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Humans are vocal modulators par excellence. This ability is supported in
part by the dual representation of the laryngeal muscles in the motor
cortex. Movement, however, is not the product of motor cortex alone but of
a broader motor network. This network consists of brain regions that contain
somatotopic maps that parallel the organization in motor cortex. We therefore
present a novel hypothesis that the dual laryngeal representation is repeated
throughout the broader motor network. In support of the hypothesis, we
review existing literature that demonstrates the existence of network-wide
somatotopy and present initial evidence for the hypothesis’ plausibility.
Understanding how this uniquely human phenotype inmotor cortex interacts
with broader brain networks is an important step toward understanding how
humans evolved the ability to speak. We further suggest that this systemmay
provide a means to study how individual components of the nervous system
evolved within the context of neuronal networks.

This article is part of the theme issue ‘Voice modulation: from origin and
mechanism to social impact (Part I)’.

1. Introduction
Humans are vocal modulators par excellence. This is usually characterized as
the capacity for vocal production learning (VPL), which is the ability to learn
to produce novel vocalizations [1]. Few species of mammals, such as cetaceans
and bats [2,3], have displayed strong VPL abilities, and none of these species
has a close phylogenetic relationship to humans. Monkeys are particularly
weak vocal learners [4]. Non-human apes appear to have intermediate VPL,
being able to learn certain kinds of limited vocal behaviour from humans
[5,6], though there is little evidence of this behaviour in the wild [7]. The
human VPL capacity is attributable in part to specialized adaptations in
motor cortex that grant voluntary control over the voice. However, complex be-
havioural abilities such as VPL are not the product of the motor cortex alone but
are an emergent property of their interaction with a broader motor network.

Human motor cortex is composed of a band of specialized grey matter
along the precentral gyrus and the anterior bank of the precentral sulcus,
which is the main source of motor output from the central nervous system. Pen-
field’s seminal neurosurgical studies [8] described the conspicuous somatotopy
of the human primary motor cortex (M1), in which the muscles of the foot are
represented at one end of the somatotopic map and the muscles of the head rep-
resented at the other end [9–11]. Similar somatotopic maps have been described
throughout the network of brain areas that control movement, including the
cerebellum, supplementary motor area (SMA), basal ganglia (BG) and the
middle cingulate cortex (MCC) [12–15].

Penfield’s original mapping was uncertain of the somatotopic location of
the laryngeal muscles, which control the sound source of the voice. More
recent neurosurgical [16,17], molecular genetic [18] and brain imaging studies
[19–24] provide compelling evidence that the laryngeal muscles are unusual
in being controlled by two distinct loci within the human motor cortex.
While other effectors such as the digits of the hand may also have multiple rep-
resentations in motor cortex, these tend to be contiguous and may represent
either subdivision at a finer scale (i.e. muscles of flexion versus extension) or
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Figure 1. Depiction of the dual laryngeal motor network hypothesis. The
MCC, SMA and cerebellum are depicted with simplified somatotopic maps
for conceptual convenience. The broader motor somatotopy follows the
organization of motor cortex, but with idiosyncratic orientations following
a different axis in each brain region (BG not shown for simplicity). The
hypothesized dLMC-related and vLMC-related networks are shown in
orange and purple, respectively.
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correlated movements with nearby muscles that exert a
common influence over shared joints [25–28]. By contrast,
the dual laryngeal representations are non-contiguous, being
located at opposing ends of the orofacial motor zone—which
is a marked deviation from the single larynx area observed
in other primates [29,30]. The two representations have there-
fore been referred to as dorsal and ventral laryngeal motor
cortex (dLMC and vLMC). This adaptation has clear impli-
cations for the evolution of speech since the neural control of
the larynx supports one of the requirements of spoken
language [31,32], namely a high degree of control over the
voice source beyond the capabilities of other primates [4,33].

Despite extensive searches spanning new world monkeys
(primarily Macaca mulatta), old world monkeys (primarily Sai-
miri sciureus) and all extant genera of great apes including
Chimpanzees (Pan troglodytes),Orangutans (Pongo sp.) andGor-
illas (Gorilla sp.) [29,34,35], humans appear to be the sole
primate with the neural trait of dual larynx motor represen-
tation, and much has been written about the possible
implications of this phenotype for the evolution of speech [36–
41].Here,we outline a novel hypothesis that this human pheno-
type is not restricted to themotor cortex but extends throughout
a network of somatotopically arranged brain areas that com-
prise the motor system, including the cerebellum, SMA, BG
and MCC and the axonal projections between these regions.
2. Hypothesis: dual larynx motor networks
We hypothesize that each motor region contains two represen-
tations of the laryngeal muscles within their respective
somatotopic maps: one between the hand and the orofacial
muscles, and a second at the end of the orofacial representation
(figure 1). This hypothesis is supported by the observations
that (i) somatotopic maps throughout the motor network
follow a similar ordering of representations from foot to face
and (ii) nodes in the motor network project to one another
homotopically, suggesting that motor regions beyond motor
cortex must have target zones that receive the projections
from the dLMC and vLMC. Somatotopic maps in different
regions vary in orientation. For instance, somatotopy proceeds
dorsoventrally in themotor cortex but antero-posteriorly along
with the medial wall. Therefore, it may not be constructive to
use the labels dorsal and ventral larynx areas for somatotopic
maps beyond motor cortex. We have consequently adopted
the convention of referring to larynx somatotopic regions in
the MCC, SMA, cerebellum and BG as dLMC-related or
vLMC-related to denote their respective positions within the
somatotopically arranged motor network.

An alternative hypothesis is that only the dLMC benefits
from the gain in function concomitant with support from the
broader motor system. Only dLMC is composed of primary
motorcortex,whilevLMCis likely tobe located in aqualitatively
different cytoarchitectonicmotor region (see amoredetaileddis-
cussion in §3 below). Moreover, dLMC is a novel phenotype in
humans and robustly observed in human functional brain ima-
ging studies, which points towards a prominent role in brain
architecture. Therefore, if only one larynx representation is
observed in the network of somatotopic maps, then we predict
that it will be the dLMC-related locus in a position between
the hand and the articulatory muscles. If this turns out to be
the case, it will regardless be important to understand the evol-
ution of the dLMC in the context of a broader motor network.
3. A human-specific phenotype in motor cortex
Compared to other primates, lower motor neurons in the
human spinal cord and brainstem receive a far greater pro-
portion of their inputs from neocortex. These connections
contribute to the dexterity and behavioural flexibility of our
species [42–44]. Included in this abundance of cortical effer-
ents is a direct projection to motor neurons in the nucleus
ambiguus [36–40], which is a brainstem motor nucleus that
controls the muscles of the larynx. Such a direct corticobulbar
connection is lacking in monkeys [45], extant but sparse in
non-human apes [35], and further elaborated in humans
[46,47]. An analogous phenotype distinguishes birds that
are strong vocal learners such as songbirds (order Passeri-
formes), humming birds (order Apodiformes) and parrots
(order Psitaciformes) from weaker vocal learners [48,49].
Thus, it appears that multiple phylogenetic lineages with
strong VPL abilities have converged on similar neuropheno-
types with direct efferent projection from upstream motor
areas to voice motor nuclei [50,51].

Evidence for the presence of this direct connection between
neocortex and the nucleus ambiguus in humans has come
from natural experiments due to cerebrovascular events
[46,47], in which large cortical lesions caused the axons of
upper motor neurons to degenerate. Tracing the course of
these damaged axons against the more intact surrounding
white matter allowed the authors to demonstrate the existence
of the direct corticobulbar pathway. However, these lesions
all resulted from cerebrovascular accidents of the middle
cerebral artery (MCA) that can result in widespread damage
across the speech-relevant portions of motor cortex (hence
the prevalence of speech motor and swallowing disorders
following MCA infarcts; [52,53]). Thus, lesion studies
provide limited information about the cortical source of the
direct pathway.

Researchers using functional neuroimaging to investigate
speech motor control initially presumed that the larynx was
represented at the ventral-most extent of primary motor
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Figure 2. Major components of the motor network. (a) Lateral surface view
of MNI152 atlas brain; (b) medial surface view with digital transections at
x = 0 and z = 0 showing the motor cortex (red), middle cingulate cortex,
( pink), BG (yellow), SMA (blue) and cerebellum (cyan).
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cortex [54], in the location that would be expected from the
larynx’s position within the throat and proximity to the hom-
ologous region in non-human primates [29,55,56]. However,
later studies demonstrated that the human brain in fact
has two separate representations of the larynx, at either end
of the orofacial somatotopic map of the precentral gyrus
[19–23]. Though the dual larynx representations have not
been consistently labelled as such in earlier brain imaging
research, they were nonetheless consistently present near
the predicted location [54].

The dLMC is located in canonical primary motor cortex in
Brodmann Area (BA) 4, which is cytoarchitecturally defined
as the region containing a high abundance of giant pyramidal
neurons in cortical layer V—these pyramidal neurons are the
source of the descending motor pathways of the corticospinal
and corticobulbar tracts [57–59].

By contrast, the human vLMC is localized to the most
ventral segment of the central sulcus or the lateral segment
of the anterior subcentral sulcus [17,18,60]. The localization
of the vLMC may be particularly variable due to a high
degree of individual variation in the morphology of nearby
sulci [60], which may explain why the vLMC escaped
notice by many early functional magnetic resonance imaging
(fMRI) studies. Unlike its dorsal counterpart, quantitative
neuroimaging has also suggested that the vLMC is not
located in primary motor cortex [60]. Although no study
has both localized the vLMC and performed a cytoarchitec-
tural analysis of the underlying tissue, the location of the
vLMC corresponds to BA 43 in the Brodmann atlas. While
Brodmann believed that this region most strongly resembled
somatosensory cortex based on its cellular composition [57],
Vogt believed that it more strongly resembled motor cortex
based on the degree of myelination of cortical layer V,
which is an indicator of the large myelinated axons that
form the efferent motor pathways that carry motor com-
mands to the peripheral nervous system [58,59]. In contrast
with the evidence from humans, the larynx representation
in non-human primates has been identified in premotor
cortex [45], but no separate representation in primary motor
cortex has been described. This observation is in line with
the theory that primary and premotor cortex together contain
one single somatotopic map spanning cytoarchitectural
zones [61].

Whether the dLMC and vLMC make separate functional
contributions to voice motor control, and what those might
be, remains an active area of research. Identifying behaviours
that activate one of these regions over the other is challen-
ging, given that the dLMC may be easier to detect than the
vLMC. However, electrical stimulation studies in humans
have observed that stimulation of the dLMC elicits a vowel-
like vocalization, while stimulation of the vLMC elicits grunt-
ing [8,16,62]. The dLMC is bounded posteriorly by a putative
larynx sensory cortex (LSC) on the posterior central gyrus.
This LSC is larger and activates more strongly in professional
opera singers than non-singers, suggesting that these individ-
uals make greater use of proprioceptive feedback to guide
highly skilled motor control [63,64].

It is not clear whether the vLMC is bounded posteriorly
by a sensory zone, analogous to the dLMC. However, the
vLMC may itself have some sensory function not matched
by its dorsal counterpart. While the vLMC has primarily
been localized as a correlate of vocal motor behaviour
[17,20–23], activation of this region has also been observed
in response to sensory stimulation of the larynx by applying
an external puff of air [65]. Somewhat paradoxically, anaes-
thetizing the larynx does not reduce vLMC activation [19].
A recent cortical parcellation based on multi-modal brain
imaging confirms that this region is distinct from both pri-
mary motor and primary somatosensory cortex and
suggests a combination of sensorimotor functions [66].
Further research on the relationship between the vLMC and
the broader motor system may shed further light on its
function.
4. The motor system and its somatotopic maps
Motor cortex is the main source of output from the motor
system. However, motor control is not the product of M1
alone, but requires a broader motor network that supports
complex voluntary movements. This network includes brain
regions such as the BG, SMA, cingulate cortex and the cer-
ebellum (figure 2). In this section, we review the existing
evidence that each of these brain regions contains its own
somatotopic map akin to motor cortex. Intriguingly, the
somatotopic maps in the brains of individuals born without
one hand undergo a neuroplastic remapping that may
occur in parallel across multiple brain regions within this net-
work [67], which may suggest that somatotopic maps across
the motor network are driven by common developmental
mechanisms.
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(a) Motor cortex
The somatotopic map in primary motor cortex (BA 4) is well
characterized and is sometimes referred to as a homunculus
in the brain after its reflection of the physical body. The
muscles of the foot are located at one end of the somatotopic
map and the muscles of the head located at the other [9–11].
For conceptual convenience, zones within these somatotopic
maps are often referred to by simplistic labels based on the
effectors with which they are most strongly associated (e.g.
M1hand for the predominantly hand-controlling zone). How-
ever, at a finer spatial scale, these zones are composed of
tessellated fields and individual effectors can be controlled
by discontinuous but clustered representations [68]. These
representations have been described as either encoding the
states of muscles [69,70], the spatial properties of movement
vectors [71,72] or ethologically meaningful combinations of
effectors that pattern whole movements [61,73], and these
levels of encoding are not mutually exclusive [74].

Distinct functional contributions of the dLMC and vLMC
remain elusive [75,76]. However, electrical stimulation of
these regions in the human brain elicits vowel sounds and
grunting, respectively [8,16,62]. These separate behaviours
produced by the same ensemble of muscles are suggestive
of distinct ethological functions of the dLMC and vLMC,
though further evidence is required. It is hoped that an
understanding of the connections of these two regions with
the broader motor system will begin to elucidate their
respective functions.
(b) Cortico-cerebellar loops
The cerebellum maintains a broad pattern of connections
throughout the brain and has some part in a wide range of
central nervous system function [77,78]. Among these func-
tions, the cerebellum plays a critical role in making online
adjustments that fine-tune movements. The cerebellum
receives an efferent copy of motor commands from M1 and
compares expected proprioceptive feedback with observed
proprioceptive feedback [79–82]. The difference between
intended and observed movements produces an error signal
that is returned to M1 to implement online corrections to
ongoing movements.

The cerebellum contains at least two separate somatotopic
maps [83]. The anterior lobe of the cerebellum contains a
somatotopic map with the foot located antero-dorsally and
the head postero-ventrally, while the posterior lobe has a
somatotopic map with the face represented postero-dorsally
and the foot antero-ventrally [84–88]. More recent evidence
suggests that the anterior lobe may contain an additional
somatotopic map along the lateral-to-medial axis [89],
though further replication is required.
(c) Cortico-striatal loops
The SMA and BG form part of the cortico-striatal loop that is
involved in motor learning [90,91]. The motoric processing
loop of the BG forms a circuit through its various component
nuclei including the putamen (a part of the striatum for which
this circuit is named), globus pallidus, subthalamic nucleus
and substantia nigra, which sends outputs via the thalamus
back to the cortex [92]. This circuit receives
dopaminergic inputs from reward centres that mediate
reinforcement learning [93,94].

The SMA and a region anterior to it called the pre-SMA
both contain a distinct set of motor representations, with a
clear somatotopy at least in SMA [95]. This somatotopic map
spans from the legs posteriorly to the orofacial muscles ante-
riorly [13,96–99]. The putamen receives inputs from both M1
and the SMA and these inputs retain the somatotopic organiz-
ation of their sources [15]. Inputs from M1 and the SMA
innervate distinct portions of the putamen, and it has therefore
been suggested that the putamen may contain two parallel
somatotopic maps [100]. Somatotopy may also be retained
throughout the entire cortico-striatal loop [101], including
the globus pallidus [102,103] and thalamus [104], though on
a spatial scale that is inaccessible to current non-invasive
brain imaging methodologies.

(d) Cingulate cortex
The cingulate cortex is nested in the medial surface of the
brain following the curvature of the corpus callosum. This
brain region combines cognitive, affective and motoric func-
tions for the motivation and initiation of goal-directed
behaviours [105–108]. It is divided grossly into the anterior,
middle and posterior cingulate cortex (ACC, MCC and
PCC, respectively). The MCC has approximate boundaries
anteriorly at the genu of the corpus callosum and poster-
iorly at the marginal sulcus [109–111]. This macro-
anatomically defined region itself comprises multiple
cytoarchitecturally defined subregions. Of these, area 24c
is in the cingulate sulcus, which contains a series of three
cingulate motor areas [12,112]. These cingulate motor
areas are all involved in action selection, with increasingly
complex movement patterns involving the more anterior
divisions [95,113,114].

The middle cingulate sulcus contains three distinct motor
regions [12,112], each of which contains a somatotopic map
with the feet represented posteriorly and the orofacial
muscles anteriorly [12,95,115–118]. Somatotopic mapping in
the cingulate cortex may be further complicated by the high
degree of anatomical variability of this region, since in a
subset of human brains the motor regions of the cingulate
sulcus are divided across separate cingulate and paracingulate
sulci [12,119–121].

(e) White matter somatotopy
The descending motor pathways that form the corticobulbar
and corticospinal outputs from the motor system maintain a
clear somatotopic map that is observable in white matter
[122–125]. This somatotopy facilitates the mapping of upper
motor neurons in primary motor cortex onto their corre-
sponding lower motor neurons in the brainstem and spinal
cord. Likewise, the somatotopic maps of M1 in either hemi-
sphere project preferentially to homotopic sites in the
opposite hemisphere, retaining ordered somatotopy in the
white matter of the corpus callosum [126,127]. At least
some of the individual brain regions that make up the
motor network also display preferential functional connec-
tivity between somatotopically analogous regions [87,128],
maintaining somatotopy in the white matter pathways that
connect them [115,129].
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participants). (b) Results of ALE meta-analysis from the two LMC seed regions displayed on the MNI152 atlas brain. (i) The surface brain is digitally transected
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the SMA. The dLMC-related SMA (orange) is posterior to the vLMC-related SMA (purple) in line with the expected somatotopy of this region.

royalsocietypublishing.org/journal/rstb
Phil.Trans.R.Soc.B

376:20200392

5

5. Initial evidence for dual laryngeal
representations in the cerebellum and
supplementary motor area

(a) Cerebellum
We re-analysed an existing fMRI dataset to test whether
two distinct representations of the laryngeal muscles can be
observed in the cerebellum (see [21] for details on data
acquisition). The study was approved by the Central Univer-
sity Research Ethics Committee at the University of Oxford
(CUREC, R55787/RE001) in accordance with the regulatory
standards of the Code of Ethics of the World Medical
Association (Declaration of Helsinki). Twenty participants
performed speech movements to localize lips, tongue and lar-
yngeal activity during vocalization. Participants produced
non-linguistic utterances overtly, articulating silently, using
an isolated vowel, or as covert speech. The LMC was then
localized using a factorial model comparing overt speech
and vowel production with silent articulation and covert
speech. See [21] for a detailed description of the functional
paradigm and analysis.

In addition to conventional group-level statistical acti-
vation maps, we derived overlap maps of individually
thresholded and binarized volumetric maps (figure 3a for
details of analysis). A larynx-lip-tongue-larynx pattern can
be observed along a lateral/anterior-to-medial/posterior
axis. The coordinates of these regions are consistent with
lobule VI of the posterior cerebellar lobe [130]. Two distinct
activations for the larynx can be observed at the group
level (figure 3a(i,ii,iii)) as well as in individual participants
(figure 3a(iv,v,vi)). Activations for the lips and the tongue
fall in between the two larynx activations as they do in
motor cortex, though at the present resolution these activa-
tions are largely overlapping. The dLMC-related activation
is observed antero-laterally to the articulators while the
vLMC-related activation is observed postero-medially. All
activations are in close proximity and within the same
anatomical lobule.

Our results are most consistent with one continuous
somatotopic map in lobule VI of the cerebellum that contains
two distinct laryngeal representations. We note also that
additional activations are present at a lower threshold
in the remaining lobules, which may reflect additional
somatotopic maps [84–88].
(b) Supplementary motor area
We conducted a meta-analysis of brain imaging studies that
activated the dLMC and vLMC to identify brain regions
that are co-activated with each larynx area. We searched the
BrainMap database [131] for fMRI studies that reported acti-
vation within a 5 mm radius sphere of the dLMC (x =−41;
y =−16; z = 38) or the vLMC (x =−66; y =−4; z = 14). This
search was performed blind to the tasks being performed
by the participants and was concerned only with activation
within the seed regions [132]. Coordinate tables in Montreal
Neurological Institute (MNI) space were retrieved from the
database on 4 April 2020 (see electronic supplementary
material, S1 and S2). This search yielded 512 foci of activation
across 29 participant groups for the dLMC, and 294 foci
across 19 participant groups for the vLMC. Each set of acti-
vation coordinates was analysed using activation-likelihood
estimation (ALE) [133–135] using GingerAle software (v.
3.0.2) with a cluster-level family-wise error rate of p < 0.01
computed with 5000 permutations. Results were visualized
using Mango (v. 4.1, Research Imaging Institute, UTHSCSA).

The dLMC-related ALE yielded a network of motor- and
auditory-related brain regions including the contralateral
dLMC, the superior temporal gyrus (STG), putamen,



Table 1. Coordinates of peak likelihoods from ALE meta-analysis for seed
regions in the dLMC (upper) and vLMC (lower). Brain regions are listed
along with their x, y, z coordinates in MNI stereotaxic space and their
activation-likelihood estimation scores, which provide a relative measure of
confidence.

brain region hemisphere x y z
ALE
value

dLMC

dLMC [seed] left −42 −16 38 0.125

dLMC right 46 −12 38 0.045

SMA left −4 0 56 0.041

putamen right 26 0 4 0.032

cerebellum left −12 −62 −20 0.032

STG left −60 −14 10 0.027

vLMC

vLMC [seed] left −64 −4 14 0.098

vLMC right 66 −4 22 0.024

SMA left −2 8 58 0.025

right insula right 42 −6 8 0.024

broader motor network motor cortex spinal cord muscles

brainstem

Figure 4. Conceptual depiction of parallel effector-specific circuits feeding
from the broader motor network to upper motor neurons in motor cortex
and onto lower motor neurons in the brainstem and spinal cord (black cir-
cles). We propose that evolutionary changes that add novel downstream
targets (orange line) to the efferent motor pathway change the function
of the corresponding portion of motor cortex as well as the broader motor
networks to which it is connected. The example above depicts a novel pro-
jection from a patch of motor cortex to brainstem, which in turn alters the
function of the motor network in which it is embedded to support voice
motor control. The dotted line indicates that this patch was previously
recruited by a different effector.
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cerebellum and the SMA (figure 3b and table 1). The vLMC-
related ALE yielded a much more restricted network, as
expected from the smaller pool of studies in that analysis,
including the contralateral vLMC, the insula and the SMA.
Both ALEs revealed co-activation with the SMA, but at
spatially distinct sites. The dLMC-related SMA was posterior
to the vLMC-related SMA. This pattern is consistent with the
expected somatotopy of this region and with the previously
observed network somatotopy between the SMA and motor
cortex [128,129].
6. Mechanisms of brain network evolution
We have hypothesized that the human brain has evolved not
only a dual representation of the laryngeal muscles in motor
cortex, but a dual laryngealmotor network to support it. How-
ever, this broader characterization of the phenotype raises
important questions about how natural selection may act sim-
ultaneously on an entire network of brain regions whose
functions are strongly interdependent. Among these questions
is how the emergence of a novel pathway overcomes strong
allometric constraints, for example, that dictate the relative
volume of grey matter to white [136,137], or how individual
neural adaptations can be accommodated within the highly
conserved organization of neocortex [138,139].

There is some debate about the extent to which evolution
is able to influence individual brain regions to form an evol-
utionary mosaic [140,141] as compared to concerted change
over the entire brain [142,143]. While brain area size is
highly predictable from overall brain size taken at a broad
taxonomical scale (e.g. across mammals), individual brain
regions violate this trend when examined at a finer taxonomic
scale (e.g. across primates), which is a likely driver of inter-
species behavioural differences [42,144].

Pairs of functionally related brain structures have corre-
lated sizes across species even after controlling for brain size,
indicating that brain networks may evolve together and at
least partially independently of other brain structures [140].
Furthermore, natural selection may be capable of acting on
individual brain regions and their corresponding networks
due to genetic mechanisms that provide independent regu-
lation of brain region sizes [141]. The primate cortical sheet
has not expanded uniformly as brain size increased, with the
occipital lobe expanding least and the frontal and temporal
lobes expanding most, but this pattern is conserved and
species differences appear to be the product of brain size [145].

A remarkably analogous instance of network-wide brain
evolution is found in the song system of parrots. Strong
vocal learning abilities have evolved independently in three
lineages of birds, and of these, parrots are among the most
prodigious vocal learners [50,146]. The avian song system is
composed of a series of nuclei, some of which are analogous
to structures in the human vocal motor system including the
putamen, motor cortex and nucleus ambiguus [18,147], and
are regulated by specialized patterns of gene expression
[148,149]. The parrot brain is unusual in containing two par-
allel song systems [150]. Nuclei in the parrot song system are
composed of a core that is analogous with the song system of
other avian vocal learners, and a surrounding shell that forms
a rudimentary second song system. The core and shell song
systems form parallel networks; however, only the core
sends direct projections to the brainstem motor nucleus that
controls the syrinx (i.e. the analogue to mammalian nucleus
ambiguus). Chakraborty & Jarvis [151] proposed that such
a phenotype could arise by mutations that cause the entire
network to duplicate as an ensemble, in line with a previous
proposal that the avian song system itself may have evolved
as a specialization from a pre-existing limb and body motor
network [152].

We suggest that only a relatively minor change to an exist-
ing portion of mammalian motor cortex may have been
sufficient to evolve a novel laryngeal motor network in
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humans. We propose that the emergence of novel efferent
pathways to the nucleus ambiguus de facto alters the func-
tional significance not only of these cortical neurons in the
motor cortex but also the broader network in which they are
embedded (figure 4). Given that somatotopic motor networks
are defined by the effectors that they control (e.g. M1-hand is
that part of motor cortex which projects to hand lower motor
neurons in the spinal cord, SMA-hand is that part of
the SMA that projects to M1-hand, etc.), modifications to the
descending efferent pathways of motor cortex alter the func-
tion of corresponding sites throughout the motor network.
Hence, we propose that the evolution of novel projections
from one or both of the LMCswas sufficient for the emergence
of vocal motor networks, thereby acquiring novel functions.
Such a mechanism would leverage existing long-range con-
nections in the brain, thereby preserving existing allometric
relationships between the grey and white matter volumes
and overcoming hard barriers for morphological changes.

One mechanism that has been proposed to drive the
development of novel laryngeal motor specializations in
humans is the evolution of novel patterns of gene expression
in the dLMC and vLMC relative to surrounding cortex [18].
This specialization includes genes of the slit and plexin
family that encode axon guidance molecules and neuronal
growth cone receptors, respectively [153,154]. These genes
are likely candidates for a molecular genetic mechanism
that may drive the direct projection to nucleus ambiguus in
humans. Alternatively, such a specialization may simply
arise as a consequence of the increased proportional size of
neocortex. Larger brain regions send more axonal projections
and compete more effectively for limited dendritic space
[155,156]. For example, among mammals, proportionally
larger neocortical size is correlated with deeper penetration
of the spinal cord by corticospinal axons, which in turn med-
iates improved manual dexterity [42,43]. Hence, the increased
proportional size of human neocortex alone may have been a
driving factor in evolving novel vocal motor networks in
humans. As cortical expansion increased the total number
of corticobulbar axons, they may have invaded novel terri-
tory in the nucleus ambiguus, potentially at the expense of
other inputs that mediate unlearned vocalizations, such as
the periaqueductal grey [157,158].

We note that the human brain has undergone numerous
other large-scale structural changes relative to non-human
primates [159–164]. The emergence of vocal motor networks
is itself not sufficient for the communicative behaviours of
humans. Rather, it is part of an ensemble of neural adap-
tations that support the vocal, auditory, semantic, syntactic
and pragmatic faculties that are needed for speech and
language, and that may have separate evolutionary histories
[31,32,165]. However, we do suggest that the small-scale
modification of the corticobulbar outputs of motor cortex
may have had large-scale functional implications for the
motor network.
7. Summary
We have proposed a novel hypothesis that the dual represen-
tation of the laryngeal muscles found in the motor cortex is
repeated throughout the motor network. Somatotopic organ-
ization is a feature that is found across the network of brain
regions that control voluntary movement. Each of these
brain regions contains representations of muscle groups fol-
lowing a predictable order based on the plan of the body.
These motor regions project preferentially to somatotopically
homologous regions (e.g. M1-hand to SMA-hand) to form an
extended somatotopic network. Initial evidence suggests that
the cerebellum and SMA may also contain dual represen-
tations of the larynx, thereby contributing the functions of
the cortico-cerebellar and cortico-striatal loops to voice
motor control. These findings require further replication
and should be extended to other motor regions such as cingu-
late cortex and the BG. This hypothesis raises important
questions about how adaptations at the level of motor
cortex may impact the broader network in which it is
embedded. We have also discussed brain evolution in
search of a parsimonious mechanism for the emergence of
this complex phenotype in the human brain.
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