in mammalian cell fate determination systems, 
for example, at Fgf5 enhancers during the differentiation of 
mouse embryonic stem cells to epiblast-like cells (EpiLCs) 
[523] and at up to 20% enhancers upon transdifferentiation 
of human leukemia B-cells into macrophages [524].

Some deviations from enhancer additivity could poten-
tially be explained by steric constraints arising from enhancer 
competition [519] or involvement of “pioneer enhancers” 
[525], but these considerations may not readily explain other 
reported cases [523, 526]. Recent insights into the biophysics 
of enhancer–promoter relationships expand the scope for pos-
sible scenarios underpinning these effects. Most importantly, 
dynamic modelling studies have challenged the direct relation-
ship between enhancer–promoter contacts and transcriptional 
bursting. Instead, they propose that an enhancer’s contact with 
a promoter may facilitate the transition of the promoter from 
a low-activity state to a highly active state [405, 406], which 
in turn may generate bursts at a higher frequency. Mechanis-
tically, this could be achieved if rather than directly initiat-
ing transcriptional bursts, the “doses of activation” provided 
by enhancers are accumulated at promoters through some 
intermediate molecular tags (such as histone modifications, 
transcription factors or RNAP itself), with a certain level of 
such “tags” required for transition to an active state [406]. This 
way, promoters may have a “memory” (hysteresis) of enhancer 
action [405, 406], reviving some early debates on this topic 
[527]. It also follows from these models that the frequency of 
enhancer–promoter contacts may have non-linear effects on 
transcriptional output, consistent with experimental observa-
tions [405, 503].

In theory, the functional “decoupling” of enhancer–pro-
moter contacts from transcriptional bursting may accommo-
date the existence of multi-enhancer hubs and non-looping 
mechanisms of enhancer–promoter communication. For 
example, such hubs formed through phase separation may 
help to cluster RNAP at gene promoters, prior to RNAP 
pause release that directly results in a transcriptional burst 
[506, 528, 529]. However, the exact interplay between these 
phenomena, and the extent to which they are jointly capable 
of explaining the complexity of gene control by multiple 
enhancers, remains to be fully understood.

Concluding remarks

Research over the last few decades has provided ample evi-
dence for the key role of enhancers in metazoan gene regu-
lation and the importance of their aberrations in disease. 
We now also have efficient tools for detection of enhancers 
and their target genes genome-wide in cell populations and, 

increasingly, in single cells. Jointly, these advances have 
improved our understanding of the regulatory logic and 
molecular mechanisms underpinning enhancer activity in cis 
and in trans. However, the bulk of evidence of enhancer–pro-
moter communication to date is based on 3C-derived meth-
ods that presume physical looping between these elements 
and necessitate a largely pairwise view on their relation-
ships. Modern technologies gradually make it possible to 
transcend these limitations, enabling more direct investiga-
tions of non-looping mechanisms and multi-enhancer regu-
latory logic. We are also beginning to expand our conceptual 
understanding of enhancer types and states beyond a simple 
“on” and “off”, with emerging notions such as poised and 
pioneer enhancers. Single cell methods, particularly those 
based on high-resolution live imaging, combined with pow-
erful genetic and epigenetic perturbation tools and state-of-
the-art computational analysis paradigms, have the potential 
to significantly advance our ability to probe these concepts, 
paving the way towards comprehensive quantitative models 
of cis-regulatory gene control.
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