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Abstract

Objective: ALK rearrangements are an established targetable oncogenic driver in non-small cell 

lung cancer (NSCLC). This study’s goal was to determine the imaging features of the primary 

tumor and metastatic patterns in advanced ALK-rearranged (ALK+) NSCLC that may be different 

from those in EGFR-mutant (EGFR+) or EGFR/ALK-wild-type (EGFR-/ALK-) NSCLC.

Methods: Patients with advanced ALK+, EGFR+, or EGFR-/ALK- NSCLC were retrospectively 

identified. Two radiologists concurrently assessed the imaging features of the primary tumor and 

the distribution metastases in these patients.

Results: We identified a cohort of 333 patients with metastatic NSCLC (119 ALK+, 116 

EGFR+, and 98 EGFR-/ALK-). Compared to EGFR+ and EGFR-/ALK- NSCLC, the primary 

tumor in ALK+ NSCLC was more likely to be in the lower lobes (ALK+=53%, EGFR+=34%, 
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EGFR-/ALK-=36%; p<0.05), less likely to be subsolid (ALK+=1%, EGFR+=11%, EGFR-/ALK-
=8%; p<0.02), and less likely to have air-bronchograms (ALK+=7%, EGFR+=28%, EGFR-/ALK-
=29%; p<0.01). ALK+ tumors had higher frequencies of distant nodal metastasis (ALK+=20%, 

EGFR+=2%, EGFR-/ALK-=9%; p<0.05) and lymphangitic carcinomatosis (ALK+=37%, 

EGFR+=12%, EGFR-/ALK-=12%; p<0.01) compared to EGFR+ and EGFR-/ALK- tumors, but 

lower frequency of brain metastasis compared to EGFR+ tumors (ALK+=24%, EGRF+=41%, 

p=0.01). Although there was no statistically significant difference in the frequencies of bone 

metastasis among the three groups, sclerotic bone metastases were more common in the ALK+ 

tumors (ALK+=22%, EGFR+=7%, EGFR-/ALK-=6%; p<0.01).

Conclusion: Advanced ALK-positive NSCLC is associated with primary tumor imaging 

features and patterns of metastasis that are different from those of EGFR-mutant or EGFR-/ALK­

wild type NSCLC at the time of initial presentation.

INTRODUCTION

The diagnosis and treatment of advanced non-small cell lung cancer (NSCLC) continue 

to evolve with advances in molecular testing and targeted therapy. Since the discovery of 

activating mutations in the epidermal growth factor receptor gene (EGFR), which confer 

sensitivity to EGFR tyrosine kinase inhibitors (TKIs), numerous additional oncogenic driver 

targets have been identified in NSCLC [1–3]. Occurring in approximately 5% of NSCLC, 

anaplastic lymphoma kinase (ALK) rearrangements are one of the most common targetable 

mutations in NSCLC, second only to EGFR mutations [4–6]. Similar to EGFR mutations, 

ALK rearrangements are more common in younger patients with minimal or no smoking 

history and adenocarcinoma histology [7–9]. ALK TKIs are highly effective in treating 

ALK-rearranged (ALK+) NSCLC, and five distinct ALK TKIs have received approval by 

the United States (US) Food and Drug Administration with alectinib being the current 

standard initial therapy in advanced ALK+ NSCLC [10–17].

On the basis of the robust efficacy of available targeted therapies, the US and European 

guidelines recommend routine molecular testing for targetable oncogenic alterations 

including ALK rearrangements at the initial diagnosis of advanced NSCLC [18, 19]. Despite 

these recommendations, the real-world adoption of molecular testing guidelines and the 

testing performance have remained suboptimal. For example, in one retrospective study, the 

ALK testing rate among advanced nonsquamous NSCLC patients at community practices 

in the US reached only 66.9% (14,478 of 21,639). Among those patients who did undergo 

ALK testing, 21.5% (3,290 of 15,320) initiated systemic therapy prior to receiving their 

ALK testing results [20]. Given the established efficacy of ALK TKIs in ALK+ NSCLC 

and their impact on patient outcomes, improving the rates of implementation and successful 

completion of molecular testing and the timely initiation of matched targeted therapy is 

essential.

Several studies have reported imaging features that can potentially predict the presence of 

EGFR mutations [21–23]. Whether there are distinct radiologic features associated with 

ALK+ NSCLC that may help distinguish this subset a priori—potentially helping select 

patients in whom molecular testing should be prioritized or repeated if initial testing is 
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unsuccessful or inconclusive—remains unknown. Published reports thus far have suggested 

that ALK+ NSCLC may be associated with solid density of the primary tumor, the 

presence of lymphangitic carcinomatosis, lymphadenopathy, and increased propensity for 

metastasis to the pleura and pericardium, but these studies were limited by small cohorts of 

ALK+ patients [24–30]. Here, we evaluated the pre-treatment imaging of 119 patients with 

advanced ALK+ NSCLC in order to determine and compare the radiologic features to those 

of EGFR-mutant (EGFR+) and EGFR/ALK-wild-type (EGFR-/ALK-) NSCLC.

SUBJECTS AND METHODS

Patients

This study was performed under an institutional review board-approved protocol. From a 

prospectively maintained database of patient with ALK+ NSCLC, we assessed all patients 

who presented with ALK+ NSCLC to the thoracic oncology clinic of Massachusetts 

General Hospital (MGH) between January 2013 and December 2018 for eligibility. 

We included all patients with a) metastatic NSCLC at presentation; b) known ALK 
rearrangement as determined per local testing using fluorescence in situ hybridization 

(FISH), immunohistochemistry (IHC), and/or next-generation sequencing (NGS); and c) 

with pre-treatment imaging available for review. As control groups, we selected a subset 

of 150 consecutive patients with known metastatic EGFR+ NSCLC and another subset 

of 150 consecutive patients who were negative for both ALK and EGFR mutations from 

separate internal databases. We excluded patients 1) without metastatic disease at initial 

presentation; and 2) those who had any local or systemic therapy prior to the earliest 

imaging study available. Patient inclusion and exclusion process is summarized in Figure 1. 

Electronic medical records were retrospectively reviewed to extract clinical and pathologic 

data, including age, sex, race, smoking history, tumor histology, and disease stage at initial 

based on 7th edition of the American Joint Committee on Cancer TNM Classification of 

Malignant Tumors.

Imaging review and analysis

Initial imaging studies performed prior to the initiation of cancer treatment were selected 

for analyses for each patient. Imaging studies reviewed for each patient included CT of the 

chest, abdomen, and pelvis with or without concurrent fluorodeoxyglucose (FDG)-positron 

emission tomography (PET) images, and CT and/or MRI of the brain. All imaging was 

performed at our institution or at another facility with images uploaded into our picture 

archiving and communications system (PACS; AGFA Impax 6, Mortsel, Belgium). A board­

certified radiologist specializing in lung cancer imaging (SRD) and a cardiothoracic imaging 

fellow (DPM) retrospectively reviewed all imaging concurrently. Findings were determined 

and recorded by consensus.

The primary tumor, when identifiable, was evaluated for the following features: size, 

location, solid versus subsolid density, and the presence of other features including air 

bronchograms, cavities, calcifications, or lymphangitic carcinomatosis. Malignant lymph 

nodes were confirmed to be malignant with at least one of the following: positive 

histology, increased uptake on FDG-PET imaging, or malignant behavior based on follow 
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up imaging and were recorded as ipsilateral or contralateral, and as hilar, mediastinal, 

supraclavicular, or distant (e.g. cervical, axillary, intra-abdominal). All indeterminate lymph 

nodes were presumed to be benign. Sites examined for metastases included the lungs, 

pleura, pericardium, liver, adrenals, other visceral organs (e.g. spleen, kidney, etc.), bones, 

subcutaneous soft tissues, and brain. Brain metastases were identified using CT or magnetic 

resonance imaging (MRI) of the brain. Other sites of metastases were identified using 

CT with or without concurrent FDG-PET images. Bone metastases, when present, were 

further classified as either predominantly lytic versus predominantly blastic or sclerotic. The 

assessment of bone metastasis was done at a site without fracture.

Statistical analysis

Patient characteristics and imaging features were summarized descriptively. Continuous data 

were described as median with range, and categorical data were described as frequencies 

with percentages. The Wilcoxon rank-sum test and Fisher’s exact test were performed 

to compare continuous and categorical features, respectively. All tests were two-sided. 

P-values less than 0.05 were considered significant. In order to determine the radiologic 

predictors of ALK rearrangements as compared to EGFR mutations or lack of EGFR/ALK 
alterations, multivariable logistic regression models were built with oncogenic driver types 

as the outcome. The criteria for choosing candidate predictors were p-value <0.05 based on 

univariate analyses.

RESULTS

Patient characteristics

A total of 333 patients were included in this study (ALK+: 119, EGFR+: 116, EGFR-/
ALK-: 98). Table 1 summarizes patient characteristics for all three cohorts. Patients with 

ALK+ NSCLC were younger at initial diagnosis than patients with EGFR+ or EGFR-/ALK- 
NSCLC. In this study, ALK+ patients were more likely to be female (56% vs 41%, p=0.03) 

and more likely to be non-smokers (72% vs 16%, p<0.01) compared to EGFR-/ALK- 
patients.

Primary tumor features

Table 2 summarizes comparison among the three genotype groups with respect to the CT 

imaging features of the primary tumor. There was no significant difference in the size of the 

primary tumor (median largest dimension: ALK+: 45 mm, EGFR+: 48 mm, EGFR-/ALK-: 
52 mm; p>0.05). ALK+ tumors were more likely to be in the lower lobes compared to 

EGFR+ and EGFR-/ALK- tumors (52% vs 34% vs 36%, p<0.05), and less likely to be 

subsolid in density (1% vs 11% vs 8%, p<0.02) or have air bronchograms (7% vs 28% vs 

29%, p<0.01). Cavitation was less common among ALK+ tumors than EGFR-/ALK- tumors 

(4% vs 12%, p=0.04).

Lymphadenopathy and Metastatic Patterns

Comparison of metastatic patterns among the three tumor genotypes are summarized in 

Table 3. ALK+ NSCLC were more likely to have intrathoracic nodal disease compared to 

EGFR+ NSCLC (93% vs 83%; p=0.02) and more likely to have distant nodal metastasis 
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compared to both EGFR+ and EGFR-/ALK- NSCLC (20% vs 2% vs 9%, p<0.05) (Figure 

2). ALK+ tumors were more likely to exhibit lymphangitic carcinomatosis than the EGFR+ 

and EGFR-/ALK- groups (37% vs 12% vs 12%, p<0.01) and less likely to have lung 

metastases than both groups (19% vs 66% vs 68%, p<0.01) (Figure 3). Compared to EGFR+ 

tumors, ALK+ tumors were associated with lower frequency of brain metastases (24% 

vs 41%, p=0.01) and higher frequency of pleural (46% vs 27%, p<0.01) and soft tissue 

metastases (6% vs 0%, p=0.01) at the time of diagnosis prior to any treatment. Compared 

to EGFR-/ALK- tumors, ALK+ tumors had lower frequency of adrenal metastases (7% vs 

32%, p<0.01) but higher frequency of liver metastases (22% vs 6%, <0.01). While there was 

no significant difference in the frequencies of bone metastases, ALK+ NSCLC were more 

likely than EGFR+ and EGFR-/ALK- NSCLC to have sclerotic bone metastases (24% vs 

7% vs 6%, p<0.01).

Multivariable logistic regression models

Based on multivariate analysis, younger age at diagnosis, the absence of air bronchograms 

in the primary tumor, the absence of lung metastasis, the absence of brain metastasis, and 

the presence of lymphangitic carcinomatosis, pleural metastasis, sclerotic bone metastasis, 

or distant lymph node metastasis were significant predictors of whether patients had ALK+ 
vs EGFR+ NSCLC (Table 4; Figure 4A). Younger age at diagnosis, non-smoking history, 

the absence of air bronchograms, the absence of lung metastasis, the absence of adrenal 

metastasis, and the presence of lymphangitic carcinomatosis, liver metastasis, or sclerotic 

bone metastasis were significant predictors of whether patients had ALK+ vs EGFR-/ALK- 
NSCLC (Table 4; Figure 4B).

DISCUSSION

This is the largest study to date to systematically assess the imaging features and metastatic 

patterns of ALK+ NSCLC. We found that ALK+ NSCLC has some imaging features and 

patterns of metastasis that are distinct compared to those of EGFR+ and EGFR-/ALK- 
NSCLC. In our cohort, ALK+ tumors were more likely be in the lower lobes compared to 

EGFR+ or EGFR-/ALK- tumors, and were less likely to be subsolid in density or have air 

bronchograms. Additionally, ALK+ tumors were more likely to be associated with absence 

of lung metastases and presence of lymphangitic carcinomatosis, distant nodal metastases, 

and sclerotic bone metastasis compared to EGFR+ or EGFR-/ALK- tumors.

Of note, virtually all of the primary tumors in ALK+ NSCLC evaluated in this study 

presented as solid masses or nodules. While most of the primary tumors in EGFR+ and 

EGFR-/ALK- NSCLC were also solid in density, there were increased frequencies of 

subsolid density and presence of air-bronchograms in these molecular subsets of tumors. 

The association between EGFR+ tumors and subsolid density and air bronchograms has 

been reported [23, 31, 32], although the mechanism behind these differences is unclear. 

ALK+ tumors in our study were also more likely to be in the lower lobes compared to 

the EGFR+ or EGFR-/ALK- tumors. While the propensity for the lower lobe location has 

been suggested for nonsmokers (vs upper lobe location for smokers) [33], the impact of the 

driver oncogene on the primary tumor location has not previously been reported. It has been 
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suggested that lower lobe tumors may be associated with poorer prognoses; however, these 

studies did not include oncogene-driven tumors treated with targeted therapy [34, 35].

Prior smaller studies have suggested the propensity of ALK+ NSCLC for lymphangitic 

carcinomatosis [28, 30]. Its association with sclerotic bone metastases observed in our 

cohort, however, is a novel finding. Historically, sclerotic metastases have been considered 

relatively rare compared to lytic metastases in treatment-naïve NSCLC [36, 37]. It is also 

noteworthy that ALK+ NSCLC had decreased frequency of lung metastases compared to 

EGFR+ or EGFR-/ALK- NSCLC. EGFR+ NSCLC can be associated with an increased 

frequency of “miliary” lung metastases [38, 39], which may partially account for this 

difference. These differences may potentially have larger prognostic implications in patients, 

as metastases are the primary determinants of mortality in NSCLC [40, 41].

Current guidelines recommend testing for the most common targetable molecular alterations 

in NSCLC including ALK rearrangements, and treatment with targeted TKIs is only 

indicated in those who test positive for the targetable mutations [18, 19]. Without further 

study and validation, imaging cannot replace molecular testing in determining the presence 

of ALK rearrangements in NSCLC, the distinct radiologic features described herein may 

potentially help identify patients who may benefit from prioritized testing or re-testing 

following an initial non-diagnostic or inconclusive result. Available assays for ALK 
rearrangement detection include IHC, FISH, and NGS. The latter two, especially NGS, can 

be time-consuming. There are diagnostic pathways that have been suggested to reduce time 

to diagnosis and to expedite initiation of targeted TKIs when appropriate [42–44]. Patients 

with clinical and imaging findings that suggest the presence of an ALK rearrangement (or 

other oncogene subsets such as EGFR+ NSCLC) could benefit from being triaged towards 

these expedited pathways. Additionally, conflicting ALK testing results can be seen using 

different diagnostic methods; for example, a patient with a negative ALK FISH result may 

then be found to have an ALK+ tumor by IHC or NGS testing and go on to benefit from 

ALK TKIs [45–49]. The presence of compelling clinical and radiologic features may help 

determine which patients should be re-tested using an alternative diagnostic method.

This study had several limitations. Due to its retrospective, single-institution nature, the 

findings herein may not be generalizable. While this study evaluated the largest cohort of 

patients with ALK+ NSCLC, the sample size still remained relatively small. Other oncogene 

subsets such as ROS1- or RET-rearranged lung cancer or BRAF-mutant lung cancer were 

not examined in this study. In addition, the EGFR-/ALK- cohort may be heterogeneous 

as it may include many different other mutational subsets other than ALK or EGFR. Due 

to these limitations, it remains unknown if there are imaging features of ALK-rearranged 

NSCLC that overlap with those of other mutational subgroups other than EGFR, and further 

study may be helpful in defining these features. Finally, while our findings suggested distinct 

imaging features that may be helpful in distinguishing ALK+ NSCLC from EGFR+ or 

EGFR-/ALK- NSCLC, we were not able to elucidate the biologic mechanisms underlying 

these differences, and further study is needed to explore why certain oncogenes exhibit 

particular metastatic tropism or primary tumor characteristics.

Mendoza et al. Page 6

AJR Am J Roentgenol. Author manuscript; available in PMC 2021 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



CONCLUSIONS

This is the largest study to date to assess the imaging features and metastatic patterns of 

advanced ALK+ NSCLC. Our findings suggest that ALK+ tumors have certain imaging 

features and patterns of metastasis that are distinct compared to EGFR+ or EGFR-/ALK- 
NSCLC. Although these radiologic features cannot substitute for appropriate molecular 

testing to detect oncogenic driver gene alterations such as ALK rearrangements, they may 

nevertheless assist in selecting those patients who are most likely to benefit from expedited 

genotyping, or from repeat testing following an initial non-diagnostic result.
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Figure 1. Selection of patients with ALK+, EGFR+, and ALK-/EGFR- NSCLC.
*A subset of 150 consecutive patients with metastatic EGFR+ NSCLC and 150 consecutive 

patients with metastatic ALK-/EGFR- NSCLC were selected from separate databases as 

control groups.
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Figure 2. Extensive lymphadenopathy associated with ALK+ lung cancer.
A 61-year-old female never smoker presented with a solid right lower lobe mass 

associated with extensive mediastinal, hilar, supraclavicular, cervical, and left axillary 

lymphadenopathy, and was later found to have ALK+ NSCLC. Representative coronal slices 

of (A) CT and (B) PET imaging are shown.
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Figure 3. Lymphangitic carcinomatosis associated with ALK+ lung cancer.
Representative axial CT images are taken from a 43-year-old male never smoker 

who presented with (A) dominant left upper lobe mass with surrounding lymphangitic 

carcinomatosis and (B) additional areas of lymphangitic carcinomatosis in the lower lobes.
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Figure 4. 
(A) ROC curve for the multivariable logistic regression model for ALK+ vs EGFR+ 

NSCLC. (B) ROC curve for the multivariable logistic regression model for ALK+ vs 

EGFR-/ALK- NSCLC.
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Table 1.

Patient characteristics.

Driver alteration, n(%) P-value

Patient Characteristic All (N=333) ALK+ (N=119) EGFR+ (N=116) EGFR-/ALK- (N=98) ALK+ vs. 
EGFR+

ALK+ vs/ 
EGFR-/ALK-

Age, median (range) 61 (19–90) 51 (19–84) 63 (26–90) 68 (42–84) <0.01 <0.01

Age

 ≤60 162 (49%) 90 (76%) 51 (44%) 21 (21%) <0.01 <0.01

 >60 171 (51%) 29 (24%) 65 (56%) 77 (79%)

Ethnicity

 Asian 31 (9%) 14 (12%) 15 (13%) 2 (2%) 0.46 <0.01

 Caucasian 273 (82%) 91 (76%) 93 (80%) 89 (91%)

 Others 29 (9%) 14 (12%) 8 (7%) 7 (7%)

Gender

 Female 187 (56%) 67 (56%) 80 (69%) 40 (41%) 0.06 0.03

 Male 146 (44%) 52 (44%) 36 (31%) 58 (59%)

Smoking

 Ever 159 (48%) 33 (28%) 44 (38%) 82 (84%) 0.13 <0.01

 Never 174 (52%) 86 (72%) 72 (62%) 16 (16%)
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Table 2.

Imaging features of the primary tumor.

Driver alteration, n(%) P-value

Tumor Feature All (N=333) ALK+ (N=119) EGFR+ (N=116) EGFR-/ALK- (N=98) ALK+ vs. 
EGFR+

ALK+ vs 
EGFR-/ALK-

Tumor size largest 
diameter, median 
(range)

49 (2–134) 45 (5–115) 48 (11–134) 52 (2–115) 0.09 0.18

Tumor size

 ≥3cm 259 (78%) 89 (75%) 95 (82%) 75 (77%) 0.21 0.87

 <3cm 74 (22%) 30 (25%) 21 (18%) 23 (23%)

Upper vs lower lobe

 Upper lobe 196 (59%) 56 (47%) 77 (66%) 63 (64%) <0.01 0.01

 Lower Lobe 137 (41%) 63 (53%) 39 (34%) 35 (36%)

Central vs peripheral

 Central 200 (60%) 66 (55%) 83 (72%) 51 (52%) 0.01 0.68

 Peripheral 133 (40%) 53 (45%) 33 (28%) 47 (48%)

Solid or not

 Solid 311 (93%) 118 (99%) 103 (89%) 90 (92%) <0.01 0.01

 Subsolid 22 (7%) 1 (1%) 13 (11%) 8 (8%)

Air bronchograms

 No 264 (79%) 111 (93%) 83 (72%) 70 (71%) <0.01 <0.01

 Yes 69 (21%) 8 (7%) 33 (28%) 28 (29%)

Cavitation

 No 310 (93%) 114 (96%) 110 (95%) 86 (88%) 0.77 0.04

 Yes 23 (7%) 5 (4%) 6 (5%) 12 (12%)

Tumor calcification

 No 327 (98%) 119 (100%) 111 (96%) 97 (99%) 0.03 0.45

 Yes 6 (2%) 0 (0%) 5 (4%) 1 (1%)
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Table 3.

Sites of metastasis.

Driver alteration, n(%) P-value

Metastatic Site All (N=333) ALK+ (N=119) EGFR+ (N=116) EGFR-/ALK- 
(N=98)

ALK+ vs. 
EGFR+

ALK+ vs/ 
EGFR-/ALK-

Thoracic Node

 No 32 (10%) 8 (7%) 20 (17%) 4 (4%) 0.02 0.55

 Yes 301 (90%) 111 (93%) 96 (83%) 94 (96%)

Intrathoracic

 No 76 (23%) 34 (29%) 28 (24%) 14 (14%) 0.46 0.01

 Yes 257 (77%) 85 (71%) 88 (76%) 84 (86%)

Lung

 No 166 (50%) 96 (81%) 39 (34%) 31 (32%) <0.01 <0.01

 Yes 167 (50%) 23 (19%) 77 (66%) 67 (68%)

Pleural mets

 No 192 (58%) 64 (54%) 85 (73%) 43 (44%) <0.01 0.17

 Yes 141 (42%) 55 (46%) 31 (27%) 55 (56%)

Lymphangitic 
carcinomatosis

 No 263 (79%) 75 (63%) 102 (88%) 86 (88%) <0.01 <0.01

 Yes 70 (21%) 44 (37%) 14 (12%) 12 (12%)

Pericardium

 No 329 (99%) 116 (97%) 116 (100%) 97 (99%) 0.25 0.63

 Yes 4 (1%) 3 (3%) 0 (0%) 1 (1%)

Extra-thoracic

 No 95 (29%) 33 (28%) 32 (28%) 30 (31%) >0.99 0.66

 Yes 238 (71%) 86 (72%) 84 (72%) 68 (69%)

Intra-abdominal

 No 233 (70%) 87 (73%) 81 (70%) 65 (66%) 0.66 0.30

 Yes 100 (30%) 32 (27%) 35 (30%) 33 (34%)

Adrenal

 No 278 (83%) 111 (93%) 100 (86%) 67 (68%) 0.09 <0.01

 Yes 55 (17%) 8 (7%) 16 (14%) 31 (32%)

Liver

 No 277 (83%) 93 (78%) 92 (79%) 92 (94%) 0.87 <0.01

 Yes 56 (17%) 26 (22%) 24 (21%) 6 (6%)

Spleen

 No 328 (98%) 114 (96%) 116 (100%) 98 (100%) 0.06 0.07

 Yes 5 (2%) 5 (4%) 0 (0%) 0 (0%)

Bone

 No 195 (59%) 65 (55%) 67 (58%) 63 (64%) 0.69 0.17

 Yes 138 (41%) 54 (45%) 49 (42%) 35 (36%)
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Driver alteration, n(%) P-value

Metastatic Site All (N=333) ALK+ (N=119) EGFR+ (N=116) EGFR-/ALK- 
(N=98)

ALK+ vs. 
EGFR+

ALK+ vs/ 
EGFR-/ALK-

Bone type

 None 198 (59%) 65 (55%) 68 (59%) 65 (66%) <0.01 <0.01

 Lytic 93 (28%) 26 (22%) 40 (34%) 27 (28%)

 Sclerotic 42 (13%) 28 (24%) 8 (7%) 6 (6%)

Brain

 No 227 (68%) 90 (76%) 69 (59%) 68 (69%) 0.01 0.36

 Yes 106 (32%) 29 (24%) 47 (41%) 30 (31%)

Distant lymph node

 No 298 (89%) 95 (80%) 114 (98%) 89 (91%) <0.01 0.04

 Yes 35 (11%) 24 (20%) 2 (2%) 9 (9%)

Soft tissue

 No 316 (95%) 112 (94%) 116 (100%) 88 (90%) 0.01 0.31

 Yes 17 (5%) 7 (6%) 0 (0%) 10 (10%)
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Table 4.

Multivariable models for ALK+ vs. EGFR+ NSCLC and vs. EGFR-/ALK- NSCLC.

Predictor (vs. EGFR+) OR (95% CI) P-value

Age at diagnosis >60 vs ≤60 0.19 (0.08 – 0.43) <0.01

Air bronchograms Yes vs No 0.11 (0.03 – 0.42) <0.01

Lung metastasis Yes vs No 0.08 (0.03 – 0.19) <0.01

Pleural metastasis Yes vs No 2.99 (1.31 – 6.83) 0.01

Lymphangitic carcinomatosis Yes vs No 5.63 (2.06 – 15.35) <0.01

Bone metastasis Lytic vs None 1 (0.42 – 2.39) >0.99

Sclerotic vs None 4.04 (1.27 – 12.87) 0.02

Brain metastasis Yes vs No 0.34 (0.15 – 0.76) 0.01

Distant lymphadenopathy Yes vs No 18.43 (3.53 – 96.13) <0.01

Predictor (vs. EGFR-/ALK-) OR (95% CI) P-value

Age at diagnosis >60 vs <=60 0.16 (0.06 – 0.43) <0.01

Smoke status Never vs Ever 12.15 (4.24 – 34.81) <0.01

Air bronchograms Yes vs No 0.07 (0.02 – 0.34) <0.01

Lung metastasis Yes vs No 0.07 (0.02 – 0.21) <0.01

Lymphangitic carcinomatosis Yes vs No 5.22 (1.5 – 18.23) 0.01

Adrenal metastasis Yes vs No 0.13 (0.03 – 0.56) 0.01

Liver metastasis Yes vs No 8.26 (1.79 – 38.15) 0.01

Bone metastasis Lytic vs None 1.58 (0.49 – 5.15) 0.45

Sclerotic vs None 10.84 (1.67 – 70.28) 0.01

Abbreviations: OR, odds ratio; CI, confidence interval
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